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Chapter 1

SYSTEMS OF LINEAR
EQUATIONS

1.1 Introduction

We are embarking on a tour of matrix theory and linear algebra. These topics have become
extremely important not only in mathematics but also in a wide variety of other disciplines
such as science, engineering, economics, and management. The study of matrices began in
the mid-nineteenth century and came to its present form during the period 1920-1940. We
will not dwell on the history of the subject1.

To some extent, the power of matrix theory comes from the notation that is used. The
ability to treat an array of numbers as a single quantity is a powerful tool and it yields
significant results. While the details require hard work, the methods that follow are worth-
while. We will take an abstract approach to these topics in order to make our accumulated
methods and knowledge applicable in a broader scope.This will enable us to fill in some holes
left in previous courses. In several undergraduate courses material is omitted because of the
unavailability of certain aspects of matrix theory. In calculus, it is customary to skip a dis-
cussion of optimizing functions of several variables - this is covered in Section 5.7. Systems
of differential equations are often omitted from a first course in differential equations because
of difficulties in dealing with the Jordan canonical form - this topic is introduced in Section
6.3. Physics instructors in courses on classical mechanics usually cannot cover the material
on principal axes because of the lack of techniques on diagonalizing symmetric matrices - we
outline this in Section 5.8.

In order to fill in these holes we will need to develop our theory in sufficient generality so
that these problems can be solved. This means that our development must be “general” or
“abstract.” Students sometimes have difficulty with abstraction at first exposure. Working
with axioms, definitions, theorems, and proofs can be confusing. The mathematician uses
abstraction to simplify (and generalize) an investigation, not to complicate it. An apprecia-
tion of the power of the method of abstraction will be a secondary benefit of this course of
study.

1For an interesting account of the development of this area of mathematics, the reader is referred to A
History of Mathematics by Carl B. Boyer, New York, 1968.

1



2 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

The study of matrix theory and linear algebra begins with investigations into the solutions
of systems of simultaneous linear equations. Students encounter systems of equations at an
early point in their mathematical careers. For instance, in high school algebra, one encounters
“story” problems such as: The sum of Tom’s age and his older brother Dick’s age is 17 and
the difference is 7. How old is each?

If x represents Dick’s age and y represents Tom’s age, then from the statement of the
problem, we obtain the following system of linear equations:

x + y = 17
x − y = 7

(1.1.1)

Adding the equations, we obtain the equation 2x = 24 and we see that x = 12. Substi-
tution into the first equation gives 12 + y = 17, and we obtain y = 5. So, we see that Tom’s
age is 5 and Dick’s age is 12, and we say that the solution of the system of equations 1.1.1 is
x = 12 and y = 5, or we might say that the solution is the pair of numbers (12, 5) and that
the solution set is {(12, 5)}.

It seems that we have found a rich source of problems. Systems of equations like those
in 1.1.1 can be constructed with more variables and more equations. How do we find the
solutions? Are there any? Are there many? A lot of questions arise, and we will be able to
answer most of them!

GEOMETRIC CONSIDERATIONS

To begin our investigations, it is worthwhile to consider the geometrical aspects of systems
of equations of the type 1.1.1. Each equation describes a straight line in the xy-plane, and
since the line given by x + y = 17 has slope −1 and the one given by x − y = 7 has slope
1, the lines are not parallel and so they must intersect (see Figure 1.1.). The solution is the
unique pair of numbers that describe the point of intersection of the lines.

y

x

x + y = 17

7x - y =
5

17

7 12 17

Figure 1.1: Ages of Dick and Tom

By considering other systems of equations we can see the possibilities for solution sets of
similar systems of linear equations. In the system
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x + y = 3
x + y = 5,

(1.1.2)

we see that the lines are parallel (both have slope −1) and distinct (see Figure 1.2), and so
the two lines have no points in common. This is another way of saying that the system 1.1.2
has no simultaneous solution or that the solution set is the empty set. Such a system is said
to be inconsistent.

y

x

x + y =

5

3

x + y =3

5

3 5

Figure 1.2: Parallel Lines

The third possibility is that the lines described by the two equations are exactly the
same. For example, consider the system:

x − y = 1
−2x + 2y = −2.

(1.1.3)

Figure 1.3 shows the graph. Since the two lines are the same, any point on the line is a
solution. It follows that the solution set can be written as {(x, y)|x− y = 1} or alternately
{(x, x− 1)|x is any real number}. Such a system is said to be redundant.

x− y = 1

−2x+ 2y = −2

y

x1

Figure 1.3: Identical Lines
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2
1

R3

R210 V 2I 3
I

4R

R1

1I

A

B

1I

 

Figure 1.4: Circuit Diagram

Notice that system 1.1.1 has exactly one solution, that 1.1.2 has no solutions, and that
1.1.3 has infinitely many solutions.

Systems of linear equations can be found in many disciplines - physics, chemistry, engi-
neering, economics, etc. In courses that involve electricity and magnetism one encounters
systems of simultaneous linear equations that arise from certain electrical networks obeying
Kirchhoff’s laws. Those networks having only voltage sources (batteries, for example) and
resistors will produce a system of linear equations with the currents in each branch of the
networks as the unknowns. Previous experience with Kirchhoff’s laws will not be needed in
the following discussion. We will present an example and this will give the general idea of
how these systems arise.

KIRCHHOFF’S LAWS

Briefly, Kirchhoff’s laws state that around any closed loop in an electrical network, the sum
of the voltages produced by the energy sources in the loop equals the sum of the voltage
drops across the resistors in the loop, and that at any branch point in the network, the sum
of the currents is zero. Using Σ-notation, we can express these laws symbolically by:

∑

loop
V =

∑

loop
IR

∑

point
I = 0,

where V represents the voltage, I the current, and R the resistance in a given resistor.
Kirchhoff’s laws will be investigated more fully in Section 1.8; here we will consider one

example. In reality, the orientation of the assigned currents must be considered, as well as
the orientation of the power sources in the circuit. The sum of the voltage drops must be
taken “algebraically;” that is, with allowance for the algebraic sign. Consider the circuit in
Figure 1.4.

By Kirchhoff’s laws, after some rearrangement, the following system of linear equations
is obtained:
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Loop 1: R1I1 + R2I2 + R3I1 = 10
Loop 2: − R2I2 + R4I3 = 0
Point A: I1 − I2 − I3 = 0

(1.1.4)

Point B produces essentially the same equation as Point A and so it need not be consid-
ered. Let us assume certain specific values for the resistance; say R1 = 2, R2 = 5, R3 = 3,
and R4 = 2. Combining the two terms involving I1, the system of equations [1.1.4] becomes:

5I1 + 5I2 = 10
− 5I2 + 2I3 = 0

I1 − I2 + I3 = 0
(1.1.5)

Dividing the first equation by 5 and subtracting it from the last equation, we get

I1 + I2 = 2
5I2 − 2I3 = 0

− 2I2 + I3 = −2
(1.1.6)

(Note that we also multiplied the second equation by −1.) Now dividing the second
equation by 5, adding twice the second equation to the last, and dividing by −2, we obtain

I1 + I2 = 2

I2 − 2
5
I3 = 0

−1
10
I3 = 1

(1.1.7)

Solving for the unknown currents, we obtain I3 = −10, I2 = −4, and I1 = 6.

Section 1.1 Exercises

In Exercises 1-7 solve the systems of equations:

1. (a) x+ y = 3 (b) 2x+ 4y = 6
x− y = 2 −x+ 2y = 3

2. (a) 2x+ 3y = 4 (b) 2x− 4y = 8
x− 2y = 8 x+ 3y = −1

3. x + y + z = 4
y − z = 6

x + z = 2

4. 2x + y + 2z = 3
x + z = −2

−x + y − z = 6
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5. w − x + y − z = 7
x + 2y + z = 3

y − z = 6
y + z = −1

6. In the electrical circuit in Figure 1.4, assume that the resistances are given by R1 =
2, R2 = 3, R3 = 1, and R4 = 1. Solve for the currents I1, I2, and I3.

7. In the electrical circuit in Figure 1.4, assume that the resistances are given by R1 =
5, R2 = 10, R3 = 5, and R4 = 6. Solve for the currents I1, I2, and I3.

8. Find all solutions of: 2x + 3y − z = 12
x − 2y + 2z = 7.

9. Consider the system of linear equations:

ax + y = 2
x + 2y = −3

where x and y are the unknowns and a is some unknown constant. Find values of
a (if possible) for which the system of equations has: a) exactly one solution, b) no
solutions, c) infinitely many solutions.

10. Consider the system of linear equations:

x + y = a
ax + y = 2.

Find the values of a for which the system of equations has: a) no solution, b) a unique
solution. Could the system have infinitely many solutions?

11. The sum of three numbers is 32. The quotient of two of them is 3 and the third number
is 3/5 of the sum of the other two. Find the three numbers.

12. A couple has two children. The youngest was born when the oldest was four, and two
years from now the sum of the children’s ages will be 20. How old is each child?

1.2 Systems of Linear Equations and Matrices

The discussion and examples in Section 1.1 should suggest that systems of linear equations
arise naturally in problems and that it is important to be able to solve such systems. While
the problems in Section 1.1 involved only two or three unknowns, it is not hard to imagine
problems involving many unknowns. For example, a Kirchhoff’s laws problem with 16 loops
could have 36 or more variables. In this section we will discuss general systems of linear
equations and show how a system of linear equations may be regarded as a single “matrix”
equation.
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SCALARS AND TERMINOLOGY

The systems of equations considered in Section 1.1 all involved coefficients taken from the
field of real numbers R, and in a solution the variables took on real number values. In other
situations it may be desirable to consider systems of equations with coefficients in the field
of complex numbers or in some other field, such as the rational numbers. In each problem
or theorem, the field in question will be specified or understood and numbers from this field
will be called scalars. In general, the reader may assume that the field in question is the
field of real numbers and that the scalars are real numbers, since any field has the arithmetic
properties of the field of real numbers; that is, the operations of addition, subtraction,
multiplication, and division behave as they do in the system of reals. Notice, however, that
the order (a < b) properties of the reals do not hold in general.

The possibility of having scalars that are not real numbers is raised not to complicate the
discussion, but to generalize the discussion and methods. If we wish to refer to the collection
of all scalars, we will often denote this set by the letter F . For a discussion of fields and their
properties, the reader is referred to Appendix C. Throughout, we will use Z to refer to the
set (or system) of integers, Q for the rational numbers, R for the set of real numbers, and C

for the complex numbers. Notice that we are using a special font for these special sets. Also
note that the system of integers Z does not satisfy the axioms for a field - not all elements
have multiplicative inverses. The properties of a number system have a direct relationship
to the solvability of equations over the number system. Notice that an equation of the form
ax = b, a 6= 0, does not, in general, have a solution in the integers, but a solution is always
obtainable over a field. By the usual conventions, we may assume that Z ⊆ Q ⊆ R ⊆ C.

By a linear equation in the variables (or unknowns) x1, x2, . . . , xn we mean an
equation of the form

a1x1 + a2x2 + . . .+ anxn = c,

where a1, a2, . . . , an, c are scalars. The scalars a1, . . . , an are called the coefficients; more
specifically, ai is called the coefficient of the variable xi. The term “linear” is used because
no powers, products, or quotients of the variable occur in the equation. In addition, if one
considers the geometrical aspects of two- and three-dimensional space one sees that a line
in the xy-plane is given by a linear equation in x and y , and a plane in three-dimensional
space is given by a linear equation in x, y, and z. If the coefficients of the linear equation
come from a certain field of scalars, we will say that the equation is a linear equation “over”
that field.

By a solution of the linear equation a1x1+a2x2+ . . .+anxn = c we mean a collection
of scalars b1, b2, . . . , bn with the property that a1b1 + a2b2 + . . . + anbn = c; that is, when
each bi is substituted for xi, the equation is satisfied. Solutions are often listed as n-tuples
(b1, b2, . . . , bn), an ordered sequence of scalars. Normally, the scalars making up the solution
come from the same field that the coefficients come from.

Example 1.2.1. The equation 2x+3y−z = 2 is linear over the real numbers and the equation
(1 + i)x+3y = 2+ i (where i2 = −1) is linear over the complex field. The triple (2,−1,−1)
is a solution of the first equation, as is (−1, 2, 2); and (1, 1/3) and (−3/2 − i/2, 1 + i) are
solutions of the second equation.

�
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SYSTEMS OF EQUATIONS

In order to solve problems involving many unknowns – such as problems arising from electri-
cal networks with many loops – it is necessary to consider a general system of m linear
equations in n unknowns:

a11x1 + . . . + a1nxn = h1

a21x1 + . . . + a2nxn = h2
...

...
...

...
am1x1 + . . . + amnxn = hm,

(1.2.1)

where h1, . . . , hm are scalars called the constants, the coefficients aij are all scalars and
x1, . . . , xn are variables or unknowns. A solution of this system of equations (or a si-
multaneous solution) is an n-tuple (b1, . . . , bn) that satisfies each of the linear equations
in the system; that is, ai1b1 + . . . + ainbn = hi for i = 1, 2, . . . , m. The solution set for a
system of equations is the collection of all solutions of the system.

Recall the system of equations that we solved in Section 1.1:

x + y = 17
x − y = 7

(1.1.1)

If one looks at our solution of this system of equations, it becomes apparent that nothing
really happens to the variables - they are merely “place holders” - and it is the changes in the
coefficients that are important. We could just as easily write the coefficients and constants
in an array of numbers and perform the operations on the array. The solution of the system
1.1.1 would then become:

ñ

1 1 17
1 −1 7

ô

−→
ñ

1 1 17
2 0 24

ô

−→
ñ

1 1 17
1 0 12

ô

−→
ñ

0 1 5
1 0 12

ô

(1) (2) (3)
.

In the first transition (1), Row 1 was added to Row 2 - this corresponds to the first step
in the solution, which consisted in adding the first equation to the second equation. In Step
(2), Row 2 was divided by 2, and in Step (3), Row 2 was subtracted from Row 1. The last
array shows us that x = 12 and y = 5.

MATRICES

Arrays of numbers of the above sort are important, and we call them matrices: An m× n
matrix is an array of m rows and n columns of scalars aij of the form













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn













. (1.2.2)
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If the scalars aij are from the field F , we say the matrix is “over F”. We refer to the
number of rows (m) of the matrix and the number of columns (n) of the matrix as the size
of the matrix. If m = n, we say that the matrix is square and that it is of order n. Notice
that matrix is singular and matrices is plural. Also, the symbol aij should be interpreted as
ai,j; that is, i and j are separate indices.

We will need some terminology in dealing with matrices: Capital letters A,B,C, . . . are
most often used to denote matrices. Let A denote the matrix in 1.2.2 above. The i-th
row of A contains the scalars ai1, ai2, . . . , ain and the j-th column contains a1j , a2j, . . . , amj .
Columns go up and down, rows are horizontal. The entry in row i and column j is aij ,
and A is often written in the very abbreviated form A = [aij ]. It is typical to denote the
entries of a matrix named with a specific capital letter with the the lower case version of the
same letter. The letter i is most often used for the row index (or number) and j for the
column index. Note that square brackets – [ and ] – are used to denote matrices. If one
uses parentheses – ( and ) – as grouping symbols in expressions, it will avoid confusion.

In the system of equations

a11x1 + . . . + a1nxn = h1

a21x1 + . . . + a2nxn = h2
...

. . .
...

...
am1x1 + . . . + amnxn = hm

, (1.2.3)

the matrix













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn













(1.2.4)

is called the coefficient matrix, and the augmented matrix of the system is the
matrix













a11 a12 · · · a1n h1

a21 a22 · · · a2n h2
...

...
. . .

...
...

am1 am2 · · · amn hm













. (1.2.5)

While matrices allow one to express a system of linear equations in a concise form, there
is more: it is possible to write a single matrix equation that is equivalent to the system of
equations. In order to show how a system of linear equations may be regarded as a single
matrix equation, it is necessary to define “operations” on matrices. We will develop an
“arithmetic” for matrices, including the operations of addition, matrix multiplication, and
scalar multiplication. These definitions are made for general matrices without regard to
whether they are the coefficient or augmented matrices for some system of equations. The
operations give extraordinary power to the matrix notation. While an analogy can be made
with the arithmetic of the real numbers, we must proceed cautiously. Before defining these
operations, it must be made clear what it means for two matrices to be equal.
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EQUALITY

Definition 1.2.1. The m× n matrices [aij] and [bij ] are equal, and we write [aij] = [bij ], if
and only if aij = bij for i = 1, . . . , m and j = 1, . . . , n. Thus, matrices are equal when they
are the same size and when all corresponding entries are equal. This definition of equality is
just an extension of the definition of equality of ordered pairs (x, y) that the reader has no
doubt encountered in previous courses in algebra or calculus.

Example 1.2.2. For example,

ñ

2 1
−1 1

ô

=

ñ

2 1
−1 1

ô

and

ñ

4/2 1
1 3/3

ô

=

ñ

2 1
1 1

ô

, but
ñ

2 1
−1 1

ô

and

ñ

2 −1
1 1

ô

are not equal and we write

ñ

2 1
−1 1

ô

6=
ñ

2 −1
1 1

ô

.

�

MATRIX OPERATIONS

The algebraic operations of addition, scalar multiplication, and multiplication of matrices
are defined as follows.

Definition 1.2.2. If A = [aij ] and B = [bij ] are two m × n matrices, the sum A + B of A
and B is defined by A+B = [aij + bij ].

Example 1.2.3.

ñ

1 2 1
1 −1 0

ô

+

ñ

2 1 6
0 1 2

ô

=

ñ

1 + 2 2 + 1 1 + 6
1 + 0 −1 + 1 0 + 2

ô

=

ñ

3 3 7
1 0 2

ô

.

�

Notice that for the sum of two matrices to be defined, the matrices must be of the same
size, or order, and the result of the operation is a matrix of their common size.

Definition 1.2.3. If a is a scalar and A is a matrix, then aA, the scalar product of a and
A, is defined by aA = [a · aij ].

Example 1.2.4. Using a = −2 and A the first matrix from Example 1.2.3, we have

aA = −2

ñ

1 2 1
1 −1 0

ô

=

ñ −2(1) −2(2) −2(1)
−2(1) −2(−1) −2(0)

ô

=

ñ −2 −4 −2
−2 2 0

ô

.
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�

These definitions are straightforward, but the definition of the product is less so. Histori-
cally, it seems that the product of matrices first arose in the consideration of the composite of
two transformations of vectors. Suppose that we consider two changes in coordinate systems:
(x, y) → (u, v) → (s, t). Let us suppose that

u = ax+ by s = eu+ fv
v = cx+ dy t = gu+ hv

.

