MATH 249

Today

- 1. 16.2: Line integrals (Understand and be able to compute path integrals of vector fields.)
- 2. WeBWorK
- 3. Homefun 12

16.2: Line Integrals (aka Path Integrals)

1. Let C be a curve parametrized by $\vec{r}(t)$ for $t \in [a, b]$, and let f be a function whose domain includes C. The **path integral** of f over C is

$$\int_{C} f(x,y)ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(x,y)\Delta S_i = \int_{a}^{b} f(\vec{r(t)}) |\vec{r}'(t)| dt.$$

- 2. Note that $ds = |\vec{r}'(t)| dt$.
- 3. We can think of this path integral as the area of a "shower curtain" lying above C and below the graph of f.

4.
$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))\sqrt{(x'(t))^{2} + (y'(t))^{2}}dt$$

5.
$$\int_C f(x,y)dx = \int_a^b f(x(t),y(t))x'(t)dt$$

6.
$$\int_C f(x,y)dy = \int_a^b f(x(t),y(t))y'(t)dt$$

- 7. Recall that the **work** done by a force \vec{F} along a displacement D is given by $W = \vec{F} \cdot \vec{D}$.
- 8. Suppose $C: \vec{r}(t)$ is smooth on [a, b]. Subdivide [a, b] into n subintervals of width Δt . This also divides C into n subarcs, where the *i*th subarc has length Δs_i and moves in the direction of $\vec{r}'(t_i)$. Thus, the work done by \vec{F} in moving along this little bit of the path is approximately $\vec{F}(\vec{r}(t_i)) \cdot (\vec{r}'(t_i))\Delta s_i$.
- 9. As before, $\Delta s_i = |\vec{r}'(t_i)| \Delta t$.
- 10. Let *C* be a smooth curve parametrized by \vec{r} on [a, b], and let \vec{T} be the unit tangent vector $\frac{\vec{r'}}{|\vec{r'}|}$. If $\vec{F} = \langle P, Q \rangle$ is a continuous vector field on *C*, we define the **line** (or **path**) **integral of** \vec{F} **along** *C* by

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt = \int_{C} \vec{F} \cdot \vec{T} ds = \int_{C} P dx + Q dy.$$

- 11. Recall that the scalar projection of \vec{F} onto \vec{T} is given by $\operatorname{comp}_{\vec{T}}\vec{F} = \frac{\vec{F} \cdot \vec{T}}{|\vec{T}|} = \vec{F} \cdot \vec{T}$, the integrand. That is, we are adding up the contribution of \vec{F} to traveling along the path.
- 12. Examples p. 1043: #2, 3, 5, 6, 8, 17, 22, 42, 43
- 13. Python

Next Time

1. Watch 16.3 [\sim 51 minutes]