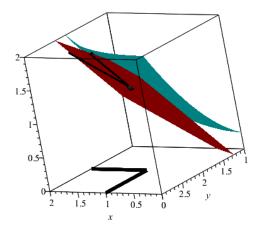
MATH 249

Today

- 1. 14.4 Tangent planes and linearization
 - Understand tangent planes as a generalization of tangent lines.
 - Know how to find equations of tangent planes.
 - Understand that tangent planes can be used to approximate function values near the point of tangency
 - Understand differentials as an approximation of the change in a function
- 2. WeBWorK


14.4 Tangent Planes

- 1. Tangents in the x and y directions to a surface at a point $P(x_0, y_0, z_0)$ define a plane.
- 2. The normal to this plane is given by

 $<1,0, f_x(x_0,y_0)> \times <0,1, f_y(x_0,y_0)> = <-f_x(x_0,y_0), -f_y(x_0,y_0), 1>.$

3. Thus, the tangent plane has equation

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

[See also Maple file 14-04 for other views.]

4. The **Linearization** of f at (x_0, y_0) is

$$L(x, y) = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

- 5. The graph of the linearization of f is the tangent plane to f at (x_0, y_0, z_0) . NOTE: the only places x and y appear are in $x - x_0$ and $y - y_0$. The rest are constants x_0 and y_0 !
- 6. Let z = f(x, y). Then f is **differentiable** at (x_0, y_0) if

$$\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

for some $\epsilon_1, \epsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

- 7. Differentials: $dz = f_x(x, y)dx + f_y(x, y)dy$, where $dx = \Delta x = x x_0$ and $dy = \Delta y = y - y_0$.
- 8. Thus, for a differentiable function, we have $\Delta z = dz(x_0, y_0) + \epsilon_1 dx + \epsilon_2 dy$, so $\Delta z \approx dz$.
- 9. Put another way: if f is a differentiable function, then the tangent plane is a good approximation of the graph of f and the linearization is a good approximation of the function near (x_0, y_0) .
- 10. **Theorem:** If f_x and f_y exist near (x_0, y_0) and are continuous at (x_0, y_0) , then f is differentiable at (x_0, y_0) .
- 11. Comparisons:

(a)
$$L(x,y) = z_0 + dz(x_0,y_0).$$

- (b) The tangent plane is given by z = L(x, y).
- (c) $\Delta z = dz + a$ small error term (if f is differentiable).
- 12. Examples p. 899: #3, 14, 29, 37, 34
- 13. WeBWorK: 2, 4

Next Time

1. Watch 14.5 [\sim 35 minutes]