MATH 249

Today

1. 15.4: Double Integrals in Polar Coordinates (Understand how to convert to and integrate in polar coordinates.)

2. WeBWorK

3. Homefun/Python

15.4: Double Integrals in Polar Coordinates

- 1. Recall: in polar coordinates, $x = r \cos(\theta), y = r \sin(\theta), x^2 + y^2 = r^2$, and $\frac{y}{x} = \tan \theta$.
- 2. The area of a polar rectangle $[r_1, r_2] \times [\theta_1, \theta_2]$ is

$$\pi(r_2^2 - r_1^2)\frac{\theta_2 - \theta_1}{2\pi} = \frac{1}{2}(r_2 + r_1)\Delta r\Delta\theta = r^*\Delta r\Delta\theta = \Delta A,$$

where r^* is the average of r_1 and r_2 .

If we choose that average as the sample point from each subrectangle, our volume calculation (from the definition of the double integral) over the rectangle $[a, b] \times [\alpha, \beta]$ becomes

$$V = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$
$$= \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(f(r_{ij}^{*} \cos(\theta_{ij}^{*}), r_{ij}^{*} \sin(\theta_{ij}^{*})) r_{ij}^{*} \right) \Delta r \Delta \theta$$
$$= \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos(\theta), r \sin(\theta)) r dr d\theta,$$

where the iterated integral is over a rectangle in the $r\theta$ -plane. Compare to the definition of the definite integral:

$$\iint_{R} f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta x \Delta y$$

- 3. Note that $A(R) = \iint_R 1 dA$.
- 4. Examples p. 978: #1-4, 5, 6, 10, 11, 15, 18, 19, 22, 24, 29, 32
- 5. WeBWorK: 4, 5, 6

Next Time

- 1. Watch 15.6 [~ 50 minutes]
- 2. Homefun 10