How is the transformation (x, y) → (s, t) represented? Substituting and simplifying we
get:

s = e(ax+ by) + f(cx+ dy)

= (ea+ fc)x+ (eb+ fd)y

t = g(ax+ by) + h(cx+ dy)

= (ga+ hc)x+ (gb+ hd)y.

The coefficients in the composite, considered as a matrix, are obtained as the product of
corresponding matrices of the individual transformations:

ñ

ea + fc eb+ fd
ga+ hc gb+ hd

ô

=

ñ

e f
g h

ô ñ

a b
c d

ô

.

As a consequence, the product of two matrices is defined as a “sum of products” as
illustrated above. Let A = [aij ] be an m× n matrix and B = [bij ] be an n× r matrix (m,n,
and r are, of course, positive integers). The product AB of A and B is the m × r matrix
AB = [cij ], where

cij = ai1b1j + ai2b2j + . . .+ ainbnj =
n
∑

k=1

aikbkj .

Note that the ij-th entry cij of the product AB is the sum of the products of the entries
in row i of A by the corresponding entries in column j of B. We will often talk about “row
i times column j” and by it we mean the above sum of products. Notice that the product
AB of two matrices A and B is only defined when the number of columns in A equals the
number of rows in B.

Examples

Example 1.2.5. 1. In a product AB of two matrices, the number of rows in the product
is the same as the number of rows in the matrix A and the number of columns is the
same as the number of columns in B. So, a 3× 2 times 2× 3 produces a 3× 3. Also,
row 2 of A and column 3 of B give row 2 and column 3 in the product. For example:
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







2 3

−1 2

4 −3













−1
2

3
−3

4
2



 =







4 −3 14

5 −9 0
−10 21 10







2.
ñ

1 −1
2 0

ô ñ

1 2 1
−1 3 4

ô

=

ñ

(1)(1) + (−1)(−1) 1(2) + (−1)(3) (1)(1) + (−1)(4)
(2)(1) + (0)(−1) (2)(2) + (0)(3) (2)(1) + (0)(4)

ô

=

ñ

2 −1 −3
2 4 2

ô

.

3. The product

ñ

1 2 1
−1 3 4

ô ñ

1 −1
2 0

ô

is not defined since the first matrix has three

columns but the second matrix has only two rows. But notice that the product in the
reverse order is defined and is the product in part 2.

4.

ñ

1 2 1
−1 3 4

ô







−1 2
3 6
1 −2





 =

ñ

6 12
14 8

ô

.

5. Finally, note that the product of a 2 × 1 matrix and a 1 × 3 matrix is defined and

produces a 2× 3 matrix

ñ

2
−1

ô

î

3 −1 2
ó

=

ñ

6 −2 4
−3 1 −2

ô

.

�

There are a couple of useful perspectives on matrix multiplication that are not obvious
from the definition. To see them, we will look at an example and highlight a few parts.

Example 1.2.6.

ñ

3 1 2
4 −1 5

ô







2
−3
0





 =

ñ

3(2) + 1(−3) + 2(0)
4(2)− 1(−3) + 5(0)

ô

= 2

ñ

3
4

ô

−3

ñ

1
−1

ô

+ 0

ñ

2
5

ô

.

That is, we can think of this product as a linear combination of the columns of the
left matrix using coefficients from the right matrix. We will explore linear combinations in
much more detail later; for now, just observe that we obtain the columns in the product
by multiplying each column on the left by the entries in the columns on the right and then
adding the results. Let’s see what this looks like with more than one column.

ñ

3 1 2
4 −1 5

ô







2 6
−3 1
0 4





 =

ñ

3(2) + 1(−3) + 2(0) 3(6) + 1(1) + 2(4)
4(2)− 1(−3) + 5(0) 4(6)− 1(1) + 5(4)

ô

=

ñ Ç

2

ñ

3
4

ô

−3

ñ

1
−1

ô

+ 0

ñ

2
5

ôå Ç

6

ñ

3
4

ô

+ 1

ñ

1
−1

ô

+ 4

ñ

2
5

ôå ô

.
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Thus, to obtain column j, we compute a linear combination of the columns from the left
matrix using coefficients from column j of the right matrix. Similarly, to find row i of the
product, we compute a linear combination of the rows of the right matrix using coefficients
from row i of the left matrix. We just shift the emphasis a bit:

ñ

3 1 2
4 −1 5

ô







2 6
−3 1
0 4





 =

ñ

3(2) + 1(−3) + 2(0) 3(6) + 1(1) + 2(4)
4(2)− 1(−3) + 5(0) 4(6)− 1(1) + 5(4)

ô

=

[

3
î

2 6
ó

+ 1
î

−3 1
ó

+ 2
î

0 4
ó

4
î

2 6
ó

−1
î

−3 1
ó

+ 5
î

0 4
ó

]

.

�

More generally, we have the following:

Theorem 1.2.1. Let A = [aij ] be an m × n matrix, and suppose that the columns of
A (in order) are A1, A2, . . . , An (i.e., A =

î

A1 A2 · · · An

ó

, where each Aj is a
column vector). Let B = [bij ] be an n× r matrix. Then column j of AB is given by

b1jA1 + b2jA2 + . . . bnjAn.

If instead the rows of B (in order) are B1, B2, . . . , Bn (i.e., B =













B1

B2
...
Bn













, where each

Bi is a row vector), then row i of AB is given by

ai1B1 + ai2B2 + . . . ainBn.

Proof. We prove the first case. Consider j as fixed. The ij-entry in the product is
n
∑

k=1

aikbkj .

But this is just the ith entry in
n
∑

k=1

bkjAk as it draws from the ith entry in each Ak. Since

the ith entries match for each i, the result holds.

We will find these perspectives very useful.

MATRIX EQUATIONS

This odd-looking definition of the product is at least partially justified by the following
observation: Consider the general system of equations:
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a11x1 + . . . + a1nxn = h1

a21x1 + . . . + a2nxn = h2
...

...
...

am1x1 + . . . + amnxn = hm.

(1.2.6)

Let A = [aij ] be the coefficient matrix of the system, let X be the n×1 matrix (or column
vector)

X =









x1
...
xn









(1.2.7)

whose entries are the variables of the system and let

H =









h1
...
hm









(1.2.8)

be the m× 1 matrix of constants. Now the product AX is an m× 1 matrix, and the entry
in row i is ai1x1 + . . . + ainxn. This is the left-hand side of the i-th equation in the system
1.2.6 and, using the definition of equality of matrices, we see that the system of equations
1.2.6 is equivalent to the matrix equation













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

























x1

x2
...
xn













=





















a11x1 + a12x2 + . . .+ a1nxn
...

ai1x1 + ai2x2 + . . .+ ainxn
...

am1x1 + am2x2 + . . .+ amnxn





















=





















h1
...
hi
...
hm





















or

AX = H. (1.2.9)

For example, consider the following system of linear equations:

2x1 − 3x2 + x3 = 1
3x1 − x2 + 2x3 = 7.

(1.2.10)

The coefficient matrix of this system is

A =

ñ

2 −3 1
3 −1 2

ô

.

If we let

X =







x1

x2

x3





 and H =

ñ

1
7

ô

,
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we see that the product of A and X is given by

AX =

ñ

2x1 − 3x2 + x3

3x1 − x2 + 2x3

ô

,

and so the matrix equation

AX = H

is equivalent to the system of linear equations 1.2.9; that is, AX = H for some values of
x1, x2, and x3 if and only if the system 1.2.9 is satisfied for the same values of x1, x2, and x3.

We initially introduced solutions of linear equations as “n-tuples” of the form (b1, . . . , bn).
The above discussion suggests that we might profit from considering solutions to be column
vectors of the form









x1
...
xn









.

We need to reconcile these two approaches and to be clearer about what we mean by the
term “n-tuple.” Since we have defined column vectors, it seems reasonable to define a row
vector to be a 1 × n matrix

î

x1, . . . , xn

ó

. We will make no distinction between n-tuples

and 1 × n row vectors; that is, between
î

x1, . . . , xn

ó

and (x1, . . . , xn) will be regarded as
the same. Notice that the identification of row vectors and n-tuples is consistent with the
definitions of equality for these objects. While this identification is possible for row vectors
and n-tuples, notice that a similar identification of sets with n elements and n-tuples would
fail. For example, {1, 2} = {2, 1}, but (1, 2) 6= (2, 1).

While it is traditional to express the solution of the system of equations 1.2.6 as a row
vector (x1, . . . , xn), in the matrix equation AX = H it seems natural to represent the solution
as a column vector









x1
...
xn









.

(To some extent this comes from the practice of writing functions to the left of the variable
- we would more naturally write AX rather than XA.) To reconcile these two notations we
can use the transposition operator. The transpose of a matrix A is the matrix At obtained
by interchanging the rows and columns of the original matrix. This operation is defined and
discussed more thoroughly in Section 4.1. Here it will suffice to note that

(x1, . . . , xn)
t =
î

x1, . . . , xn

ót
=









x1
...
xn








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and








x1
...
xn









t

=
î

x1, . . . , xn

ó

= (x1, . . . , xn).

Section 1.2 Exercises

In Exercises 1-4, write the coefficient matrix and the augmented matrix of each system of
linear equations.

1. 2x+ 3y = 1
2x− 4y = 8

2. x + y − z = 3
2x + y − 3z = 2

3. −2x + 3y = 2
x + y + z = 3

−x + 2y + 6z = 4

(Note: In the first equation, the variable z does not occur and 0 must be entered for
the coefficient of z.)

4. 2x − 1 = 3y + 1
x − z = y

(Note: Before we write the coefficient and augmented matrices, the system must be
rewritten in the standard form as in 1.2.1.)

5. Express the system in Exercise 1 as a matrix equation.

6. Express the system in Exercise 2 as a matrix equation.

7. Express the system in Exercise 3 as a matrix equation.

8. Express the system in Exercise 4 as a matrix equation.

9. Compute the sum

ñ −1 2
3 2

ô

+

ñ

0 1
−3 2

ô

.

10. Compute the sum

ñ

2 1 −3
4 0 2

ô

+

ñ −1 3 2
4 6 −3

ô

.

11. Compute the following: −2

ñ

2 1
0 3

ô

+ 2

ñ

1 4
1 1

ô

.

12. Compute the product

ñ

2 1
−1 3

ô ñ

1 2 −1
4 1 0

ô

.
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13. Compute the product
î

2 1
ó

ñ −1 6
3 2

ô

.

In Exercises 14-20, let A =

ñ

1 2
−1 1

ô

, B =

ñ

0 −1 3
1 2 −4

ô

, and C =







2 1
−1 3
4 −2





 .

14. Compute the product AB.

15. Compute the product BC.

16. Compute 2B − 3AB.

17. Which of the following products are defined?

AB,BA,BC,CB,CA

18. Which of the following sums are defined?

A +B,B + AB,B +BC,A+ C

19. Let I2 =

ñ

1 0
0 1

ô

. Calculate I2A and AI2. What do you notice?

20. Let I3 =







1 0 0
0 1 0
0 0 1





 . Calculate I3C.

21. Let A be an m× n matrix and assume that the product AA is defined. What can be
said about m and n?

22. Let A be an m×n matrix and let B be an m′×n′ matrix. Assume that both products
AB and BA are defined. What can be said about m,n,m′, and n′?

1.3 Properties of Matrix Operations

In order to make full use of matrices and matrix operations, it is necessary to investigate
the algebraic properties of these operations. Which of the properties of ordinary arithmetic
hold for the operations on matrices? Do the familiar properties of commutativity and asso-
ciativity hold for matrix addition and multiplication? What properties are true for scalar
multiplication? Is matrix multiplication distributive over matrix addition?

We don’t study these properties because we find them so fascinating; the real importance
comes from use of the properties in solving equations and manipulating identities. The
distributive property does not make good conversation, but if one wishes to solve 2x+5x =
14, then knowing that 2x + 5x = (2 + 5)x is crucial. Let us consider the solution of the
equation 2x+ 3 − 5x = x− 4, along with the steps that we go through and the reasons for
these steps:



18 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

1) 2x+ 3− 5x = x− 4 the original equation
2) 2x− 5x+ 3 = x− 4 the commutative property of addition
3) (2− 5)x+ 3 = x− 4 the distributive property
4) −3x+ 3 = x− 4 evaluation
5) −3x+ 3− 3 = x− 4− 3 existence of additive inverses
6) −3x+ 0 = x− 7 definition of additive inverses and evaluation
7) −3x = x− 7 definition of zero
8) −3x− x = x− 7− x existence of additive inverses
9) etc.

Consider the identity (a+b)(a−b) = a2−b2. What properties are used in its verification?
Look at the steps:

1) (a + b)(a− b) = a(a− b) + b(a− b)
2) = a2 − ab+ ba− b2

3) = a2 − ab+ ab− b2

4) = a2 − b2

It is fundamental in the above computations that the variables x, a, and b represent real
numbers and so they may be manipulated using the properties of the real number system.
What happens to the above computations if x, a, and b represent matrices rather than real
numbers? Are they still valid? We need to know the rules for the algebra of matrices and
scalars.

We will see that that the answer to these questions is “yes,” for the most part, but there
is need for caution. Consider the following:

Example 1.3.1. Let A and B be the 2× 2 matrices given by

A =

ñ

1 −1
2 0

ô

and B =

ñ −1 0
2 1

ô

.

Both of the products AB and BA are defined, but notice that

AB =

ñ −3 −1
−2 0

ô

and BA =

ñ −1 1
4 −2

ô

.

We see that AB 6= BA, and so matrix multiplication is not in general commutative.

�

The example above shows that it is wise to proceed with caution. Fortunately, many
of the familiar properties of the number systems do hold. In fact, to some extent, the
operations on matrices inherit their properties from corresponding properties on the field of
scalars. Before beginning a discussion of the properties of the various operations on matrices,
it is important to think about some basic properties of equality. Does the notion of equality
of matrices obey the usual rules of equality? If two matrices are equal, will the equality be
maintained if a matrix be added to each side of the equality? The answer is “yes” as we see
in the following theorem.



1.3. PROPERTIES OF MATRIX OPERATIONS 19

PROPERTIES OF EQUALITY

Theorem 1.3.1. Let A,B,C, and D be m × n matrices over some field of scalars.
Then

(a) A = A. (Reflexive property)

(b) If A = B, then B = A. (Symmetric property)

(c) If A = B and B = C, then A = C. (Transitive property)

(d) If A = B and C = D, then A+ C = B +D. (Addition is well-defined.)

(e) If A = B and E = F , where E and F are n× r matrices, then AE = BF.
(Multiplication is well-defined.)

(f) If r and s are scalars, r = s and A = B, then rA = sB.
(Scalar multiplication is well-defined.)

(With each theorem and some definitions, we will try to give a name or short phrase
which describes the result stated. This “key phrase” will be in parentheses and in smaller
type, and it is hoped that it will assist the student in remembering the theorem.)

Proof. We will prove parts (c) and (e) and leave the remaining parts as an exercise. Notice
that we have assumed that the matrices A,B,C, and D are all of the same size. We will use
the shorthand notation introduced in Section 1.2: if aij represents the entry in row i and
column j of A, then we denote A by [aij ].

(c) Let A = [aij ], B = [bij ], and C = [cij ]. Then A = B implies aij = bij for all i, j, and
B = C implies bij = cij for all i, j. It follows that aij = cij for all i, j and so A = C.

(e) Let A = [aij ], B = [bij ], E = [eij ], and F = [fij], and note since that A and B are
m × n and E and F are n × r, both products AE and BF are defined and m × r.
Also A = B and E = F imply aij = bij and eij = fij for all i, j. Now from these last
equalities we have

n
∑

k=1

aikekj =
n
∑

k=1

bikfkj.

The first sum is the (i, j)-th entry of AE and the second sum is the (i, j)-th entry of
BF . By the definition of equality of matrices, AE = BF .

(The symbol is used to indicate the ends of proofs.)
Many of the algebraic properties of the operations on matrices depend heavily on the

corresponding properties of the field of scalars. It is helpful at this point to review Appendix
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3 where properties of (or axioms for) fields are presented. In the next theorem one sees
how the associative and commutative properties for addition of matrices follow from the
corresponding properties for addition of scalars.

PROPERTIES OF ADDITION

Theorem 1.3.2. Let A,B, and C be m× n matrices. Then

(a) A+B = B + A (Commutative property)

(b) A+ (B + C) = (A +B) + C (Associative property)

Proof. We will prove part (b) part and leave part (a) as an exercise. (b) Let A = [aij ], B =
[bij ], and C = [cij]. Now using the definitions of addition and equality of matrices, we have

A+ (B + C) = [aij] + ([bij ] + [cij ])

= [aij] + [bij + cij]

= [aij + (bij + cij)]

= [(aij + bij) + cij] using associativity of addition of scalars

= [aij + bij ] + [cij]

= ([aij] + [bij ]) + [cij]

= (A+B) + C.

PROPERTIES OF SCALAR MULTIPLICATION

Theorem 1.3.3. Let A be an m× n matrix and let a and b be scalars. Then

(a) a(bA) = (ab)A (Associative property)

(b) (a+ b)A = aA+ bA (Distributive property)

(c) a(A+B) = aA+ aB. (Distributive property)
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Proof. We will prove part (b). Let A = [aij ]. Then

(a+ b)A = (a+ b)[aij ]

= [(a+ b)aij ]

= [aaij + baij ] (using the distributive property for scalars)

= [aaij ] + [baij ]

= a[aij ] + b[aij ]

= aA+ bA.

THE Σ-NOTATION

Proofs involving matrix multiplication often make use of the Σ-notation. Recall that if
a1, . . . , an are scalars, then

n
∑

i=1

ai = a1 + a2 + . . .+ an.

Consider a matrix













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn













. (1.3.1)

The sum
n
∑

j=1

aij = ai1 + ai2 + . . .+ ain

denotes the sum of the entries in row i of the matrix 1.3.1 and
m
∑

i=1

aij = a1j + a2j + . . .+ anj

denotes the sum of the entries in column j in 1.3.1. Now we see that the double sum

m
∑

i=1

n
∑

j=1

aij

denotes the sum of all the sums of the rows and
n
∑

j=1

m
∑

i=1

aij

denotes the sums of the sums of the columns, but each of these numbers equals the sum of
all the entries in the matrix, and so they are equal. Consequently,

m
∑

i=1

n
∑

j=1

aij =
n
∑

j=1

m
∑

i=1

aij.
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In other words, the order of summation may be interchanged.
Two further properties are of use. Suppose that we have two lists of scalars, a1, . . . , an

and b1, . . . , bn. Using the commutative, associative and distributive properties for scalars, we
see that

a
m
∑

i=1

ai =
m
∑

i=1

(aai) and
m
∑

i=1

(ai + bi) =
m
∑

i=1

ai +
m
∑

i=1

bi.

Proofs of properties such as the ones above require mathematical induction. For an
introduction, see Appendix 5.

