MATH 249

Today

- 1. 16.5: Curl and Divergence (Understand the computation and interpretation of the curl and divergence of a vector field and the del operator.)
- 2. WeBWorK
- 3. Homefun/Python

16.5: Curl and Divergence

- 1. We define the **operator** "del" by $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$.
- 2. ∇ is not a "vector" in our usual sense since its components are not numbers, but rather instructions to differentiate.
- 3. Notice that the gradient of f is $\nabla f = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = \langle f_x, f_y, f_z \rangle$, as though it were scalar multiplication.
- 4. The **curl** of the vector field $\vec{F} = \langle P, Q, R \rangle$ is

$$\operatorname{curl} \vec{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle = \nabla \times \vec{F}.$$

- 5. Properties:
 - (a) $\operatorname{curl}(\nabla f) = \vec{0}$ if f has continuous second-order partials.
 - (b) If \vec{F} is conservative, then $\operatorname{curl} \vec{F} = \vec{0}$. (From (a).)
 - (c) Test for Conservatism: If \vec{F} is a vector field on a simply connected region D, \vec{F} has continuous partials on D, and $\operatorname{curl} \vec{F} = \vec{0}$ on D, then \vec{F} is conservative.
 - (d) If $\operatorname{curl} \vec{F} = \vec{0}$, we call \vec{F} irrotational.
 - (e) The curl is a measure of how much the vector field wants to rotate about a point. Its magnitude is the velocity of that rotation, and its direction is the preferred axis of rotation.
- 6. The **divergence** of $\vec{F} = \langle P, Q, R \rangle$ is

$$\operatorname{div}\vec{F} = P_x + Q_y + R_z = \nabla \cdot \vec{F}.$$

7. Properties:

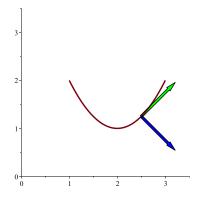
- (a) $\operatorname{div}(\operatorname{curl} \vec{F}) = 0$ if P, Q, and R have continuous second-order partials.
- (b) We say \vec{F} is **incompressible** if $\operatorname{div} \vec{F} = 0$.
- (c) The divergence is a measure of how much the vector field wants to spread out away from a point.
- 8. Green's Theorem Revisited:

$$\oint_C \vec{F} \cdot \vec{r} = \oint_C P dx + Q dy = \iint_D (Q_x - P_y) dA = \iint_D (\operatorname{curl} \vec{F}) \cdot \hat{k} dA.$$

9. This leads us to a new kind of path integral: instead of projecting \vec{F} onto the tangent to the path we are traveling, we project it onto the normal:

$$\oint_C \vec{F} \cdot \hat{n} ds = \oint_C P dy - Q dx = \iint_D (P_x + Q_y) dA = \iint_D \operatorname{div} \vec{F} dA.$$

This is a **flux** integral, as it represents the flow through C.



10. Examples p. 1068: #2, 9-11, 15, 17, 19

Next Time

1. Watch 16.6 [\sim 43 minutes]