
MATH 249

Today

- 1. Go over exam
- 2. 16.4: Green's Theorem (Understand the statement and use of Green's Theorem and recognize it as a generalization of the FTC.)

3. Homefun/Python 16.4: Green's Theorem

 Green's Theorem: Let C be a positively oriented piecewise-smooth simple closed curve in the plane, and let D be the region bounded by C. If P and Q have continuous first partial derivatives in an open region containing D, then

- 2. Notice also that if $\vec{F} = \langle P, Q \rangle$, then $\oint_C \vec{F} \cdot d\vec{r} = \oint_C P dx + Q dy$.
- 3. If the integrand in a double integral is 1, then the integral represents the area of the region of integration: $A(R) = \iint_{R} 1 dA$.
- 4. From Green's Theorem, we get some alternative formulas for the area based on choosing P and Q so that $Q_x P_y = 1$. Here are three popular ones:

(a)
$$\iint_{R} 1 dA = \oint_{\partial D} x dy \text{ (taking } P = 0, Q = x)$$

(b)
$$\iint_{R} 1 dA = -\oint_{\partial D} y dx \text{ (taking } P = -y, Q = 0)$$

(c)
$$\iint_{R} 1 dA = \frac{1}{2} \oint_{\partial D} x dy - y dx \text{ (taking } P = -y/2, Q = x/2)$$

5. Examples p. 1060: #3, 7, 8, 12, 20, 9

Next Time

- 1. Watch 16.5 [\sim 36 minutes]
- 2. Homefun/Python