PROPERTIES OF MATRIX MULTIPLICATION

Theorem 1.3.4. If A is an m × n matrix, B is an n × r, and C is an r × s, then
A(BC) = (AB)C. (Associative property)

Proof. With A,B, and C as in the statement of the theorem, let A = [aij ], B = [bij ], and
C = [cij ]. Note that BC is an n × s matrix. Let us assume that the entry in row i and
column j is dij so that BC = [dij ]. By definition, we know that

dij =
r
∑

k=1

bikckj.

Then the i, j-th entry of A(BC) is

n
∑

h=1

aihdhj =
n
∑

h=1

(

aih
r
∑

k=1

bhkckj

)

.

Now let AB be the m× r matrix [eij ], where

eij =
n
∑

h=1

aihbhj .

Then the i, j-th entry of the matrix (AB)C is given by

r
∑

k=1

eikckj =
r
∑

k=1

(

n
∑

h=1

aihbhk

)

ckj

=
r
∑

k=1

(

n
∑

h=1

aihbhkckj

)

=
n
∑

h=1

(

r
∑

k=1

aihbhkckj

)

=
n
∑

h=1

aih

(

r
∑

k=1

bhkckj

)

.
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Notice that we have interchanged the order of summation using the property of the Σ-
notation mentioned above. Since the i, j-th entries of (AB)C and A(BC) are equal, the
matrices are equal. It follows that (AB)C = A(BC).

Some of the properties of matrix operations involve combinations of the operations of
matrix addition, matrix multiplication, and scalar multiplication. These properties are given
in the following theorem.

Theorem 1.3.5. Let A,B, and C be matrices.

(a) Let B and C be m×n matrices. If A is an r×m matrix then A(B+C) = AB+
AC, and if A is an n× r matrix, then (B+C)A = BA+CA. (Distributive properties)

(b) If A is an m× n matrix, B is an n× r matrix, and a is a scalar, then a(AB) =
(aA)B = A(aB). (Associative property)

Proof. We’ll prove part (a) and leave part (b) as an exercise.

(a) Let A = [aij ], B = [bij ], and C = [cij ]. Notice that A is an r ×m matrix and B and
C are m × n matrices. Consequently, the sum B + C is defined and is an m × n matrix,
and so all of the products A(B + C), AB, and AC are defined. Now B + C = [bij + cij ],

and let us set A(B + C) = [dij] and note [dij ] is r × n and dij =
m
∑

k=1

aik(bkj + ckj). But

dij =
m
∑

k=1

aikbkj+
m
∑

k=1

aikckj. The first sum is the i, j-th entry in the product AB, and the second

sum is the i, j-th entry in the product AC. It follows that A(B + C) = [dij ] = AB + AC.

The proof that (B + C)A = BA + CA is similar.

The m × n matrix [zij ] in which zij = 0 for all i, j is called the zero matrix. We will
denote this matrix by 0, without any indication of the order (m× n), and assume that the
context in which it is used will make clear what the order is. So,

ñ

0
0

ô

,

ñ

0 0
0 0

ô

, and
î

0 0
ó

are all zero matrices and will be denoted by 0. Further, it will usually be clear from the
context whether 0 denotes the zero matrix or the zero scalar.

It is not hard to see that the zero matrix has many of the properties of the zero scalar and
that the scalar 1 is an identity with respect to scalar multiplication. We state the following
theorem without proof.
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PROPERTIES OF IDENTITIES AND INVERSES

Theorem 1.3.6. Let A be an m× n matrix. Then

(a) 0+A = A+0 = A (here 0 denotes the m× n zero matrix) (0 is an additive identity.)

(b) 0A = 0 (here the first 0 is the zero scalar and the second 0 denotes the m × n
zero matrix). (The zero scalar times a matrix is the zero matrix.)

(c) 1A = A (1 is an identity for scalar multiplication.)

(d) A+ (−1)A = (−1)A+ A = 0. ((−1)A is an additive inverse of A.)

Part (d) of the above theorem gives an important property of addition of matrices. The
matrix (−1)A is called the additive inverse of A and will be denoted by −A. The additive
inverse of a matrix is analogous to the additive inverse or negative of a scalar. An important
consequence of the existence of an additive inverse is the following:

Corollary 1.3.7. Let A,B, and C be m×n matrices. If A+B = A+C or B+A = C +A
then B = C. (Cancellation property of addition)

Proof. We make use of the above theorem and add the additive inverse of A to each side of
the equality. Note also that the associative property is used and that properties of equality
are used. Assume A+B = A + C. Then

−A + (A+B) = −A+ (A + C)

(−A + A) +B = (−A+ A) + C

0 +B = 0 + C

B = C.

So far, except for the failure of the commutative property of multiplication, we have seen
that there is a close agreement between the arithmetic properties of scalar fields and the
properties of matrix operations. It remains to see whether nonzero matrices have “multi-
plicative inverses.” That is, is there a matrix that behaves like the scalar 1 and is there a
matrix corresponding to the inverse or reciprocal r−1 of a nonzero scalar? The number 1 is
an identity for multiplication since 1x = x for any x. Is there a matrix which has a similar
property? Let’s try it for 2× 2 matrices!

Assume that

ñ

a b
c d

ô

is any 2× 2 matrix, and suppose that

ñ

e f
g h

ô ñ

a b
c d

ô

=

ñ

ea+ fc eb+ fd
ga+ hc gb+ hd

ô

=

ñ

a b
c d

ô

.

By trial and error, we see that e = 1, f = 0, g = 0, and h = 1 is a solution, so the matrix
ñ

1 0
0 1

ô

works.
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Definition 1.3.1. The n× n identity matrix is the matrix

In =













1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1













.

When no confusion will result, we will use I (without a subscript) to denote the identity
matrix.

It might be otherwise defined as the n × n matrix In = [δij ], where δij = 0 if i 6= j and
δij = 1 if i = j. The function δij is called the Kronecker δ.

The following theorem states that the identity matrix behaves as an identity with respect
to multiplication.

Theorem 1.3.8. Let A = [aij ] be an m× n matrix. Then

(a) ImA = A

(b) AIn = A. (I is a multiplicative identity )

Proof. (a) Let ImA = [cij ]. Then

cij =
m
∑

k=1

δikakj

and since δik = 0 for k 6= i, we see that cij = δiiaij . But δii = 1, so cij = aij . By the definition
of equality of matrices, we see that ImA = A since ImA and A are both m× n matrices and
since we have shown that corresponding entries are equal.

The proof of part (b) is left as an exercise.

As an alternative approach, consider the “linear combinations” perspective on matrix
multiplication. If the rows of A are A1, A2, . . . , Am, then row i of ImA is 0A1 + 0A2 + . . .+
0Ai−1 + 1Ai + 0Ai+1 + . . .+ 0Am = Ai.

By the above theorem, we see that the analogy between scalar operations and matrix
operations holds with respect to the multiplicative identity. The situation is more compli-
cated regarding multiplicative inverses. After a definition or two we will see that not every
nonzero matrix has a multiplicative inverse.

An n× n matrix A is said to be nonsingular provided there is an n× n matrix B with
AB = BA = I. We will see later that the matrix B is unique. B is called the inverse of A
and is denoted by A−1. A matrix is said to be singular if it fails to have an inverse. Notice
that we are assuming that the matrix is “square;” that is, the matrix has the same number
of rows as columns. The nonsquare case makes an interesting research project! Can one find
a 1× 2 matrix A and a 2× 1 matrix B with AB = I1 and BA = I2?
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Example 1.3.2. (a) Let A =

ñ

1 0
−1 1

ô

. Then if B =

ñ

1 0
1 1

ô

,

AB =

ñ

1 0
−1 1

ô ñ

1 0
1 1

ô

=

ñ

1 0
0 1

ô

and BA =

ñ

1 0
1 1

ô ñ

1 0
−1 1

ô

=

ñ

1 0
0 1

ô

.

Thus A is nonsingular and B is the inverse of A; that is, A−1 = B =

ñ

1 0
1 1

ô

. Notice

also that B is nonsingular and A is the inverse of B.

(b) Let A =

ñ

1 1
1 1

ô

. We can see that A has no inverse since

ñ

1 1
1 1

ô ñ

a b
c d

ô

=

ñ

a+ c b+ d
a+ c b+ d

ô

=

ñ

1 0
0 1

ô

implies both a + c = 1 and a+ c = 0.

�

The above examples show that some nonzero matrices have inverses and some nonzero
matrices do not. The question of the existence of inverses for matrices is an important one
that we will investigate further in later sections.

Section 1.3 Exercises

1. Let A be an m× n matrix. Show that 2A+ 3A = 5A. Which of the above properties
were needed?

2. For m × n matrices A and B show that A + (B + A) = 2A + B. Which of the above
theorems were needed?

3. If A,B, and C are m×n matrices and A+C = B+A, show that B = C. State which
of the above theorems were used.

4. Let A =

ñ −1 2
−2 4

ô

, B =

ñ

2 1
−3 2

ô

, and assume that C is a 2×2 matrix. If A+C = B,

find C. What properties of the matrix operations were used in the solution?

5. Complete the proof of Theorem 1.3.1.

6. Complete the proof of Theorem 1.3.2.

7. Show by example that if A and B are n×n matrices, then (A−B)(A+B) = AA−BB
is not in general true. (See Example 1.3.1.)

8. Complete the proof of Theorem 1.3.3.

9. Let A = [aij ] be the 3× 3 matrix







1 −1 2
0 1 3
−2 4 −3





 . Compute the following:
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(a)
3
∑

i=1

ai1

(b)
2
∑

i=1

3
∑

j=1

aij .

(c)
3
∑

i=1

3
∑

j=1

aij .

10. Complete the proof of Theorem 1.3.5.

11. Let A be an m×n matrix and r some scalar. In each of the following expressions, state
what the symbol 0 must represent in order for the expression to make sense. Note that
in some cases there may be ambiguity, that is, there may be more than one correct
answer.

(a) 0 + A

(b) (r + 0)A

(c) A = 0

(d) 0A

12. Prove Theorem 1.3.6.

13. In the proof of Corollary 1.3.7, give reasons for each step in the proof, that is, cite the
appropriate theorem.

14. Prove part (b) of Theorem 1.3.8.

15. Show that the matrix

ñ

1 −2
−2 4

ô

is singular.

16. Show that the matrix







1 2 −1
3 1 1
3 −1 2





 is singular.

17. Show that the matrix

ñ

1 −1
2 1

ô

is nonsingular and find its inverse.

18. Let A and B be 2× 2 matrices and assume AB = I. Prove that BA = I.

1.4 Equivalent Systems of Equations and Row Opera-

tions

In solving a system of linear equations, one proceeds from the original system of equations,
through several systems, and finally to a system of equations in which the solution is obvious.
An important underlying principle in this method is that each of the systems of equations
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in the sequence has the same solution set. Two systems of equations that have the same
solution set are called equivalent. It follows that the systems

x− y = 1

x− 2y = 0

and

x+ y = 3

x+ 2y = 4

are equivalent, the solution set of each being {(2, 1)}. The (very small) system x − 2y = 3
and the system −3x+ 6y = −9 are also equivalent; the solution set of each is

{(3 + 2y, y)|y is any real number}.
(Sets and set notation are discussed in Appendix A.)

The following theorem gives basic principles related to equivalence. Beginning with a
system of equations that we would like to solve, our goal is to find an equivalent system of
equations in which the solution is clear. This theorem tells us what can be done.

Theorem 1.4.1. For a given system of linear equations we have the following:

(a) If two equations in the system are interchanged, then the resulting system is
equivalent to the original system. (The order of equations can be switched.)

(b) If one equation in the system is multiplied (on both sides) by the nonzero scalar
c, then the resulting system is equivalent to the original one.
(An equation can be multiplied by a nonzero constant.)

(c) If one equation is modified by adding a multiple of another equation
to it, then the resulting system is equivalent to the original system.
(A multiple of one equation can be added to another.)

Proof. Part (a) is straightforward, Part (b) is an exercise. We will prove Part (c). Assume
that c times the equation a1x1+ . . .+anxn = h is added to the equation b1x1+ . . .+bnxn = k.
The resulting equation is (ca1 + b1)x1 + . . . + (can + bn)x = ch + k, and so we see that any
solution of the original system is a solution of the resulting system.

If (c1, . . . , cn) is a solution of the new system, then it satisfies the equations

a1x1 + . . .+ anxn = h

and
(ca1 + b1)x1 + . . .+ (can + bn)xn = ch+ k

of the new system. (The first equation is still an equation in the system – only one equation
has been changed.) So
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a1c1 + . . .+ ancn = h

and

(ca1 + b1)c1 + . . .+ (can + bn)cn = ch+ k.

Multiply both sides of the first equation by −c and add it to the second equality. After
cancelling, the result is b1c1+ . . .+ bncn = k. It follows that (c1, . . . , cn) satisfies the original
system of equations, and so the two systems are equivalent.

ELEMENTARY ROW OPERATIONS

The operations that may be performed on a system of equations as described in the above
theorem suggest corresponding operations on the coefficient and augmented matrices of the
system. These operations are called elementary row operations. They are of interest for
general matrices and so are defined without reference to a system of equations. We will see
that these row operations are quite useful; in fact, we will see that they can be of help in
understanding the theory that underlies much of matrix theory and linear algebra. These
three types of operations are defined as follows:

1. Rows i and k are interchanged. (This operation is denoted by Rik.)

2. Each entry in row i is multiplied by the scalar c 6= 0. (This operation is denoted by
Ri(c).)

3. For a scalar c, c times each entry in row i is added to each corresponding entry in row
k. (This operation is denoted by Rik(c).)

To illustrate these row operations, we again refer to the system 1.1.1 and find its solution
by using the augmented matrix and row operations. As shown in Section 1.2, the solution
can be found as follows:

R12(1) R2(1/2)
ñ

1 1 17
1 −1 7

ô

−→
ñ

1 1 17
2 0 24

ô

−→
ñ

1 1 17
1 0 12

ô

Row 1 added to row 2 Row 2 multiplied by 1/2

R21(−1) R12−→
ñ

0 1 5
1 0 12

ô

−→
ñ

1 0 12
0 1 5

ô

Row 2 subtracted from row 1 Rows 1 and 2 are switched.

The symbol and numbers over the arrow indicates the elementary row operation that was
performed on the first matrix to obtain the second matrix.

Two matrices A and B are said to be row equivalent if B can be obtained from A

by a sequence of row operations. In the above example we can see that

ñ

1 1 17
1 −1 7

ô

is row equivalent to

ñ

1 0 12
0 1 5

ô

. If no confusion arises, we will sometimes shorten “row

equivalence” to “equivalence.”
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The question arises about the relationship between the equivalence of matrices and the
equivalence of systems of equations. For a system of linear equations written in the matrix
form AX = H , we will use [A|H ] to denote the augmented matrix.

Theorem 1.4.2. Consider systems of equations AX = H, and BX = K. If the
augmented matrices [A|H ] and [B|K] are equivalent, then the systems of equations
AX = H and BX = K are equivalent. (Equivalent matrices give equivalent systems.)

Proof. If [A|H ] is equivalent to [B|K], then [B|K] can be obtained from [A|H ] by a sequence
of row operations. If the corresponding operations are performed on the system of equations
AX = H the system BX = K will be obtained, and, by the first theorem, each system of
equations in this sequence is equivalent to the previous system.

The theorem above, which relates the two different types of equivalence, is an implication,
that is, a statement of the form “statement 1 implies statement 2”. Mathematicians will
wonder about the converse of the statement: “statement 2 implies statement 1”. Is the
converse also true? Can it be proved? Can a counterexample be found? We won’t have
occasion to need the converse of Theorem 1.4.2, and so, we will leave it as an “open question”
for the reader. Try to settle the matter!

Suppose that A and B are equivalent matrices; let’s say that we start with A, perform
row operations, and arrive at the matrix B. How do the rows of B relate to those of A? It
is not hard to see that each row of the matrix B is a sum of scalar multiples of the rows of
A. In Chapter 2, these sums of scalar multiples will be called “linear combinations;” thus,
the rows of B are linear combinations of the rows of A.

Notice that each elementary row operation is reversible, so that if B may be obtained
from A by row operations, then A may be obtained from B by row operations. To see this, we
need only consider the reversibility of each of the three types of elementary row operations.

If B is obtained from A by switching rows i and k, then A may be obtained from B by
again switching rows i and k, this time in the matrix B. Similarly, to undo the operation
of multiplying row i by a nonzero scalar c, we need only multiply row i by the reciprocal of
c, 1/c. Finally, if B is obtained from A by adding c times row i to row k, then adding −c
times row i in the matrix B to row k produces the matrix A.

Try some examples to convince yourself. For example, if A =







1 0 −1
2 3 1
0 2 1





, then the

row operation R13(2) produces the matrix B =







1 0 −1
2 3 1
2 2 −1





. Performing the operation

R13(−2) on the matrix B yields the matrix A.

ELEMENTARY MATRICES

There are some important matrices associated with the elementary row operations. Recall
that In denotes the n×n identity matrix. We let Rik denote In with rows i and k interchanged,
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Ri(c) denotes In with row i multiplied by c, and Rik(c) denotes In with c times row i added
to row k. These matrices Rik, Ri(c), and Rik(c) are called elementary (row) matrices.
Each of the three types of elementary matrices is obtained by performing the corresponding
elementary row operation on the identity matrix. One might be confused by the fact that
the same notation is used to refer to an elementary row operation as is used to refer to
the corresponding elementary matrix. This situation will cause very little trouble, since
the context will always make it clear whether one is referring to a row operation or to an
elementary matrix.

The following are examples of 2× 2 elementary matrices:

R1(−2) =

ñ −2 0
0 1

ô

(type Ri(c))

R12 =

ñ

0 1
1 0

ô

(type Rik)

R12(−2) =

ñ

1 0
−2 1

ô

(type Rik(c))

R21(3) =

ñ

1 3
0 1

ô

The matrices
ñ

1 1
1 1

ô

,

ñ

1 2
0 2

ô

,

ñ

2 0
0 2

ô

, and

ñ

1 0
0 0

ô

are not elementary matrices since they cannot be obtained from the 2 × 2 identity matrix
by performing a single elementary row operation.

Notice what happens when a matrix is multiplied on the left by an elementary matrix:

R12

ñ

1 −1
3 2

ô

=

ñ

0 1
1 0

ô ñ

1 −1
3 2

ô

=

ñ

3 2
1 −1

ô

R2(−2)

ñ

1 −1
3 2

ô

=

ñ

1 0
0 −2

ô ñ

1 −1
3 2

ô

=

ñ

1 −1
−6 −4

ô

R12(1)

ñ

1 −1
3 2

ô

=

ñ

1 0
1 1

ô ñ

1 −1
3 2

ô

=

ñ

1 −1
4 1

ô

.

