Review for Final Exam

MATH 249

The following is offered without warranty, expressed or implied. You are responsible for all material covered.

Logistics

- 1. Python and CalcPlot will be available, but you may not access the internet otherwise.
- 2. You may use our Handy Python Info sheet.
- 3. No cell phone calculators.
- 4. You will need to state Green's Theorem, Stokes' Theorem, and the Divergence Theorem without the assistance of your green book.
- 5. You may use your green book after you hand in the first page.
- 6. The exam will include roughly half new material and half old material.

Content

- 1. 3-D coordinates and vectors.
 - (a) Dot product, cross product, and their properties and uses (angles between vectors, projections, etc.)
- 2. Equations of lines and planes
- 3. Arc length, curvature, T, N, B
- 4. Multivariable functions
 - (a) Graphs
 - (b) Partial derivatives
 - (c) Equations of tangent planes
 - (d) Linearization and differentials
 - (e) The chain rule
 - (f) Directional derivatives
 - (g) The gradient
 - i. Used to compute directional derivatives
 - ii. Normal to level curves/surfaces
 - iii. Direction of greatest increase
 - (h) Optimization
 - i. Local extrema (D)
 - ii. Absolute extrema (Critical points and boundary)
 - iii. Lagrange multipliers
- 5. Multiple integration
 - (a) Double integrals
 - i. Definition/concept
 - ii. Calculation (e.g., midpoint rule)
 - (b) Iterated integrals
 - i. Definition/concept
 - ii. Fubini's Theorem
 - iii. General regions
 - iv. Polar coordinates $(dA = rdrd\theta)$
 - v. Computing area with a double integral

- vi. General changes of variable
- (c) Triple integrals
 - i. Definition/concept
 - ii. Fubini's Theorem
 - iii. Mass, volume
 - iv. Cylindrical and spherical coordinates $(dV = rdzdrd\theta, dV = \rho^2 \sin(phi)d\rho d\phi d\theta)$
- 6. Vector Fields
 - (a) Definition/concept
 - (b) Gradient vector fields/conservative vector fields (and potential functions)
 - (c) Line/path integrals of scalar functions and vector fields (including meaning and interpretation)
 - (d) Fundamental Theorem for line integrals
 - (e) Independence of path
 - (f) Green's Theorem
 - (g) Curl and divergence
 - (h) Test for conservatism
- 7. Parametric surfaces
 - (a) Surface area
 - (b) Tangent planes
- 8. Surface integrals
 - (a) Scalar functions definition and computation (parametric and z = g(x, y), what is dS?)
 - (b) Flux integrals definition and computation (parametric and z = g(x, y), what is $d\vec{S}$?)
 - (c) Stokes' Theorem
 - (d) Divergence Theorem

Advice

- (a) Sketch the domain of integration for every integration problem.
- (b) Remember to include dA and dV as appropriate to the coordinate system you choose.
- (c) **Read the instructions.** For example, some integration problems will just tell you to set up an integral and go on. **Don't waste time integrating those!**
- (d) Be very solid on the coordinate transformations.
- (e) When in doubt, think about what things mean! Also do this when not in doubt.