MATH 249

Today

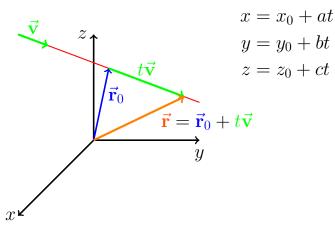
- 1. Questions from last time
- 2. 12.5 and 10.1: Parametric curves, lines, and planes. (Understand how to represent curves parametrically in 3D and how to represent lines and planes algebraically.)
- 3. WeBWorK

10.1 Parametric Curves

- 1. x and y depend on a third variable, the **parameter**: x = x(t), y = y(t).
- 2. This allows graphs even when y isn't a function of x.
- 3. It is sometimes possible to eliminate the parameter (algebraically) to express y as a function of x.

12.5 Lines and Planes

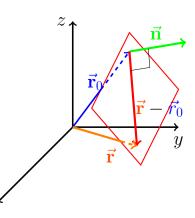
Used for:


- Physics (paths of particles, linear approximation)
- Computer graphics (linear approximation)
- Linear approximations all over: economics, chemistry, physics, ...
- 1. For both lines and planes, we need a point and a direction.

Lines

Let $\vec{r_0} = \langle x_0, y_0, z_0 \rangle$ and $\vec{v} = \langle a, b, c \rangle$. Take \vec{v} to be the direction of the line.

- 2. Vector equation of a line: $\vec{r} = \vec{r_0} + t\vec{v}$
- 3. Line segment from \vec{r}_0 to \vec{r}_1 : $\vec{r} = (1-t)\vec{r}_0 + t\vec{r}_1$


4. Parametric equations of a line:

Planes

Let P be a plane. Let $\vec{r}_0 = \langle x_0, y_0, z_0 \rangle \in P$, and let $\vec{n} = \langle a, b, c \rangle$ be orthogonal to P.

- 5. Vector equation of plane: $\vec{n} \cdot (\vec{r} \vec{r_0}) = 0$
- 6. Vector equation of plane: $\vec{n} \cdot \vec{r} = \vec{n} \cdot \vec{r_0}$
- 7. Scalar equation of plane: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

8. The angle between two planes is defined to be the angle between their normals.

x

- 9. Examples: p. 802: 6-12, 13, 19, 23-38 [29], (possible: 39-42, 55-56, 69-70)
- 10. WeBWorK: 2, 3 (implicit), 5, 6, 10 (wants the cosine!)

Next Time

- 1. Watch 12.6 [\sim 31 minutes]
- 2. Homefun 3 (CalcPlot, Python).