From these examples we see that left multiplication by the above elementary matrices
produces the same result as performing the corresponding row operation on the matrix. This
observation is true in general, as stated in the following theorem.

Theorem 1.4.3. A row operation can be performed on an m× n matrix A by multi-
plying A on the left by the corresponding elementary matrix.
(Left multiplication by an elementary matrix performs the row operation.)

Proof. In effect, we already know this because of our alternative perspectives on matrix
multiplication. Let the rows of A be A1, . . . , Am. If we swap two rows of the identity matrix,
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the columns in which the 1s appear are also swapped, so row i of the product RikA is Ak,
row k of the product is Ai, and all other rows remain the same. In the case of Ri(c), we have
1 times row k of A in every row except row i, where we have c times row i of A. (The linear
combination is just 0A1 + . . .+ cAi + . . .+ 0Am = cAi.)

Now consider Rik(c)A. In every row j except row k, we just get 1 times Aj in the product.
For row k of the product, we have 0A1 + . . . + cAi + . . . + 1Ak + . . . + 0Am = cAi + Ak, as
desired.

Theorem 1.4.3 makes it very easy to compute the products of elementary matrices: just
perform the row operations. For example, for 3× 3 matrices:

R12R2(−2)R13(2)R21(−1)R23 = R12R2(−2)R13(2)R21(−1)







1 0 0
0 0 1
0 1 0







= R12R2(−2)R13(2)







1 0 −1
0 0 1
0 1 0







= R12R2(−2)







1 0 −1
0 0 1
2 1 −2







= R12







1 0 −1
0 0 −2
2 1 −2







=







0 0 −2
1 0 −1
2 1 −1





 .

Section 1.4 Exercises

In Exercises 1-4 determine whether the given systems of equations are equivalent.

1. x+ 2y = 3 x− y = 0
x− 3y = −2 x− 2y = −1

2. x− y = 1 x = 1
x+ y = 0 y = 2

3. x+ y + z = 1 2x+ y + z = 2
x− y − z = 1 −x+ y − z = 3

4. x− y + z = 2 2x− y + z = 5
x+ y − z = 4 x− z = 2

x− z = 2 −2y + z = −3



1.5. GAUSSIAN ELIMINATION AND THE REDUCED ECHELON FORM 33

5. Prove part (b) of Theorem 1.4.1.

6. Prove the remaining parts of Theorem 1.4.3.

In exercises 7-12, compute the given product of 3× 3 elementary matrices.

7. R12R23(−1)R3(3)

8. R13R21(−2)R3(2)

9. R23(−2)R23(2)

10. R2(2)R2(1/2)

11. R21(−2)R13(4)R23(−2)R23(2)

12. R12(2)R23(−4)R13(2)R2(−2)R12R31(−1)

13. For each of the following matrices, state whether the matrix is an elementary matrix
and, if it is, identify it using the “R” notation.

(a)







1 0
1 1
2 0





 (b)







1 0 0
1 1 0
0 0 1





 (c)







0 1 0
1 0 0
0 0 1





 (d)







1 2 0
0 2 0
0 0 1







14. Let A be the n× n elementary matrix Rik. What is the product AA?

15. Let A be the n× n matrix Ri(c). Find an n× n matrix B with AB = In.

16. Let A be the n× n matrix Rik(c). Find an n× n matrix B with AB = In.

1.5 Gaussian Elimination and the Reduced Echelon

Form

Gaussian Elimination2 is a process by which one can proceed from a system of linear equa-
tions to an equivalent system (one with the same solution set) in which the solution is clear.

We will begin the discussion of Gaussian elimination with an example of a system of
linear equations. The problem will be stated and solved “in equation form”; that is, the
augmented matrix will not be used.

Suppose we must find all solutions of

x1 + 2x2 + x3 − 3x4 = 2
x1 + 3x2 + 2x3 − 2x4 = 3
x1 + 3x2 + 3x3 = 5.

(1.5.1)

Subtracting the first equation from the second and third equations, we obtain

2The process is named after the great German mathematician Carl Friedrich Gauss (1777-1855).
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x1 + 2x2 + x3 − 3x4 = 2
x2 + x3 + x4 = 1
x2 + 2x3 + 3x4 = 3,

(1.5.2)

and if x2 is eliminated from the last equation by subtracting the middle equation, the system
becomes:

x1 + 2x2 + x3 − 3x4 = 2
x2 + x3 + x4 = 1

x3 + 2x4 = 2.
(1.5.3)

This first part of the process is called forward elimination; it is the first part of the
Gaussian elimination process. The equations are now said to be in triangular form: x1 is
eliminated from all but the first, x2 from all below the second, and so forth. It is now easy
to find all solutions of the system of equations. This latter part of the process is often called
back substitution. It will give us the complete or general solution. We will solve the
last equation for x3 and substitute the result into the second equation; then we solve the
second for x2 and substitute into the first. We get:

x3 = 2− 2x4

x2 = 1− (2− 2x4)− x4

= −1 + x4

x1 = 2− 2(−1 + x4)− (2− 2x4) + 3x4

(1.5.4)

or
x3 = 2− 2x4

x2 = −1 + x4

x1 = 2 + 3x4,
(1.5.5)

where x4 is arbitrary; that is, it may take on any value.
The above method is called Gaussian elimination; it provides a method for finding

all solutions of a system of linear equations. A later refinement of the method3 eliminated
the need for “back substitution.” It is called the Gauss-Jordan method and is sometimes
referred to as Gauss-Jordan reduction. The Gaussian elimination process involves elimi-
nation of a variable from all the remaining equations. The solution of the system 1.5.1 using
the Gauss-Jordan method proceeds as follows.

Eliminate x1 from the second and third equations as before, obtaining

x1 + 2x2 + x3 − 3x4 = 2
x2 + x3 + x4 = 1
x2 + 2x3 + 3x4 = 3.

(1.5.6)

Now eliminate x2 from the first and third equations by using the second equation, and
eliminate x3 from the first and second equations by using the resulting third equation:

x1 − 3x4 = 2
2x2 − x4 = −1

x3 + 2x4 = 2.
(1.5.7)

3Due to the German mathematician Wilhelm Jordan



1.5. GAUSSIAN ELIMINATION AND THE REDUCED ECHELON FORM 35

The solution is now clear and there is no need for “back substitution”; one simply moves
the terms involving x4 to the other side of the equation.

PIVOTING

The process of eliminating a variable from the remaining equations is called a pivot oper-
ation. To pivot on x1 in the first equation, for example, means to make the coefficient of x1

a 1 and then to eliminate x1 from the remaining equations.

As we observed before, it is somewhat easier to use the augmented matrix in solving a
system of equations than to use the system itself. So, in discussing the Gauss-Jordan method
we will want to refer to the augmented matrix. We must first define the pivot operations
(or elimination operations) for a matrix, and then describe the final form for the augmented
matrix in the solution of the system.

Let A = [aij ] be an m × n matrix. To pivot on a nonzero entry aij means to perform
the following sequence of row operations:

Ri(1/aij), Ri,1(−a1j), . . . , Ri,i−1(−ai−1,j), Ri,i+1(−ai+1, j), . . . , Ri,m(−am,j).

This looks complicated, but it is not. To pivot on aij means to divide row i by aij (so
there is a 1 in row i and column j) and then perform the necessary row operations to make
0’s in column j in all rows except row i.

Example 1.5.1. Consider the matrix

A =







1 2 −1
−3 2 4
1 1 2





 . (1.5.8)

If one pivots on the entry in row 1, column 1 (performing the row operations R12(3), R13(−1)),
one obtains







1 2 −1
0 8 1
0 −1 3





 . (1.5.9)

If one then pivots on the 8 in row 2, column 2 (performing the row operations R2(1/8),
R21(−2), and R23(1), one obtains







1 0 −5/4
0 1 1/8
0 0 25/8





 . (1.5.10)

�

Recall that by Theorem 1.4.2 of Section 1.4 the systems of equations represented by
matrices before and after a pivot operation is performed are equivalent since the matrices
are equivalent. It follows that a sequence of pivot operations produces a matrix equivalent
to the original one.
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THE REDUCED ECHELON FORM

Let us now describe the augmented matrix associated with the system of equations after
the Gauss-Jordan reduction has been performed. This matrix is said to be in reduced row
echelon form - the word “echelon” comes from the French word for “step.” Some authors
use the term “row echelon normal form.” For later use, we will define both a row echelon
form and a reduced row echelon form.

An m × n matrix A = [aij ] is said to be in row echelon form if and only if it satisfies
the following three conditions:

1. For some integer r with 0 ≤ r ≤ m, the first r rows contain nonzero entries and the
remaining m− r rows contain only zeros. (The nonzero rows are at the top.)

2. For i = 1, . . . , r, the first nonzero entry in row i is a 1 in column ji and there are only
zeroes below it in column ji. (The first nonzero entry is a 1 and there are 0’s below it.)

3. j1 < j2 < . . . < jr. (The 1s step down and to the right.)

If the matrix A satisfies conditions 1) - 3) above and satisfies

4. For i = 1, . . . , r, the 1 in row i and column ji is the only nonzero entry in column ji,
(The first nonzero entry is a 1 and there are 0s above and below it.)

then the matrix is said to be in reduced row echelon form.
The numbers r and j1, . . . , jr are important; we will refer to them as the constants

associated with the echelon form.
The above definitions involve the rows of a matrix. There is a corresponding version

related to columns of a matrix, but we will not have occasion to use it. Since no “column
echelon form” will ever be used, we will normally suppress the word “row” and refer simply
to a matrix in echelon form or in reduced echelon form.

Example 1.5.2. The matrix







0 1 2 0 1
0 0 0 1 1
0 0 0 0 0





 (1.5.11)

is in reduced echelon form, with constants r = 2, j1 = 2, and j2 = 4. The following matrices
are also in reduced echelon form:

ñ

0 0
0 0

ô

,

ñ

1 0
0 0

ô

, and

ñ

1 0
0 1

ô

.

The matrix

ñ

0 0
0 1

ô

is not in echelon form (since 1) fails), and so not in reduced echelon form. The matrix
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ñ

2 0
0 1

ô

is not in echelon form (since 2) fails), and

ñ

0 1
1 0

ô

is not in echelon form (since 3) fails). The matrices

ñ

1 1
0 1

ô

,







1 1 2
0 1 1
0 0 0





 , and







1 1 3
0 1 2
0 0 1







are in echelon form, but not in reduced echelon form since 4) fails.

�

THE GENERAL SOLUTION USING THE

GAUSS-JORDAN METHOD

The process of solving a system of linear equations using the Gauss-Jordan method and the
associated augmented matrix is as follows.

1. Write the augmented matrix.

2. Using pivot operations, reduce the augmented matrix to a matrix in reduced echelon
form with constants r, j1, . . . , jr as in the definition above.

3. Write the system of equations associated with this matrix in reduced echelon form.

4. Solve for the variables xj1 , . . . , xjr in terms of the remaining variables.

Not every system of equations has a solution, but if a solution exists, the above method
will, in theory, find it. If there is a solution, the variables xj1 , . . . , xjr that are associated
with the pivot columns will be called basic variables. The variables associated with the
other columns will be called free variables since they may be chosen arbitrarily.

Example 1.5.3. Consider the following system of linear equations:

x1 + x3 + x5 = 1
x1 + x2 + 3x3 + 3x5 = 2
2x1 + x2 + 4x3 + x4 + 5x5 = 4
4x1 + 2x2 + 8x3 + x4 + 9x5 = 7

(1.5.12)

We write the augmented matrix
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









1 0 1 0 1 1
1 1 3 0 3 2
2 1 4 1 5 4
4 2 8 1 9 7











and perform pivot operations in order to reduce to reduced echelon form.
First we pivot on the 1 in row 1, column 1, and obtain











1 0 1 0 1 1
0 1 2 0 2 1
0 1 2 1 3 2
0 2 4 1 5 3











(1.5.13)

Next, we pivot on the 1 in row 2, column 2, and obtain











1 0 1 0 1 1
0 1 2 0 2 1
0 0 0 1 1 1
0 0 0 1 1 1











(1.5.14)

Finally, we pivot on the 1 in row 3, column 4, and obtain











1 0 1 0 1 1
0 1 2 0 2 1
0 0 0 1 1 1
0 0 0 0 0 0











(1.5.15)

The system of equations corresponding to this last matrix is:

x1 + x3 + x5 = 1
x2 + 2x3 + 2x5 = 1

x4 + x5 = 1
. (1.5.16)

The constants associated with the reduced echelon form of the augmented matrix (that
is, the last matrix in the process) are r = 3, j1 = 1, j2 = 2, j3 = 4. Solving the associated
system of equations for x1, x2, x4 we obtain:

x1 = 1− x3 − x5

x2 = 1− 2x3 − 2x5

x4 = 1− x5,

where x3 and x5 are arbitrary.
This is the complete solution or general solution of the original system of equations.

By the theory that has been developed, the last system of equations has exactly the same
solution set as the original system of equations (in other words, the two systems are equiv-
alent). In the last system, we can see that any choice of values for the variables x3 and x5
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uniquely determines the values of the variables x1, x2, and x4. Furthermore, any solution
of the original system of equations must satisfy this last set of equations. The solution set,
expressed as a set of 5-tuples, is given by:

{(1− x3 − x5, 1− 2x3 − 2x5, x3, 1− x5, x5)|x3, x5 ∈ R}.
Notice that, while the solution set is unique, the expression of the general solution is not.

In the above general solution we could solve the last equation for x5 in terms of x4, obtaining
x5 = 1 − x4. This could be substituted into the other two equations to obtain an alternate
general solution of the form:

x1 = −x3 + x4

x2 = −1 − 2x3 + 2x4

x5 = 1− x4.

In this general solution, x3 and x4 may be chosen arbitrarily.

�

The question now arises whether one can always find a complete solution for every consis-
tent system of linear equations; that is, a system that actually has a solution. Our discussion
above indicates that this question is equivalent to the question of whether every matrix is
equivalent to a matrix in reduced echelon form. As the following theorem states, the answer
to these questions is “yes” - at least in theory. In practice, if the number of equations or vari-
ables is very large, it may be difficult to deal with the mass of coefficients and computations
involved. Further, if the computations are done using a computer or a calculator, roundoff
errors may occur and they may compound in the process of repeated pivot operations and
give an “approximate” solution that is not even close.

As we will see in the theorem, a matrix is equivalent to a unique matrix in reduced
echelon form; that is, there is one and only one such matrix. A matrix may be equivalent to
many matrices that are in echelon form, but only one of these matrices will be in reduced
echelon form.

EXISTENCE OF THE REDUCED ECHELON FORM
OF A MATRIX

Theorem 1.5.1. Any m × n matrix A is row equivalent to one and only one m × n
matrix B that is in reduced echelon form. B is called the reduced echelon form of
A. (Every matrix has a unique reduced echelon form.)

Proof. We will first prove “existence”; that is, that an arbitrarym×nmatrix is row equivalent
to some m× n matrix in reduced echelon form. The second part of the theorem states that
this matrix in reduced echelon form is “unique;” that is, there is only one such matrix. The
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“uniqueness” part of the proof is dealt with in Appendix 6. A formal proof of existence
would require mathematical induction (see Appendix 5); here we take an informal approach.

The first step is as follows: Find a nonzero entry aij in the column farthest to the left
(that is, j is the least integer with aij 6= 0 for some i). Interchange rows 1 and i (that is,
perform operation R1i), and then pivot on the entry in row 1, column j. Call this pivot
column j1. The first nonzero entry in row 1 is now a 1; it is the only nonzero entry in column
j1.

Now repeat this process as follows: Find a nonzero entry in aij in one of the rows
2, 3, . . . , m that is the farthest to the left (that is, j is the least). Set j2 = j, switch rows
2 and i, and then pivot on the entry in row 2, column j2. Notice that the pivot operation
does not change any of the columns to the left of column j2, since there was a zero in these
columns in row 2. If no nonzero entry can be found in rows 2, . . . , m, the process stops.

Continue this process until no nonzero entry can be found in the remaining rows or until
no rows remain. Since the matrix has only m rows, the process must stop.

Assume that the above process required r steps, that is, r pivot operations were performed
along with the necessary switching of rows. We claim that the resulting matrix is in reduced
echelon form: The first r rows will contain nonzero entries and the first nonzero entry will
be a 1 since pivot operations have been performed on each of the first r rows. Since ji was
chosen to be least, j1 < j2 < . . . < jr , and the 1 in row i and column ji is the only nonzero
entry in column ji, since a pivot operation was performed on that entry. If we denote the
resulting matrix by B,B is in reduced echelon form.

Example 1.5.4. As an application of the uniqueness part of the Theorem, we can easily see
that







1 0 1 0
0 1 2 0
0 0 0 1





 and







1 0 0 0
0 1 1 0
0 0 0 1







are not row equivalent since both are matrices in row reduced echelon form and they are
not identical. If the first matrix were row equivalent to the second, then it would be row
equivalent to two matrices: itself and the second matrix.

As an illustration of the method of the proof, let us reduce the matrix

A =











0 0 0 0 0
0 1 2 0 0
0 1 2 1 0
0 0 0 1 1











to reduced echelon form.
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R12

A =











0 0 0 0 0
0 1 2 0 0
0 1 2 1 0
0 0 0 1 1











−→











0 1 2 0 0
0 0 0 0 0
0 1 2 1 0
0 0 0 1 1











R13(−1) R23

−→











0 1 2 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 1











−→











0 1 2 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 1











R24(−1) R34

−→











0 1 2 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1











−→











0 1 2 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0











= B

.

The constants associated with B are r = 3, j1 = 2, j2 = 4, j3 = 5. This last matrix B is
a matrix in reduced echelon form, and so it must be the reduced echelon form of A. Notice
that

B = R34R24(−1)R23R13(−1)R12A.

At this point confusion often arises, since the elementary matrices appear to come in
reverse order. This results from the fact that it is left multiplication by the correspond-
ing elementary matrix which performs the row operation. We see that in the above se-
quence of matrices, the first is A, the second R12A, the third R13(−1)R12A, the fourth
R23R13(−1)R12A, etc.

�

Notice that in the matrix B above that it is not possible to reduce further; that is, we
cannot perform further row operations and make more rows of zeros. In the terminology to
be introduced in Chapter 2, we say that these nonzero rows are “linearly independent.” We
cannot form a sum of nonzero scalar multiples of these rows and produce a row of zeros.

GAUSSIAN ELIMINATION VS.

