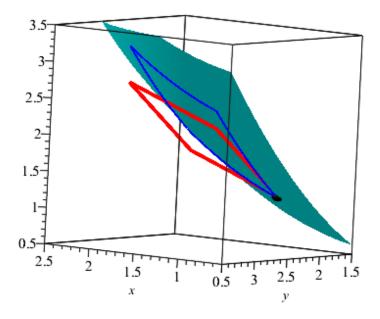

MATH 249

Today

- 1. 16.6: Parametric Surfaces (Understand what a parametric surface is and be able to parametrize simple surfaces.)
- 2. WeBWorK

16.6: Parametric Surfaces

- 1. A **parametric surface** is a surface S for which x, y, and z depend on two parameters: $\vec{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ over some domain D in the uv-plane.
- 2. Holding u or v constant produces **grid curves** on the surface.


- 3. The normal to the tangent plane to a parametric surface is given by $\vec{r}_u \times \vec{r}_v$ (since both are tangent to the surface) provided they are defined and not parallel.
- 4. If $\vec{r_u} \times \vec{r_v} \neq \vec{0}$, then S is called **smooth**.
- 5. Surface Area: To find the surface area of S, we subdivide the domain D (in the uv-plane) in our usual way. The image of each subregion is a small patch on the surface S that can be approximated by a parallelogram with sides parallel to $\vec{r_u}$ and $\vec{r_v}$ and scaled by Δu and Δv , respectively. The area of that parallelogram is $|\vec{r_u} \times \vec{r_v}|\Delta A$, where $\Delta A = \Delta u \Delta v$. Thus, the surface area is given by

$$\lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} |\vec{r_u}(u_{ij}^*, v_{ij}^*) \times \vec{r_v}(u_{ij}^*, v_{ij}^*)| \Delta A,$$

which we can recognize as a double integral:

$$\iint_{D} |\vec{r_u} \times \vec{r_v}| dA$$

where the integral is taken over the domain D in the uv-plane.

6. If S : z = f(x, y), this becomes $\vec{r} = \langle x, y, f(x, y) \rangle$, giving $\vec{r}_x = \langle 1, 0, f_x \rangle$ and $\vec{r}_y = \langle 0, 1, f_y \rangle$, and $|\vec{r}_x \times \vec{r}_y| = \sqrt{1 + f_x^2 + f_y^2}$. Thus the surface area in this case is given by

$$\iint_D \sqrt{1 + f_x^2 + f_y^2} dA.$$

- 7. Example: $\vec{r}(u, v) = \langle u \cos v, u \sin v, u \rangle$ (See Maple file)
- 8. Examples p. 1078: #4, 35, 37, 47

Next Time

- 1. Watch 16.7 [\sim 53 minutes]
- 2. Homefun