MATH 249

Today

- 1. 16.3: FTCLI (Understand the FTCLI as a generalization of the FTC and be able to apply it.)
- 2. WeBWorK

16.3: FTCLI

1. Let $C: \vec{r}(t)$ on [a, b] be (piecewise) smooth, and let f be a differentiable function such that ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

2. Notes:

- (a) Path integrals of conservative vector fields are independent of path. Only the endpoints matter!
- (b) $\oint_C \vec{F} \cdot d\vec{r} = 0$ if \vec{F} is conservative.
- (c) If \vec{F} is continuous on an open connected region D and $\int_C \vec{F} \cdot d\vec{r}$ is independent of path in D, then \vec{F} is conservative on D.
- (d) If $\vec{F} = \langle P, Q \rangle$ is conservative and P and Q have continuous partial derivatives on D, then $P_y = Q_x$ on D.
- (e) If $\vec{F} = \langle P, Q \rangle$ on an open, simply connected region D, P and Q have continuous partial derivatives on D, and $P_y = Q_x$ on D, then \vec{F} is conservative on D.
- 3. Examples p. 1053: #1, 2, 3, 6, 7, 11, 14, 16 (...), 23, 24

Next Time

- 1. Review.
- 2. Watch 16.4 [\sim 52 minutes] for **after** exam.