THE GAUSS-JORDAN METHOD

In Section 4.5 we will consider the efficiency of solving systems of equations by various
methods. We will see that the method of reducing the augmented matrix to reduced echelon
form as described above is not the most efficient course of action. As presented above, we
pivoted at each step making zeros above and below the pivot element. In the method of
Gaussian elimination, one follows the strategy of “forward elimination” followed by “back
substitution.” It turns out that this latter method requires fewer arithmetic operations, and
for large systems the savings can be significant. In effect, the calculation of some of the
entries above and to the right of the pivot element is wasteful since these entries may be
made zero by later pivots. It is more efficient to eliminate forward and then back substitute
by starting at the lower right and making zeros above.
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Consider the following two sequences of row operations reducing a matrix to reduced
echelon form. Using the Gaussian elimination method:







1 1 2 1
0 1 1 2
0 3 1 2





 −→







1 1 2 1
0 1 1 2
0 0 −2 −4





 −→







1 1 2 1
0 1 1 2
0 0 1 2







−→







1 1 0 −3
0 1 0 0
0 0 1 2





 −→







1 0 0 −3
0 1 0 0
0 0 1 2





 .

Using the Gauss-Jordan method:







1 1 2 1
0 1 1 2
0 3 1 2





 −→







1 0 1 −1
0 1 1 2
0 0 −2 −4





 −→







1 0 1 −1
0 1 1 2
0 0 1 2







−→







1 0 1 −1
0 1 0 0
0 0 1 2





 −→







1 0 0 −3
0 1 0 0
0 0 1 2





 .

While the same number (5) of row operations are performed in each method, the Gaussian
elimination method allows us to perform the row operations on shorter rows. This results in
fewer arithmetic operations.

Section 1.5 Exercises

In Exercises 1-6, do the following, where A represents the given matrix.

(a) Find the reduced echelon form B of A.

(b) Find the constants associated with B.

(c) Find elementary matrices E1, . . . , Ek with B = Ek . . . E1A.

1.

ñ

1 2
−1 −1

ô

2.

ñ −2 3
6 −9

ô

3.







−1 0 1 2
1 2 1 1
0 −1 −2 1







4.







0 0 0 1 2
0 1 1 2 1
0 1 1 3 2







5.







1 0 1
−1 2 0
1 1 0







6.







1 2 −1 3
3 1 1 2
2 −1 2 −1







In Exercises 7-12 find the complete solution of the given system of linear equations
using the augmented matrix and Gauss-Jordan reduction.

7. x1 + x2 = 2
x1 − 2x2 = 5

8. x1 + x2 + x3 = 4
2x1 + 5x2 − 2x3 = 3
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9. x1 + x2 − x3 = 2
2x1 + 5x2 − 2x3 = −3
x1 + 7x2 − 7x3 = −12

10. x1 + 2x2 + x4 = 3
x3 + 3x4 = 2

−x1 − 2x2 + x3 + 2x4 = −1

11. x1 + x3 = 3
x1 + x2 + 2x3 = 4
x1 + x3 + x4 = 5
2x1 + x2 + 3x3 + x4 = 9

12. x1 + x2 + x3 = 2
x1 − 2x2 + 3x3 = −5
3x1 + 5x3 = −1

In Exercises 13-15, assume that the m× (n + 1) matrix B = [A|H ] is the augmented
matrix of a system of linear equations and assume that B is in reduced echelon form
with constants r, j1, . . . , jr.

13. Give an example of a matrix B, as above, such that the system of equations is incon-
sistent; that is, has no solution.

14. Find conditions on B that will guarantee that the system of equations is consistent.

15. Assuming that the system of equations with augmented matrix B is consistent, how
many of the variables may be arbitrarily chosen?

1.6 Homogeneous Systems of Equations and Solution

Sets

In this section we will investigate systems of linear equations in which the constant terms are
all equal to 0. In the form of a matrix equation the system would look like: AX = 0. Such a
system of linear equations is said to be homogeneous. The system of equations AX = H
with H 6= 0 is said to be nonhomogeneous. We will see in Theorem 1.6.2 below that
homogeneous systems are important in that the solution set of a nonhomogeneous system is
largely determined by the solution set of the “associated homogeneous system.”

For example, the matrix equation

ñ

2 1
−1 3

ô ñ

x
y

ô

=

ñ

0
0

ô

,

which is equivalent to the system of equations

2x + y = 0
−x + 3y = 0,

is homogeneous.
Now consider the homogeneous system of equations AX = 0, where A is some m × n

matrix, and let S be the solution set. Unlike for nonhomogeneous systems, S is never the
empty set because 0, the zero vector, is always a solution. Furthermore, if X1, X2 ∈ S, then
AX1 = 0 and AX2 = 0, and so A(X1 +X2) = AX1 +AX2 = 0 + 0 = 0. Thus X1 +X2 ∈ S.
Also, if X ∈ S and r is any scalar, then A(rX) = r(AX) = r(0) = 0 and so rX ∈ S. Thus,
we have proved the following theorem.
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Theorem 1.6.1. Let S be the solution set of the homogeneous system of
equations AX = 0. Then a) If X1, X2 ∈ S then X1 + X2 ∈ S.
(The solution set of a homogeneous system is closed under addition.)

b) If X ∈ S and r is any scalar then rX ∈ S.
(The solution set of a homogeneous system is closed under scalar multiplication.)

c) 0 ∈ S. (The zero vector is a solution of a homogeneous system.)

Sets of vectors having the properties in Theorem 1.6.1 above are defined in Chapter 2 and
given the name “vector spaces.” The relationship between a system of equations AX = H
and its associated homogeneous system AX = 0 is very close, as the following theorem
shows.

Theorem 1.6.2. Let Xp be some solution of AX = H. Then any solution X of
AX = H can be expressed in the form X = Xp + Xh, where Xh is a solution of the
associated homogeneous equation AX = 0. Furthermore, any vector X = Xp + Xh,
where AXh = 0, is a solution of AX = H. (Any solution is of the form Xp +Xh.)

Proof. We’ll do the second part first. Let X = Xp + Xh with AXh = 0. Then AX =
A(Xp +Xh) = AXp + AXh = H + 0 = H , and so Xp +Xh is a solution of AX = H.

Now let X be any solution of AX = H . Define Xh = X + (−1)Xp. Then X = Xp +Xh

and Xh is a solution of AX = 0 since AXh = AX + (−1)AXp = H + (−1)H = 0. It follows
that the solution set S of AX = H is given by S = {Xp +Xh|AXh = 0}.

Theorem 1.6.2 says that it is important to understand or be able to characterize solution
sets of homogeneous systems of equations and Theorem 1.6.1 tells us some of the properties
of these solution sets. For this and other reasons, we will study the structure of these solution
sets, or vector spaces, in the next chapter.

Example 1.6.1. (a) Let us first consider the very simple system of equations x + y = 5.
There is only one equation and we may picture the solution set as ordered pairs of real
numbers lying in the xy-plane. The associated homogeneous equation is x+ y = 0 and
its solution set is the line through the origin as in Figure 1.

If we choose a particular solution of the nonhomogeneous equation, say Xp = (1, 4),
then the solution set of the original equation is the “translate” of the solution set of
the associated homogeneous equation by this vector.

(b) We will next illustrate Theorem 1.6.2 with the example solved in Section 1.5. Recall
that in Example 1.5.3, the general solution was given by x1 = 1 − x3 − x5, x2 =
1 − 2x3 − 2x5, x4 = 1 − x5, where x3 and x5 are arbitrary real numbers. If we let
x3 = x5 = 0, then we obtain the specific solution Xp = (1, 1, 0, 1, 0)t. It is not hard to
see that had we solved the associated homogeneous equation AX = 0, we would have
obtained the general solution
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y

x
Xp

x+ y = 5

x+ y = 0

Figure 1.5: Solution sets of Equation and Associated Homogeneous Equation

x1 = − x3 − x5

x2 = − 2x3 − 2x5

x4 = − x5

with x3, x5 arbitrary.

If we call this solution Xh, we see that

Xh = (−x3 − x5,−2x3 − 2x5, x3,−x5, x5)
t,

and so the general solution is given by

X = (1− x3 − x5, 1− 2x3 − 2x5, x3, 1− x5, x5)
t = Xp +Xh.

This expression for the general solution can be further expanded. We can obtain two
specific solutions of the associated homogeneous equation AX = 0, one by choosing
x3 = 1, x5 = 0 and the other by choosing x3 = 0 and x5 = 1. Call them X1 and X2.
Then X1 = (−1,−2, 1, 0, 0)t and X2 = (−1,−2, 0,−1, 1)t and the general solution of
AX = 0 can be written in the form Xh = aX1 + bX2 = (−a − b,−2a − 2b, a,−b, b)t

(where a and b represent arbitrary constants. In fact, a = x3 and b = x5). The general
solution of the nonhomogeneous equation AX = H can then be written in the form

X = Xp +Xh = (1, 1, 0, 1, 0)t + a(−1,−2, 1, 0, 0)t + b(−1,−2, 0,−1, 1)t.

Notice that the vectors X1 and X2 are “linearly independent;” a “linear combination”
aX1 + bX2 of these vectors cannot be the zero vector unless both of the scalars a and
b are zero. In Chapter 2, the set of all of these linear combinations aX1 + bX2 will be
called the “span” of the vectors X1 and X2.

�
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Section 1.6 Exercises

In Exercises 1-6, find the general solution of each system of equations and then express it in
the form X = Xp +Xh as in the example above.

1. x1 + x2 + x3 = 1
x2 − x3 = 2

2. x1 − x3 = 3
x2 + x3 = 6

3. x1 + x3 = 1
x2 + 2x3 = 3

4. x1 + x2 + x4 = 2
x1 + x2 + x3 − 2x4 = 1
x1 + x2 + 3x3 = 4

5. x1 + 2x2 − x3 = −1
−2x1 + x2 − 3x3 = 2
−x1 − x2 + x3 = −1

6. x1 + x2 − x3 − x4 = 4
2x1 − x2 + x4 = 3
−x1 + x2 − x3 + 2x4 = 2

In Exercises 7-12, express the general solution of the given homogeneous systems of
equations as a sum of scalar multiples of fixed vectors as in the example above; that
is, write

Xh = aX1 + bX2 + . . .

Note that the systems given below are the associated homogeneous systems of equations
for the systems in Exercises 1-6 above.

7. x1 + x2 + x3 = 0
x2 − x3 = 0

8. x1 − x3 = 0
x2 + x3 = 0

9. x1 + x3 = 0
x2 + 2x3 = 0

10. x1 + x2 + x4 = 0
x1 + x2 + x3 − 2x4 = 0
x1 + x2 + 3x3 = 0

11. x1 + 2x2 − x3 = 0
−2x1 + x2 − 3x3 = 0
−x1 − x2 + x3 = 0

12. x1 + x2 − x3 − x4 = 0
2x1 − x2 + x4 = 0
−x1 + x2 − x3 + 2x4 = 0

13. Let B = [A|H ] be the augmented matrix of a system of linear equations, and assume
that B is in reduced echelon form. Prove that

(a) A is in reduced echelon form.

(b) [A|0] is in reduced echelon form.

14. Let A be an m× n matrix. Assume that X1 and X2 are solutions of the homogeneous
system of equations AX = 0, and let a1 and a2 be scalars. Prove that X = a1X1+a2X2

is also a solution of AX = 0.
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15. Let B be a 3×3 matrix in reduced echelon form with associated constants r, j1, . . . , jr.
Consider the homogeneous system BX = 0. If r = 1, then B is of the form







b1 b2 b3
0 0 0
0 0 0







and so the system BX = 0 reduces to b1x + b2y + b3z = 0. This is the equation of a
plane through the origin in 3-space. Describe geometrically the situation when

(a) r = 0,

(b) r = 2,

(c) r = 3.

1.7 The LU-Factorization (optional)

The use of computers gives rise to special problems. Computer scientists study the efficiency
of various algorithms or methods and they are concerned most often about both “space”
and “time”. “Space” in the sense of how much of the computer’s memory is required in the
solution of the problem, and “time” in how much computer time it takes to solve the problem.
The issue of time is usually studied by estimating the number of arithmetic operations
required in the solution of the problem, and this is dealt with in Section 4.5. This general
area of study is called the “analysis of algorithms.”

In solving the system of equations in the matrix form AX = H, we formed the augmented
matrix [A|H ] and reduced it to reduced echelon form using the Gauss-Jordan reduction.
While this method works well for some hand computations, it is not always the best. Suppose
that systems of the form AX = H must be solved for several values of H . It is wasteful to
perform the reduction of A each time. In this case, one could record the row operations used
and then apply these operations to each of the H ’s thereby avoiding the computations on A
for each of the solutions.

Considering space-time issues, what should be done about the problem of solving AX =
H for several values of H? If one records the row operations used, these operations may be
applied to each of the H ’s. That is, if P [A|H ] is the reduced echelon form of the augmented
matrix [A|H ] (the matrix P is the product of the elementary matrices corresponding to the
row operations used in the reduction to reduced echelon form), then one needs to compute
PA once and PH for each value of H . This is more efficient in terms of the number of
arithmetic operations needed, but space could become a problem for large systems since we
must store not only the matrices A and H , but also the matrix P .

There are further issues that arise when one tries to solve a system of equations using
a computer. Computers do not do exact arithmetic. The number 2/3 may be stored in a
computer in a form that is related to the approximation 0.66666667. Because of this fact,
roundoff error can result. The study of these and other problems is the subject of the
general area of “numerical analysis” which is a part of mathematics and computer science.
We cannot deal with these important areas and issues here - they should be the subject of
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further course work. Until then, it will suffice to remember that when solving a system of
linear equations using a computer program or solving the system using a calculator where
round off might occur, small errors in the coefficients can produce large errors in the solution.

While the Gauss-Jordan reduction method in theory finds the general solution of every
system of m equations in n unknowns that has a solution, some systems resulting from
physical situations (such as electrical networks obeying Kirchhoff’s Laws) have a unique
(only one) solution and are systems of n equations in n unknowns. For such systems, other
methods of solution are better than the Gauss-Jordan method. Accuracy in the solution
and efficiency in finding the solution are more important than generality in the method of
solution.

We will describe here one of the tools which is used in the real-world solution of systems
of equations- that is the factorization of a matrix A into a product LU of a “lower triangular”
matrix L and an “upper triangluar matrix” U .

1.7.1 TRIANGULAR MATRICES

The efficiency gained in the process that we are about to present comes from the factorization
of a matrix into the product of two “triangular” matrices. One of these matrices will have
entries on or above the diagonal, and the other will have entries on or below the diagonal.
So, except for the overlap on the diagonal, the two matrices will fit into the space of one
matrix and save on storage space.

An m × n matrix A = [aij ] is called upper triangular if aij = 0 when i > j and A is
lower triangular if aij = 0 for i < j. We see that an upper triangular n× n matrix looks
like













∗ ∗ . . . ∗
0 ∗ . . . ∗
...

...
. . .

...
0 0 . . . 0 ∗













and a lower triangular n× n matrix looks like













∗ 0 . . . 0
∗ ∗ . . . 0
...

...
. . .

...
∗ ∗ . . . ∗













,

where the ∗’s denote possibly nonzero entries. If a matrix is either lower or upper triangular,
we will say that it is in triangular form. In an m × n matrix [aij ], the entries aij with
i = j are called diagonal entries and the collection of all of them {a11, a22, . . .} is called
the diagonal.

Notice that for 3× 3 matrices,

R13(a) =







1 0 0
0 1 0
a 0 1





 and R31(a) =







1 0 a
0 1 0
0 0 1





 .
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If i < k the elementary matrix Rik(a) is lower triangular and likewise if i > k,Rik(a) is
upper triangular. In addition, these matrices have all 1’s on the diagonal. Further, for 3× 3
matrices,

R2(a) =







1 0 0
0 a 0
0 0 1





 ,

so this matrix is both lower and upper triangular.
We will need some general results concerning triangular matrices. Since similar results

hold for both lower and upper triangular matrices, we will state both results in a single state-
ment by putting alternate assumptions in parentheses. Using this convention, the statement
“the inverse of a lower (upper) triangular matrix is lower (upper) triangular” represents the
two results: “the inverse of a lower triangular matrix is lower triangular” and “the inverse
of an upper triangular matrix is upper triangular”.

Theorem 1.7.1. (a) A product of lower (upper) triangular matrices is lower (upper)
triangular.

(b) The diagonal entries in a product of two lower (upper) triangular matrices are the
products of the corresponding diagonal entries of the two factors. So, a product
of two lower (upper) triangular matrices with all ones on the diagonal has all
ones on the diagonal.

(c) Each of the elementary matrices Ri(a) is both lower and upper triangular, and
if i < k (i > k) then Rik(a) is lower (upper) triangular.

(d) If an n × n lower (upper) triangular matrix has an inverse, then it is lower
(upper) triangular.

Proof. See Exercise 11.

Let A = [aij ] be an m×n matrix and assume that a certain entry aij is nonzero. If k > i
(k denotes a row lying below row i), then performing the row operation Rik(−akj/aij) results
in a matrix with a 0 in row k and column j. That is, the matrix Rik(−akj/aij)A has a zero
in row k and column j. Notice that Rik(−akj/aij) is a lower triangular matrix with ones on
the diagonal. While it might seem silly to dignify this simple observation in the form of a
theorem, the result is important and so we will do just that.

Theorem 1.7.2. Let A = [aij ] be an m× n matrix and assume that aij 6= 0 for some
i, j. Then if k > i, there is a lower triangular matrix L, with ones on the diagonal,
such that the matrix LA has a zero in row k and column j.
(We can make a zero below a nonzero matrix entry with a row operation corresponding to a lower triangular matrix.)
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We can apply the process of the theorem above to reduce a matrix to an upper triangular
matrix, provided that no zeros are encountered along the way. For example, consider the
matrix

A =







2 1 3
4 1 5
6 4 7





 .

If we perform the row operation R12(−2) on the matrix A we obtain







2 1 3
0 −1 −1
6 4 7







and so this matrix is R12(−2)A or







2 1 3
0 −1 −1
6 4 7





 =







1 0 0
−2 1 0
0 0 1













2 1 3
4 1 5
6 4 7





 .

Continuing, we next perform R13(−3) and obtain







2 1 3
0 −1 −1
0 1 −2





 ,

and finally we perform R23(1), obtaining







2 1 3
0 −1 −1
0 0 −3





 .

We see that this last matrix is the original matrix A times the elementary matrices that
correspond to the row operations that we performed:







2 1 3
0 −1 −1
0 0 −3





 = R23(1)R13(−3)R12(−2)A

=







1 0 0
0 1 0
0 1 1













1 0 0
0 1 0
−3 0 1













1 0 0
−2 1 0
0 0 1













2 1 3
4 1 5
6 4 7







=







1 0 0
−2 1 0
−5 1 1













2 1 3
4 1 5
6 4 7





 .

Thus, we have reduced A to an upper triangular matrix U = KA, where
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K = R23(1)R13(−3)R12(−2) =







1 0 0
−2 1 0
−5 1 1





 and U =







2 1 3
0 −1 −1
0 0 −3





 .

We let L = K−1 and, solving for A, we obtain A = K−1U = LU . Notice that L is also a
lower triangular matrix with 1’s on the diagonal; in fact,

L =







1 0 0
2 1 0
3 −1 1





 .

Finally, we have A factored as

A = LU =







1 0 0
2 1 0
3 −1 1













2 1 3
0 −1 −1
0 0 −3





 .

We can see that this process will work as long as no zeros are encountered along the
diagonal in the reduction process. So we may conclude the following:

Theorem 1.7.3. Let A be an m × n matrix. If no zeros are encountered in the
reduction process, then A can be factored in the form A = LU where L is a lower
triangular m×m matrix with 1’s on the diagonal and U is an upper triangular m× n
matrix. (Certain matrices can be factored as a lower times an upper.)

The factorization described in the above theorem is called the LU-factorization. Notice
that this factorization is essentially the same as the Gaussian elimination process if no
row interchanges are needed. Notice further that it does not always work! The matrix

A =

ñ

0 1
1 0

ô

cannot be factored in this form. To see this, assume that A = LU with L

lower triangular and with 1’s on the diagonal. Then L−1A = U , but L−1A is the matrix L−1

with columns 1 and 2 interchanged. Since L−1 is lower triangular, L−1A cannot be upper
triangular and so cannot be equal to U .

Corollary 1.7.4. If A is an n × n lower triangular matrix and the diagonal entries of A
are nonzero, then A has an inverse which is also lower triangular and the diagonal entries
of A−1 are the reciprocals of the corresponding entries in A. (The inverse of a lower is a lower.)

Proof. See Exercise 12.

How can the LU-decomposition be of help? Suppose A = LU with L lower triangular and
U upper triangular. Because L is lower triangular, it is easy to solve a system of the form
LY = H by “forward” substitution. It is then similarly easy to solve the system UX = Y
and then we have the desired solution: AX = LUX = L(UX) = LY = H . So, once L and
U are found, systems of the form AX = H may be easily solved for any column vector H .
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Example 1.7.1. Suppose that we wish to solve the system of equations AX = H , where

A =







2 1 3
4 1 5
6 4 7





 and H =







3
7
5





 .

A is the matrix in the example above and we found that

A = LU =







1 0 0
2 1 0
3 −1 1













2 1 3
0 −1 −1
0 0 −3





 .

We first solve LY = H , or







1 0 0
2 1 0
3 −1 1













y1
y2
y3





 =







3
7
5





 .

We see that y1 = 3, y2 = 7− 2y1 = 7− 6 = 1, and y3 = 5− 3y1 + y2 = 5− 9 + 1 = −3. Next
we solve UX = Y , or







2 1 3
0 −1 −1
0 0 −3













x1

x2

x3





 =







3
1
−3





 .

We see now that −3x3 = −3, so x3 = 1 and −x2 = 1 + x3; thus, x2 = −2 and 2x1 =
3− x2 − 3x3, giving x1 = 1.

�

From the above comments we can see that the problem of efficiency from the point of
view of time has been addressed, but the problem of space is also a concern. It appears that
we have made matters worse by factoring A as LU . A is m×n, L is m×m, and U is m×n,
and so it appears that we must store an additional m × m matrix. However, since L has
1’s on the diagonal and 0’s above the diagonal, the entries below the diagonal in L may be
stored in the matrix U , for U has only 0’s below the diagonal. We see then that all of the
essential data can be stored in a single m× n matrix. For example, with L and U as above,
we can collapse L into U as pictured below:







1 0 0
2 1 0
3 −1 1





 −→







2 1 3
0 −1 −1
0 0 −3





 , giving







2 1 3
2 −1 −1
3 −1 −3





 .

Section 1.7 Exercises

For each matrix A in Exercises 1 - 6, find a lower triangular matrix L and an upper triangular
matrix U with A = LU .
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1.

ñ

2 1
3 2

ô

2.

ñ −1 2
1 3

ô

3.







2 1 3
4 2 5
2 1 6







4.







1 0 2
2 −1 5
1 2 1







5.







2 1 3 4
2 5 3 1
6 3 4 2







6.

ñ

1 0 2 2
−3 5 1 2

ô

7. Suppose that A = LU and that L and U are stored together as described above. If
the matrix storing L and U together is











2 −1 0 2
1 2 −1 3
1 −2 1 3
2 1 3 4











,

find L and U , and then determine the matrix A.

In Exercises 8 - 10, assume that A = LU , where L and U are as given, then solve the
system AX = H for the given value of H , using the method illustrated above.

8. L =

ñ

1 0
2 1

ô

, U =

ñ

2 3
0 2

ô

, H =

ñ

2
1

ô

9. L =

ñ

1 0
−3 1

ô

, U =

ñ −1 3
0 2

ô

, H =

ñ −1
2

ô

10. L =







1 0 0
−3 1 0
2 1 1





 , U =







−1 2 4
0 1 2
0 0 1





 , H =







1
−2
3







11. Prove Theorem 1.7.1. [Hint: consider our alternative perspective on matrix multipli-
cation.]

12. Prove Corollary 1.7.4.

1.8 Applications - Kirchhoff’s Laws (Optional)

In Section 1.1 we introduced an example of an electrical network obeying Kirchhoff’s Laws.
These networks are studied in beginning and intermediate level physics courses. In certain
elementary cases, these problems give rise to systems of linear equations, and the methods
developed in this chapter can be used to solve these systems, and so, to calculate the currents
flowing in the given network. In this section, we will give a brief introduction to this area of
physics.

Electrical networks made up of conductors (wires), resistors, capacitors, inductors, and
power supplies obey two fundamental laws known as Kirchhoff’s laws:

1. The algebraic sum of voltage changes around any loop in a network is zero.
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2. The algebraic sum of currents traveling into and out of any branch point (or node) in
a network is zero.

In these laws, the term “algebraic” means that the sign (+ or -) of the current or voltage
drop must be considered. As examples will show, this sign arises from a chosen orientation
in the loops of the network.

It is useful to make an analogy between the flow of electricity and the flow of a fluid-the
charge is the amount of fluid, the voltage is the amount of pressure, the current is the rate of
flow of the fluid, and the resistance is a force opposing the flow of the fluid (an obstruction
in the pipe, perhaps).

The following notation is commonly used:

Symbol Quantity Represented Units

E Voltage volts
I current amps
R resistance ohms
L inductance henrys
C capacitance farads
Q charge coulombs

We have the following relationships:

I = dQ/dt (the current is the rate of change of charge)
ER = IR (the voltage drop across a resistor-Ohm’s Law)

EL = LdI/dt (the voltage drop across a inductor)
EC = Q/C (the voltage drop across a capacitor)

For a given network, Kirchhoff’s laws give a system of equations that relate the current
flow in each part of the circuit. If only resistors and power supplies are involved in the
circuit, the current I may be taken as the fundamental variable and the resulting system of
equations will be linear and involve no derivatives. If capacitors, inductors, and resistors are
all involved, the result will be a system of differential equations - some equations possibly
of second order. Since we have not yet considered systems of differential equations, we will
consider only networks involving resistors and constant voltage sources in this section.

Example 1.8.1. (a) Consider the network in Figure 1. Assume that

R1 = 6ohms,

R2 = 3ohms, and

V = 6volts.

An orientation has been chosen for each of the loops 1 and 2. Applying Kirchhoff’s
first law, we get

Loop 1: V − I2R1 = 0 or 6− 6I2 = 0
Loop 2: I2R1 − I3R2 = 0 or −6I2 + 3I3 = 0.
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Figure 1.6: Circuit for (a)

Applying Kirchhoff’s second law at point A yields

I1 − I2 − I3 = 0.

(Point B gives essentially the same equation.)

We obtain the following system of linear equations:

6I2 = 6
−6I2 + 3I3 = 0

I1 − I2 − I3 = 0.

Solving, we get I1 = 1 amp, I2 = 2 amps, I3 = 3 amps.

(b) Consider the circuit in Figure 2 below. We will make the following assumptions re-
garding the resistances and the voltage of the one power supply:

R1 = 1000 ohms
R2 = 500 ohms
R3 = 750 ohms
R4 = 1000 ohms
R5 = 2000 ohms
R6 = 500 ohms
V = 10 volts.

Applying Kirchhoff’s laws as in part (a), we get the following:

Point A: I1 − I2 − I3 = 0
Point B: I2 + I4 − I5 = 0
Point C: I3 − I4 − I6 = 0

Loop 1: −I1R1 − I2R2 − I5R5 + V = 0
Loop 2: I2R2 − I3R3 − I4R4 = 0
Loop 3: I4R4 + I5R5 − I6R6 = 0.
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Figure 1.7: Circuit for (b)

Substituting the values for the resistances R1, . . . , R6, rearranging, and writing the
augmented matrix of this system of equations, we get





















1 −1 −1 0 0 0 0
0 1 0 1 −1 0 0
0 0 1 −1 0 −1 0

−1000 −500 0 0 −2000 0 −10
0 500 −750 −1000 0 0 0
0 0 0 1000 2000 −500 0





















.

It would be a chore to reduce this matrix to reduced echelon form and thereby solve the
system of equations. We use a computer program to eliminate this drudgery and obtain
the reduced echelon form below. We see that in the reduced echelon form, that the
coefficient matrix has transformed into the identity matrix. It follows that the solution
is unique and that the resulting currents I1, . . . , I6 are given in the last column. The
values have been expressed in scientific notation. Rounding to the nearest hundredth
of a milliamp, we get: I1 = 5.64 mA, I2 = 2.56 mA, I3 = 3.08 mA, I4 = −1.03 mA,
I5 = 1.54mA, and I6 = 4.10 mA. (Note: mA is an abbreviation for milliampere(s), or
one one-thousandth of an ampere.)





















1 0 0 0 0 0 5.6410259E − 03
0 1 0 0 0 0 2.5641026E − 03
0 0 1 0 0 0 3.0769231E − 03
0 0 0 1 0 0 −1.0256411E − 03
0 0 0 0 1 0 1.5384616E − 03
0 0 0 0 0 1 4.1025641E − 03





















The last column gives the currents I1, . . . , I6. we conclude that I1 = 5.64 mA, I2 = 2.56
mA, etc.
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Figure 1.8: Circuit for Problem 5

�

Section 1.8 Exercises

1. In the network in Figure 1, assume R1 = 9 ohms, R2 = 2 ohms and V = 10 volts.
Calculate the currents in the circuit.

2. In the network in Figure 1, assume R1 = 10 ohms, R2 = 2 ohms and V = 5 volts.
Calculate the currents in the circuit.

3. In the network in Figure 2, assume that

R1 = 400 ohms
R2 = 900 ohms
R3 = 850 ohms
R4 = 2000 ohms
R5 = 1500 ohms
R6 = 1500 ohms
V = 100 volts.

Write the system of equations that result from applying Kirchhoff’s laws to the network.

4. In the network in Figure 2, change R1 to 2000 ohms, leaving the other variables as in
the example, and calculate the currents in the resulting circuit.

5. Find the voltages of the power cells A and B in the circuit in Figure 5, where R1 = 3
ohms, R2 = 10 ohms, I1 = 5 amps, and I2 = 3 amps.

6. Find the currents in the circuit in Figure 6, assuming that R1 = 10 ohms, R2 = 5
ohms, R3 = 15 ohms, R4 = 5 ohms, and V = 10 volts.

7. Find the currents in the circuit in Figure 6, assuming that R1 = 10 ohms, R2 = 50
ohms, R3 = 75 ohms, R4 = 100 ohms, and V = 100 volts.

8. Find the currents in the circuit in Figure 6, assuming that R1 = 20 ohms, R2 = 40
ohms, R3 = 80 ohms, R4 = 10 ohms, and V = 50 volts.
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Figure 1.9: Circuit for Problem 6

1.9 Applications - Stochastic Matrices (optional)

In courses in probability, Markov chains and stochastic matrices are studied, and since they
give an elementary, but very nice, application of matrices and matrix multiplication, we
will present here a brief outline of the topic. The method of Markov chains and stochas-
tic matrices gives a way of predicting future trends, given certain assumptions and known
probabilities.

Assume that a certain collection s1, . . . , sn of states or conditions exists and that all
individuals in a certain group must fall into one of these states. For example, with n = 2
the states may be s1 = “employed” and s2 = “unemployed,” or with n = 3, the conditions
might be s1 = “Republican,” s2 = “Democrat,” and s3 = “Independent.” We will pursue
the latter example. At a given moment, a certain proportion of all individuals satisfy the
given state or condition, giving rise to a probability or distribution vector

X =









x1
...
xn









, (1.9.1)

where xi is the proportion of all individuals in state si. Note that xi is also the probability
of an individual being in state si.

Now, if observations are made at discrete intervals (once a minute, once a day, once a
generation, etc.), a distribution vector arises with each observation. Let these vectors be
X1, X2, X3, . . . . We will adopt the notation

Xk =









x
(k)
1
...

x(k)
n









(1.9.2)

The chain X1, X2, X3, . . . of distribution vectors is called a Markov chain, provided (in
crude terms) that Xk+1 is determined by Xk. We will consider a special type of Markov
chain: Assume that at any given observation the probability of transition from state sj to
state si is pij (called the transition probability) and that this probability remains fixed,
that is, the transition probability depends only on the states, and will not change with time.
The matrix
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P =









p11 . . . p1n
...

. . .
...

pn1 . . . pnn









(1.9.3)

is called the transition matrix. This matrix has special properties, but before we discuss
them, let us pursue an example.

Assume that as before s1, s2, and s3 represent the states “Republican,” “Democrat,” and
“Independent,” respectively. Assume that observations are made at intervals of one year and
that currently the distribution vector is

X =







0.4
0.5
0.1





 (1.9.4)

that is 40% of all voters are Republican, 50% Democrats, and 10% Independent. We will
assume that the transition probabilities are fixed and given by the following chart:

Republican Democrat Independent

Republican 0.8 0.3 0.3
Next

Democrat 0.1 0.5 0.3
Year

Independent 0.1 0.2 0.4

For example, given an individual who is a Democrat this year, the probability that he or
she will switch to a Republican next year is 0.3, remain a Democrat is 0.5, and change to an
Independent is 0.2. The transition matrix P and initial distribution vectors are thus given
by:

P =







0.8 0.3 0.3
0.1 0.5 0.3
0.1 0.2 0.4





 and X1 =







0.4
0.5
0.1





 . (1.9.5)

The question arises as to what the distribution will be next year, that is, what will X2

be. To determine this, let us return to the general discussion.
Recall that pij is the probability that an individual will move from state sj to state si

and that x
(k)
j represents the proportion of individuals in state sj during observation k. Thus,

pijx
(k)
j is the proportion of individuals moving to the state si in the (k + 1)-th observation.

To find x
(k+1)
j , we must add these proportions; that is,

x
(k+1)
i = pi1x

(k)
1 + pi2x

(k)
2 + . . .+ pinx

(k)
n . (1.9.6)

This sum is exactly the result of multiplying row i of the matrix P in Equation 1.9.3 by
the column vector Xk in Equation 1.9.2. We have shown that

Xk+1 = PXk. (1.9.7)

It follows that
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X2 = PX1

X3 = PX2 = P (PX1) = P 2X1

X4 = PX3 = P (P 2X1) = P 3X1
...

...
Xk+1 = PXk = P kX1.

Assuming that the transition probabilities are known and remain fixed and that the initial
distribution vector X1 is known, one can calculate the distribution vector Xk for the k-th
observation by using the formula

Xk+1 = P kX1 (1.9.8)

Returning to our example involving the distribution of voters amongst the categories
Republican, Democrat, and Independent with transition matrix P and initial distribution
vector X1 given in 1.9.5 by

P =







0.8 0.3 0.3
0.1 0.5 0.3
0.1 0.2 0.4





 and X1 =







0.4
0.5
0.1







we see that

X2 = PX1 =







0.5
0.32
0.18





 ,

X3 = P 2X1 = PX2 =







0.55
0.264
0.186





 ,

etc.
The matrix P in 1.9.5 has special properties since pij represents the probability of tran-

sition from state sj to state si. We can see that:

(a) P is square (n× n)

(b) pij ≥ 0 for all i, j

(c) The sum of the entries in each column is 1 (since p1j + p2j + . . . + pnj represents the
probability of moving from state sj to one of the states s1, s2, . . . , sn).

A matrix P with the above properties is called a stochastic matrix.

Section 1.9 Exercises

1. Determine which of the following matrices are stochastic matrices.



1.9. APPLICATIONS - STOCHASTIC MATRICES (OPTIONAL) 61

(a)

ñ

0.1 0.3
0.9 0.7

ô

(b)

ñ

1 0
0 1

ô

(c)

ñ −0.1 0.2
1.1 0.8

ô

(d)

ñ

0.2 0.3 0.1
0.8 0.7 0.9

ô

(e)

ñ

0.1 1
0.9 0

ô

2. Fill in the blanks so that the following matrix is stochastic:







0.1 0.7
0.2 0.3







3. In the example in the text with P and X1 as in [9.5], calculate X4 and X5. What is
the long-term trend?

4. Let P and X1 be given by

P =

ñ

0.8 0.2
0.2 0.8

ô

and X1 =

ñ

0.4
0.6

ô

.

Calculate X2, X3, and X4 .

5. Let P and X1 be given by:

P =







0.6 0.2 0.2
0.4 0.6 0.0
0.0 0.2 0.8





 and X1 =







0.1
0.6
0.3





 .

Calculate X2, X3, and X4 . Can you find a formula for Xn?

6. Assume that currently 90% of all adults are employed and 10% are unemployed. As-
sume further that the child of an employed person (when reaching adulthood) has a
probability of 0.8 of being employed and 0.2 of being unemployed, whereas the offspring
of an unemployed person has a 0.6 probability of being employed and a 0.4 probability
of being unemployed. Find the transition matrix P and the distribution vector X1,
and then find X2 and X3. At what intervals are observations made in this situation?

7. Let P be a stochastic matrix and X some distribution vector. Assume that PX = X .
Prove that P nX = X for all integers n > 0.

8. Let P = [pij] be a 2 × 2 stochastic matrix with p12 = 0. What can be said about the
other entries in the matrix?

9. A matrix P that is stochastic and that has the property that the sum of each of the
rows is 1 is called doubly stochastic. Give an example of a 2 × 2 matrix that is
stochastic but not doubly stochastic.

10. Let [pij] be a 2× 2 doubly stochastic matrix (see Exercise 9) with p12 = 0.2. What are
the other entries in the matrix?

11. Can a doubly stochastic matrix (see Exercise 9) be singular?
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Chapter 2

VECTOR SPACES

2.1 Introduction: Vectors in R2

Vectors are usually introduced in calculus, where they are described as either directed line
segments or ordered pairs of real numbers. In beginning courses in physics, vectors are
described as quantities that possess both direction and magnitude. Vectors describe common
elementary physical quantities such as velocity, displacement, and force. Quantities such as
speed, pressure, and time are scalar rather than vector quantities; they have magnitude, but
not direction.

In Chapter 1, we introduced matrices and systems of linear equations. Solutions of
systems of linear equations were presented first as “n-tuples,” and then as “column vectors,”
where column vectors were defined as special types of matrices. We saw that n-tuples
and row vectors could be identified. In Section 1.6 we saw that homogeneous systems of
equations have special properties - their solution sets are closed under addition and scalar
multiplication. This chapter takes a deeper look at vectors. In Section 2.3 we define the term
“vector space.” In order to motivate our abstract definition and to gain a feel for the notion
of a vector space, we begin with the familiar view of vectors as first presented in calculus.

TWO-DIMENSIONAL VECTORS

The set of real two-dimensional vectors is sometimes defined as the set of directed line
segments

−→

AB, where A and B are two points lying in a fixed plane (see Figure 2.1).

Vectors having the same direction and magnitude (length) are, by definition, identified,

and so they are regarded as mathematically equal. The vector
−→

AB in Figure 2.1 can be

identified mathematically with the vector
−→

OC. We can see that all vectors with a given
direction and a given nonzero magnitude can be identified with a vector extending from the

origin to a unique point C. If the point C has coordinates (x0, y0), then the vector
−→

OC
is determined by (x0, y0). (The reader will recall from earlier courses that points in the
plane may be uniquely specified by “ordered pairs” of numbers (x0, y0), and that equality of
ordered pairs is defined by (x0, y0) = (x1, y1) if and only if x0 = x1 and y0 = y1.) We will
think of two-dimensional vectors as pairs of real numbers (x0, y0). We then define

63
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Figure 2.1: Parallel Vectors
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Figure 2.2: Sum of two vectors

R2 = {(x, y)|x, y ∈ R}.

Operations of addition and scalar multiplication are defined on this set. Addition of

vectors is defined as follows: Let
−→

OA and
−→

OB be the two-dimensional vectors with endpoints
(a1, a2) and (b1, b2), respectively. The sum of the two vectors is defined to be the diagonal
−→

OC of the completed parallelogram as in Figure 2.2; that is,
−→

OA +
−→

OB=
−→

OC. In Exercise
13, the reader is asked to verify that C has coordinates (a1 + b1, a2 + b2) so that we have
(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).

The product of a scalar r and a vector
−→

OA is defined as follows (see Figure 2.3). If r ≥ 0,

then r(
−→

OA) is defined to be the vector in the direction of
−→

OA with length equal to r times

the length of
−→

OA . If r < 0, then r(
−→

OA) is defined to be the vector that has the same length

as (−r)
−→

OA but that has opposite direction. In Exercise 2, the reader is asked to verify that

if
−→

OA is the vector represented by the pair (a, b), then r(
−→

OA) is the vector represented by
(ra, rb); that is, r(a, b) = (ra, rb).
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Figure 2.3: Scalar Multiples
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Figure 2.4: Polar Coordinates

As explained in Chapter 1, these two-dimensional vectors may be regarded as 1 × 2
matrices or row vectors. The operations of addition and scalar multiplication defined for
matrices are identical to the above operations defined for vectors considered as ordered
pairs. Further, the definition of equality of ordered pairs is identical to the definition of
equality for 1 × 2 matrices, and so, one may regard these ordered pairs as either matrices
or vectors. While it is traditional to write the vector with parentheses and a comma and
the matrix with square brackets and without a comma, we will not distinguish between the
ordered pair (x0, y0) and the 1× 2 matrix

î

x0 y0
ó

.

The switch from coordinates (x, y) to magnitude and direction is not difficult. Let θ be
the angle that the vector makes with the positive x-axis and let r denote the magnitude
of the vector. Using elementary trigonometry, we see that (see Figure 2.4) x = r cos θ, y =
r sin θ, r =

√
x2 + y2, and tan θ = y/x.

As an illustration of the manner in which two-dimensional vectors are used, consider the
following situation: An airplane travels northwest at 150 miles per hour for one hour and
then proceeds northeast at the same speed for 1.5 hours. Where is the plane at the end of
this time?

The velocity vectors (speed and direction) and the time of travel determine displacement
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Figure 2.5: Sum of V1 and V2
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Figure 2.6: The Parallelogram Law

vectors (distance and direction) for each part of the trip. These displacement vectors may
be determined and then the final location of the plane may be calculated as the sum of the
two displacement vectors.

We will assume that the motion of the plane in reference to the coordinate system is
as shown in Figure 2.4 and that the plane begins its trip at the origin. Using elementary
trigonometry, we see that the displacement vector describing the first part of the trip is
found to be V1 = (−150/

√
2, 150/

√
2) and the displacement vector for the second part

is given by V2 = (225/
√
2, 225/

√
2). The final displacement is given by the sum V1 + V2

of the two vectors. We see that V1 + V2 = (75/
√
2, 375/

√
2). This is a vector of length

L = 75
√
13 ≈ 270, subtending an angle θ = arctan(375/75) ≈ 79◦ with the x-axis; see

Figure 2.5.

The method of addition described above is often called the parallelogram method (see
Figure 2.2). One can also think of adding vectors head to tail. Notice that in Figure 2.2,
the line segment AC is parallel to OB and the two segments have the same length. These
vectors may be identified, and we can think of placing the tail of the second vector at the
head of the first, the sum then being the vector OC having its tail at the tail of the first
vector and its head at the head of the second vector (see Figure 2.6).
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Section 2.1 Exercises

In Exercises 1-4, perform the indicated vector operations.

1. (2, 3) + (−4, 2) =

2. (−5, 2) + (3,−1) =

3. 2(−1, 3) + 4(3,−6) =

4. 3(2, 1) + (−2)(4, 1) =

In Exercises 5-8, find the direction and magnitude of the given vectors.

5. (3, 2)

6. (−1, 3)

7. (1, 3)

8. (2,−2)

In Exercises 9-12, θ represents the angle a given vector makes with the positive x-axis
and r represents the magnitude of the given vector. Express the vector as an ordered
pair.

9. θ = 30◦, r = 2

10. θ = 45◦, r = 3

11. θ = 210◦, r = 5

12. θ = 315◦, r = 4

13. As discussed in this section, verify that OA+OB is the vector given by (a1+b1, a2+b2)
and r(OA) is given by (ra1, ra2). (Hint: Use similar triangles.)

14. A plane flies southeast for 2 hours at 125 miles per hour and then northeast at 150
miles per hour for 1.5 hours. What direction must it fly to return home, and how long
will the return flight take at 175 miles per hour?

15. Consider the vectors A = (1, 2) and B = (2, 5). Find the cosine of the angle between
the two vectors. (Hint: Use the law of cosines.)

16. Force is a vector quantity. Assume that a given force F1 has a magnitude of 10 pounds,
and makes an angle of 30◦ with the positive x-axis; a force F2 has a magnitude of 20
pounds and makes an angle of 90◦ with the positive x-axis; and a third force F3 has a
magnitude of 15 pounds and makes an angle of 225◦ with the positive x-axis. What is
the resultant force? That is, what is F1 + F2 + F3?

17. Let (a, b), (c, d) ∈ R2. Show that (a, b) + (c, d) = (c, d) + (a, b).

2.2 Vector Spaces

In order to develop theories applicable to many different systems, mathematicians often
consider the abstract properties of a given system and then make a general definition that
includes these properties. The notion of a “vector space” is one such generalization. A
precise definition of the term vector space is given in the next section-here we will present
motivation for this definition.
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In the previous section, the set R2 of two-dimensional vectors was defined along with
the operations of addition and scalar multiplication. Certainly other systems have similar
structures-consider R3 the set of 3-dimensional vectors or, for that matter, the set of m× n
matrices over some field F . In each case there is an addition and a scalar multiplication.

In Section 1.6, it was shown that if one could find just one solution Xp of a system of
linear equations AX = H , and if one could then find all solutions Xh of the homogeneous
equation AX = 0, all solutions of AX = H would be obtained in the form X = Xp +Xh.
Because of this, it is important to be able to characterize the solution sets of homogeneous
systems of linear equations. Now recall that in Section 1.6 it was shown that solution sets of
such homogeneous systems were nonempty, closed under addition, and closed under scalar
multiplication. Let us list the common properties of the mathematical systems mentioned
above:

PROPERTIES OF VECTOR SPACES

Observation 1. Properties common to “vector spaces”:

(a) In each case, there is a field F associated with the system, often the field of real
numbers. The elements of the field are called scalars.

(b) There is a set V that is nonempty. The elements of V are called vectors.

(c) There is an addition of vectors that has the following properties:

(i) Given two vectors X and Y in V, there is a unique sum X+Y . (Sums are well defined.)

(ii) If X and Y are in V, then X + Y is in V. (V is closed under addition.)

(d) There is a scalar multiplication that has the following properties:

(i) Given a scalar r in F and a vector X in V, there is a unique scalar product rX .
(Scalar multiplication is well defined.)

(ii) If r is in F and X is in V, then rX is in V. (V is closed under scalar multiplication.)

(e) There are algebraic properties of the operations. For example, addition is associative
and commutative, there is a zero vector, etc.

We saw in Chapter 1 that addition and scalar multiplication of m× n matrices are well-
defined operations. Also, we proved many algebraic properties of these operations. While
the definition of the term “vector space” is still to be presented, we will make the following
observation:

Observation 2. Let V be a nonempty set of m × n matrices over some field F and assume
that V is closed under addition and scalar multiplication; that is, assume that

(a) If X and Y are in V, then X + Y is in V. (V is closed under addition .)

(b) If X is in V and r in F , then rX is in V. (V is closed under scalar multiplication .)

Then V is a vector space over F .
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This observation is quite general in that any nonempty collection of m×n matrices with
the closure properties (a) and (b) forms a vector space. In most of our applications, the set of
“vectors” will be a set of 1×n matrices or a set of n×1 matrices; that is, a set of row vectors
or column vectors. Recall from Section 1.2 that we identified the n-tuple (a1, a2, . . . , an) and
the 1× n matrix

î

a1 a2 . . . an
ó

.
Let us now consider examples of sets of matrices that satisfy the conditions observed

above, and consequently form vector spaces.

Example 2.2.1. (a) The most trivial example of a vector space is the set {0} consisting of
the m× n zero matrix alone. Since the zero vector is a member of this set, the set is
nonempty and is closed under addition and scalar multiplication.

(b) As in Section 2.1, the set R2 of real two-dimensional vectors may be thought of as the
set of all pairs of real numbers. R2 may be regarded as the set of all 1×2 matrices over
the real number field R, and so R2 is closed under addition and scalar multiplication.
It follows that R2 is a vector space.

(c) As a generalization of the previous example, let Rn denote the set of all n-tuples or
1× n matrices over R. As above, Rn is a vector space.

(d) Let F denote any field of scalars and for positive integers m and n, let Fm×n denote the
set of all m× n matrices over F . Since the sum of two m× n matrices over F is again
an m × n matrix over F , and since a scalar times an m × n matrix produces another
m × n matrix, we see that Fm×n is closed under addition and scalar multiplication.
Thus, Fm×n is a vector space.

Notice that with the above notation, Rn = R1×n, the vector space of all 1×n matrices
or row vectors over the real field R. Likewise the vector space Rm×1 consists of all
m× 1 column vectors over R.

(e) Let S be the solution set of a homogeneous system of equations AX = 0 as in Theorem
1.6.2. By this theorem, S is closed under addition and scalar multiplication, and so it
is a vector space.

(f) Not all sets of vectors satisfy the closure properties. Let A = {(x, y) ∈ R2|x, y > 0}. It
is not hard to see that A is closed under addition: (x, y), (x′, y′) in A =⇒ x, x′, y, y′ >
0 =⇒ x + x′, y + y′ > 0 =⇒ (x + x′, y + y′) ∈ A, but A is not closed under scalar
multiplication ((1, 1) is in A but −1(1, 1) is not).

(g) We can find a set closed under scalar multiplication, but not closed under vector
addition. Consider B = {(x, y) ∈ R2|x = 0 or y = 0}. If x = 0 or y = 0, then the
vector r(x, y) = (rx, ry) has the same property. On the other hand, (1, 0) + (0, 1) =
(1, 1) /∈ B.

�

We need to consider the common properties of the above systems in order to see how to
formulate the abstract definition.
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Vector Spaces of Matrices

In Section 2.3, we will present the general definition of the term “vector space.” The defi-
nition of this “abstract” vector space will involve axioms that give properties of operations
on the set of vectors. In our first observation above, we noted that the operations on vector
spaces had “properties.” What are these properties? In order to see that the sets described
in the observation above form a vector space, we state a theorem giving the properties of
vectors and their operations that correspond to the axioms in the coming section. It might
be more proper to call this result a corollary rather than a theorem, since almost all of the
results were proved in Section 1.3. Note that the “properties” below are also referred to as
“laws,” as in, “distributive law.” We will use both terms freely.

Theorem 2.2.1. Let V be nonempty set of m×n matrices over the field F and assume
that V is closed under addition and scalar multiplication as in Observation 2 above.
Then:

(a) X + Y = Y +X for all X, Y ∈ V. (Commutative property)

(b) X + (Y + Z) = (X + Y ) + Z for all X, Y, Z ∈ V. (Associative property )

(c) The zero vector, 0, is in V and 0 +X = X for all X ∈ V. (Existence of zero )

(d) If X ∈ V, there is a Y ∈ V with X + Y = 0. (Existence of additive inverses )

(e) (r + s)X = rX + sX for all X ∈ V and all scalars r and s. (Distributive property )

(f) r(X + Y ) = rX + rY for all X, Y ∈ V and all scalars r. (Distributive property)

(g) r(sX) = (rs)X for all X ∈ V and all scalars r and s. (Associative property)

(h) 1X = X for all X ∈ V, where 1 is the identity scalar. (Identity property )

Proof. Parts a), b), e), f), g) and h) were proved in Theorems 1.3.2, 1.3.3, and 1.3.6. We
will prove parts c) and d).

c) Since V is nonempty, there is some vector X in V. By Theorem 1.3.6, 0X = 0, where
the first 0 is the zero scalar and the second 0 is the zero matrix. Since V is closed
under scalar multiplication, 0X = 0 is in V, so the zero vector lies in V. Also, by the
same theorem, 0 +X = X for all X in V.

d) Let X be in V. Then using Theorem 1.3.6 we see that Y = (−1)X is in V and
X+Y = X+(−1)X = 1X+(−1)X = (1+(−1))X = 0X = 0. Hence for every vector
in V, there is an additive inverse in V.

The properties listed in Theorem 2.2.1 allow us to perform many of the familiar algebraic
operations related to solving equations. Given a vector X in V, part d) guarantees the
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existence of a vector Y with X + Y = 0. The vector Y is called the additive inverse of X
and is denoted by −X . From the proof of Theorem 1.3.6, we see that −X = (−1)X . Now
if Z ∈ V , the difference of Z and X is defined by Z − X = Z + (−X). By the previous
comment we see that Z −X = Z + (−1)X.

Corollary 2.2.2. Let V be a vector space and let X, Y, Z ∈ V. Then:

(a) If X + Y = X + Z or Y +X = Z +X, then Y = Z. (Cancellation law)

(b) If a is a nonzero scalar and aX+Y = Z, then X = (1/a)(Z−Y ). (Linear equations can be solved.)

Proof. Part a) is true by Corollary 1.3.7 and part b) is left as an exercise.

Closure under addition and scalar multiplication can be pictured geometrically. Suppose
that X is a vector in R3. We can think of a line segment in space:

O

X

Figure 2.7: A vector in space

If we consider the set of all scalar multiples of this vector, {rX|r ∈ R}, we see that we
have the collection of vectors lying on the line through the vector X :

O

X

Figure 2.8: All multiples of X
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Two vectors in R3 may be pictured as line segments from the origin. Either these line
segments lie on the same line or they determine a plane. Call the vectors X and Y , and
assume that they are not collinear. The picture is as in Figure 2.2.

O

X

Y

Figure 2.9: X and Y

It is not difficult to see that any vector Z lying in the plane of X and Y is a sum of two
vectors lying along the lines determined by X and Y (see Figure 2.2). This means that Z is
a sum of scalar multiples of X and Y .

O

X

Y

Z

Figure 2.10: Z is a linear combination of X and Y

We see that scalar multiples of a nonzero vector give a line in space and that sums of
these scalar multiples, for two non-collinear vectors, give all vectors in the plane determined
by the two vectors.

Section 2.2 Exercises

1. Let V be the set of all vectors (x, y) in R2 such that x = 2y. Show that V is closed
under addition and scalar multiplication.
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2. LetV be the set of vectors (x, y, z) in R3 satisfying the conditions x+y−z = 0, 2x−z =
0. Show that V is closed under addition and scalar multiplication.

3. Let V be the set of all (x, y) in R2 satisfying x + y = 1. Show that V is not closed
under either addition or scalar multiplication.

4. Let V be the set of all (x, y, z) in R3 with x + y = 0 and x − z = 1. Show that V is
not closed under either addition or scalar multiplication.

5. Let V be a subset of R2 that is closed under addition and scalar multiplication, and
assume that (1, 1) and (1, 2) are in V. Show that V = R2. (Hint: Approach the
problem geometrically.)

6. Find a subset V of R2 satisfying the following:

(a) V is not equal to R2.

(b) V is closed under addition and scalar multiplication.

(c) (−2, 1) is in V.

7. Use the definition of “difference,” Theorem 2.2.1, and Corollary 2.2.2 to show that for
any two m× n matrices X and Y , −(X − Y ) = −X + Y.

8. Prove part b) of Corollary 2.2.2.

9. Let V be a nonempty set of m × n matrices over the field F and assume that the
following condition holds: If r and s are in F and X and Y in V, then rX + sY is in
V. Prove that V is closed under addition and scalar multiplication.

10. Let X be in R2 and assume 2X + 3(2, 1) = (−1, 2). Solve for X as in Corollary 2.2.2
b).

11. As in Exercise 10, solve for X given that 3X − (2, 3) = 3(−5, 7).

12. Find a subset of R3 that is closed under addition, but not closed under scalar multi-
plication.

13. Find a subset of R3 that is closed under scalar multiplication, but not closed under
addition.

2.3 Abstract Vector Spaces

In Section 2.2, it was observed that a nonempty set of m × n matrices over some field F
that is closed under addition and scalar multiplication is a vector space. Theorem 2.2.1
gives properties of such a system. These properties are consequences of the definitions of the
operations and of the properties of the operations on the field of scalars. There are other
mathematical structures that are very similar in nature but that do not consist of matrices.
One example of such a structure is the collection of continuous functions on a given closed
interval. Let us review some definitions and theorems from elementary calculus.
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Let a and b be real numbers with a < b, and let f and g be continuous, real-valued
functions defined on the closed interval [a, b], and let c be some real number. The sum of
the two functions f and g is the function f + g defined on [a, b] by

(f + g)(x) = f(x) + g(x),

and the product of c and f is the function cf defined on [a, b] by

(cf)(x) = cf(x).

Now in calculus one learns that the sum of two continuous functions is continuous and
that a constant times a continuous function also gives a continuous function. It follows that
the set C[a, b] of continuous real-valued functions defined on the closed interval [a, b] is closed
under addition and scalar multiplication. Furthermore, properties corresponding to those
of Theorem 2.2.1 hold for C[a, b]. The constant function, z(x) = 0 for x in [a, b], serves as
the zero of part c), and −f , for f in C[a, b], is defined by (−f)(x) = −(f(x)). We see that
C[a, b] has the properties that the previous examples of vector spaces had. We wish to bring
this example into our list of vector spaces.

A GENERAL DEFINITION

In order to include the example above, as well as other examples, we give an abstract
definition of the notion of a vector space. This definition is “abstract” in the sense that the
set V of vectors is an arbitrary set (not necessarily matrices), and operations are assumed
to exist with properties like those in Theorem 2.2.1. Furthermore, the possibility is included
that scalars from fields other than the real number field will be permitted. For information
on fields, the reader may refer to Appendix C. In practice, little harm will be done if it is
assumed that the field of scalars is the field of real numbers, for the algebraic manipulations
that can be performed on the real numbers (adding, subtracting, multiplying, and dividing
by nonzero numbers) can also be performed on the elements of any field of scalars.

Definition 2.3.1. Let F be a field of scalars (say Q,R, or C). A vector space over F is
a nonempty set V (the elements of V will be called vectors and denoted by capital letters
X, Y, . . .) along with two operations: an addition that associates with each pair of vectors
X and Y a unique vector X + Y, and a scalar multiplication that associates with each
scalar r and vector X a unique vector rX . This system consisting of the set of vectors, the
field of scalars, and the two operations satisfies the following conditions:

A1) X + Y = Y +X for all X, Y ∈ V.

A2) X + (Y + Z) = (X + Y ) + Z for all X, Y, Z ∈ V.

A3) There is an element 0 ∈ V with 0 +X = X for all X ∈ V (0 is called the zero vector).

A4) For anyX ∈ V, there is an element −X ∈ V withX+(−X) = 0 (−X is the additive inverse of X).

M1) (r + s)X = rX + sX for all X ∈ V and all scalars r and s.
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M2) r(X + Y ) = rX + rY for all X, Y ∈ V and all scalars r.

M3) r(sX) = (rs)X for all X ∈ V and all scalars r and s.

M4) 1X = X for all X ∈ V, where 1 is the identity of F .

It follows from Theorem 2.2.1 that any nonempty set V of m × n matrices over a field
F that is closed under addition and scalar multiplication is a vector space according to the
above definition. We see then that Observation 2 is correct. In the theory that follows, we will
most often consider vectors in an abstract sense. That is, we will work with the assumptions
A1)-A4) and M1)-M4) from above and we will not use a particular representation for the
vectors, such as assuming the vector to be a matrix. There are vector spaces, such as C[a, b]
above, in which the vectors are not matrices and are not representable as matrices. Before
giving examples, we will state a theorem that establishes some of the elementary properties
of vector spaces and their operations.

A THEOREM ABOUT VECTOR SPACES

Since we are now considering vector spaces in an abstract sense, it is important to pay
attention to the proofs of theorems. While the properties cited in the theorem are known
to be true for matrices, we may no longer assume that the vectors are matrices-instead we
must use only the axioms for a vector space. A subtlety in the above definition should be
pointed out: The phrase “an addition that associates with each pair of vectors X and Y a
unique vector X + Y ” is assumed to contain both the closure of the addition operation and
the fact that it is well-defined. The closure comes from the statement that X+Y is a vector,
and the word “unique” implies that vector addition is well-defined. Similar remarks may be
made concerning the closure and well-definedness of scalar multiplication.

Theorem 2.3.1. Let V be a vector space with X, Y, Z ∈ V and r some scalar. Then:

(a) If X + Y = X + Z or Y +X = Z +X, then Y = Z. (Cancellation law)

(b) If X + Y = 0 then Y = −X. (Additive inverses are unique)

(c) r0 = 0, where 0 denotes the zero vector. (A scalar times zero is zero)

(d) 0X = 0, where the first 0 is a scalar and the second, a vector.
(Zero times a vector is zero)

(e) −X = (−1)X. (−1 times a vector is the vector’s additive inverse)

(f) rX = 0 implies r = 0 or X = 0. (There are no nonzero zero divisors)

Proof. (a) Assume X + Y = X + Z. By property A4) there is a vector −X in V with
X+(−X) = 0. Adding −X to both sides, we obtain −X +(X+Y ) = −X +(X+Z).
Using A1) and A3), we obtain (X + (−X)) + Y = (X + (−X)) + Z. It follows that
0 + Y = 0 + Z and so Y = Z.
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(b) If X + Y = 0, then X + Y = X + (−X) by A4). Thus, Y = −X by a).

(c) By A3), 0 + 0 = 0, and multiplying both sides by r, we obtain r(0 + 0) = r(0),
or r0 + r0 = r0 using M2). Adding the zero vector to the right side, we obtain
r0 + r0 = r0 + 0, and so by a) r0 = 0.

Proofs of the remaining parts are left as exercises.

Example 2.3.1. (a) The first example of a vector space can be taken to be any one of the
examples of Section 2.2. By Theorem 2.2.1, any one of the closed and nonempty sets
of matrices must satisfy the above definition, and so forms a vector space.

(b) As mentioned at the beginning of this section, the set C[a, b] of all continuous, real-
valued functions defined on the closed interval [a, b] = {x ∈ R|a = x = b} is a vector
space over the real numbers. If f, g are elements in C[a, b], then the equality of f and
g is defined by f = g if and only if f(x) = g(x) for all x in [a, b]. Addition and scalar
multiplication are defined by (f+g)(x) = f(x)+g(x) and (rf)(x) = rf(x) for any real
number r. With these definitions, C[a, b] is a vector space over the real field R. Notice
that over the complex field C, C[a, b] fails to be closed under scalar multiplication.
For example, if f ∈ C[a, b], then (if)(x) = if(x) (where i is the imaginary unit with
i2 = −1) is not a real-valued function unless f(x) = 0 for all x, and so C[a, b] is not a
vector space over C.

(c) The field of real numbers R may be regarded as a vector space over the field of rational
numbers Q. The set of vectors is the set of real numbers, while the rational numbers are
the scalars. The “vector” addition is the ordinary addition operation on real numbers,
and the scalar multiplication is defined to be the operation of ordinary multiplication
of real numbers. It follows that properties A1)-A4) and M1)-M4) are satisfied, and so
R is a vector space over Q.

This example is really much more general than its statement suggests. If F1 is a subfield
of F2 (that is, F1 ⊆ F2 and F1 is a field under the operations of F2), then F2 is a vector
space over F1. For example, the complex field C is a vector space over the real field R

and over the rational field Q.

(d) Our final example of an “abstract” vector space consists of the system of polynomials
over a field F . Since these polynomials are considered over an arbitrary field, this
presentation differs from the treatment of polynomials in a calculus class, where they
are regarded as a special sort of function. By a polynomial in the indeterminate
x over the field F we mean an expression of the form a0 + a1x + . . . + anx

n where
n is a non-negative integer and each ai ∈ F . Let p(x) = a0 + a1x+ . . .+ anx

n and let
q(x) = b0+ b1x+ . . .+ bmx

m be a second polynomial over F . Assume n ≤ m. We write
p(x) = q(x) if and only if ai = bi for 0 ≤ i ≤ n and bn+1 = . . . = bm = 0. Let F [x] be
the set of all polynomials over F and define operations on F [x] by

p(x) + q(x) = (a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)x
n + bn+1x

n+1 + . . .+ bmx
m
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and
rp(x) = ra0 + ra1x+ . . .+ ranx

n.

From these definitions, one can prove that F [x] is a vector space over F .

�

The vector spaces C[a, b] and F [x] described in Examples b) and d) obviously are not
vector spaces consisting of matrices. We will see later that there are even more fundamental
differences in these vector spaces - those vector spaces consisting of matrices are “finite
dimensional,” while C[a, b] and F [x] are “infinite dimensional.”

Our definition is now sufficiently general to include all of the specific cases of vector spaces
encountered in undergraduate mathematical studies. In fact, we have given the standard
definition of the term vector space. We would like to understand more about the structure
of these vector spaces. How can they be characterized? Are there common features of these
spaces? We can answer these questions in the case of finite-dimensional vector spaces. The
results will come in Section 2.7.

Section 2.3 Exercises

1. Let f(x) = x2 + 2 and g(x) = x − 1. Then f and g are in C[0, 1]. Calculate the
following:

(a) (f + g)(x)

(b) (f + 3g)(a)

(c) (2f + (−1)g)(.5)

2. Let f(x) = sin x and g(x) = cosx. Then f and g are in C[0, p]. Calculate the following:

(a) (2f)(p/2)

(b) (f + 2g)(p/4)

(c) (f + (−1)g)(p/6)

3. For which pairs of functions may we write f = g on the given interval? Explain why.

(a) f(x) = sin x g(x) = cos x [0, π]

(b) f(x) = 1 g(x) = x2 + 2x+ 1 [0, 1]

(c) f(x) = 1 g(x) = sin2 x+ cos2 x [0, π]

(d) f(x) = x+ 1 g(x) = (x2 − 1)/(x− 1) [−1, 0]

4. In Example 2.3.1 (b), verify that property A3) holds. (Hint: Define z on [a, b] by
z(x) = 0 for all x in [a, b]. Show that z is in C[a, b] and that z + f = f for all f in
C[a, b].
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5. Verify that property A4) holds in C[a, b]. (Hint: For f in C[a, b] define −f by
(−f)(x) = −(f(x)). Show that −f is in C[a, b] and f + (−f) = z (z as in Exer-
cise 4).)

6. Verify that property M1) holds in C[a, b].

7. Let R be the real field and let f(x) = 1 + 3x and g(x) = 1 + 2x+ 3x2 be elements in
R[x]. Calculate 2f(x) + 3g(x).

8. Let f(x) = a0 + a1x + . . . + anx
n be in F [x] and assume that m is an integer with

m > n. Let g(x) = a0 + a1x+ . . .+ anx
n + 0xn+1 + . . .+ 0xm. Show that f(x) = g(x).

(Hint: Apply the definition of equality of polynomials as given in Example 2.3.1 (d).)

9. Let F be a field. Show that property A3) holds in F [x]. (Hint: Define z(x) = 0. Then
z(x) is in F [x] and z(x) + f(x) = f(x) for all f(x) in F [x].)

10. Let F be a field. Show that property A4) holds in F [x]. (Hint: For f(x) = a0 + a1x+
. . .+ anx

n in F [x], define (−f)(x) = (−a0) + (−a1)x+ . . .+ (−an)x
n.)

11. In F [x], where F is any field, verify that property M2) holds.

12. Prove the remaining parts of Theorem 2.3.1.

13. Let V be a vector space over the complex number field C. Explain why V may be
regarded as a vector space over the real field R.

14. Does the set of rational numbers Q form a vector space over the system of integers Z?
Explain.

15. Consider the field Z2 consisting of the two elements 0 and 1 (see Appendix 3). Let
f(x) = x + x2 and g(x) = 0 be two polynomials in Z2[x]. Show that f(a) = g(a) for
all a in Z2, but f 6= g.

16. Over the real numbers R, a polynomial f(x) = a0 + a1x+ . . .+ anx
n may be regarded

as a member of R[x] or C[a, b], where a ≤ b. Find and review in your calculus book the
proof that equality of polynomials in C[a, b] implies equality of polynomials in R[x].

17. Define the set of quaternions Q by

Q =

®ñ

α β
−β α

ô

: α, β ∈ C

´

.

Show that Q is a vector space over R.
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2.4 Subspaces

In Chapter 1, the solution set of a system of equations in the variables x1, . . . , xn over the
real numbers is described as a set of n-tuples of real numbers - a subset of the vector space
Rn. If the system of equations is homogeneous, this solution set is closed under addition
and scalar multiplication and consequently forms a vector space. This situation is described
by saying that the solution set is a “subspace” of the set of n-tuples Rn, and we make the
following definition.

Definition 2.4.1. Let V be a vector space over the field F and let W be a subset of V.
W is a subspace of V if and only if W is a vector space over F under the operations of
addition and scalar multiplication in V.

If the specific or nonabstract definition of the term vector space as given in Section 2.2 is
assumed, then it is relatively easy to show whether a subset of a vector space is a subspace.
One need only check that it is nonempty and closed under both of these operations. On
the surface, it appears that the abstract definition is harder to deal with, but observe the
following: If W ⊆ V and X + Y = Y + X for all X, Y ∈ V (so A1) holds for V), then,
trivially, X + Y = Y +X holds for all X, Y ∈ W, so that A1) is valid for W. We see that,
the subset W inherits the commutativity property from its parent set V. The following
theorem makes use of just such reasoning to simplify the proof that a subset of a vector
space is a subspace.

Theorem 2.4.1. Let V be a vector space and let W be a nonempty subset of V.
Then W is a subspace of V if and only if W is closed under addition and scalar
multiplication. (A nonempty subset is a subspace iff it’s closed.)

(Note: “iff” is often used by mathematicians as an abbreviation for “if and only if.”)

Proof. Note that the conclusion of this theorem is an equivalence - a statement of the form p
iff q, or symbolically p ⇔ q. To prove such a statement, we must prove the two implications:
p implies q or p =⇒ q; and q implies p, or q =⇒ p; which we may write as p ⇐ q. The
arrow in parentheses indicates which part of the proof is being given.

(⇒) If W is a subspace of V, then it is closed under addition and scalar multiplication,
and so the first part of the proof is trivial.

(⇐) Assume W ⊆ V,W 6= ∅ and that W is closed under addition and scalar multipli-
cation. We must prove that W satisfies conditions A1)-A4) and M1)-M4). As mentioned
above, properties A1), A2), M1), M2), M3), and M4) are obvious. Only conditions A3) and
A4) need to be checked. Since W 6= ∅, there is some vector X0 ∈ W. Then 0X0 = 0 ∈ W
by Theorem 2.3.1 and so the zero vector of V is in W. Consequently, A3) holds. If X ∈ W,
then −X = (−1)X ∈ W, also by 2.3.1. Hence A4) holds and so W is a vector space and so
W is a subspace of V.

Example 2.4.1. (a) If V is any vector space, then V is trivially a subspace of itself. Also
{0} is trivially a subspace of V, where 0 represents the zero vector of V.
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(b) Let W be the solution set of a homogeneous system of linear equations in the variables
x1, . . . , xn with real coefficients. If we regard the solutions as n-tuples, then W ⊆ Rn

and W 6= ∅. By Theorem 1.6.1, W is closed under addition and scalar multiplication
and so W is a subspace of Rn.

If we let A be an m×n matrix and consider the homogeneous matrix equation AX = 0,
then the solutions become n× 1 column vectors and the solution set is {X|AX = 0}.
This set is called the nullspace of A and is denoted by N(A). It is, of course, a
subspace of the space of n× 1 column vectors.

(c) Let V be any vector space and let X1 and X2 be any two vectors in V. Define
span{X1, X2} = {rX1 + sX2|r and s are arbitrary scalars}. Then span{X1, X2} is a
subspace of V and is called the subspace spanned by X1 and X2.

(d) Recall that for a real-valued function f(x) of a real variable x, f (n)(x) denotes the n-
th derivative of f . Let Cn[a, b] = {f ∈ C[a, b]|f (n) exists and is continuous on [a, b]}.
Then Cn[a, b] is a subset of C[a, b] and is nonempty since, for example, the zero function
has derivatives of all orders. Now let f, g ∈ Cn[a, b] and let r be some scalar. Then
f (n) and g(n) exist and are continuous, and by a theorem of basic calculus we have
that (f + g)(n) = f (n) + g(n) and (rf)(n) = r(f)(n). Also the fact that f (n) and g(n) are
continuous implies that f (n) + g(n) and (rf)(n) are continuous. We see that f + g and
rf are also elements of Cn[a, b]. It follows that Cn[a, b] is a subspace of C[a, b].

(e) Let W be the set of all functions y ∈ C1[a, b] satisfying the homogeneous linear differ-
ential equation y′ − y = 0. It is not hard to prove that W is a subspace of C1[a, b].

(f) Let p(x) = a0 + a1x+ . . .+ anx
n be a nonzero polynomial over the field F . If an 6= 0,

we say that p(x) has degree n. For example, 2x+1 has degree 1, x2 + x5 has degree 5,
etc. The zero polynomial is not assigned a degree. Let F [x]n be the set consisting of
the zero polynomial along with all polynomials p(x) in F [x] that have degree less than
or equal to n. Then F [x]n is a subspace of F [x].

�

Section 2.4 Exercises

In most of the exercises below, Theorem 2.4.1 may be used to simplify the proof that a
subset is in fact a subspace.

1. Show that the subset V = {(x, y) ∈ R2|x = 2y} is a subspace of R2.

2. Show that the subset V = {(x, y, z) ∈ R3|x = 2y} is a subspace of R3.

3. Show that the subset V = {(x, y, z) ∈ R3|x = 2y or x = z} is not a subspace of R3.

4. Show that the subset V = {(x, y) ∈ R2|x− y = 1} is not a subspace of R2.
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5. Let V be a subspace of R2 and let W = {(x, y, z) ∈ R3|(x, y) ∈ V and z = 0}. Show
that W is a subspace of R3.

6. If W is a subspace of R3 and V = {(x, y) ∈ R2|(x, y, z) ∈ W for some z}, is V a
subspace of R2? Explain.

7. If U and W are subspaces of a vector space V, is it possible that U ∩W = ∅? (See
Appendix A for definition of the intersection (∩) of two sets and the definition of the
empty set ∅.

8. If U and W are subspaces of a vector space V, what can be said about U ∩W and
U∪W? That is, can one prove that these sets form subspaces? (∩ and ∪ are explained
in Appendix A.)

9. Show that the set span{X1, X2} in Example 2.4.1 (c) is a subspace of V.

10. Prove that the set W in Example 2.4.1 (e) is a subspace of C1[a, b]. Can you find a
nonzero function in W? Can you determine all functions in W?

11. LetU be the set of all functions in C2[a, b] satisfying the differential equation y′′+y = 0.

(a) Show that U is a subspace of C2[a, b].

(b) Find two functions f1, f2 ∈ U such that f1 6= cf2 for any constant c.

(c) Show that U = span{f1, f2}. (This requires some knowledge of differential equa-
tions.)

12. Consider the vector space R2. Show that the set of all vectors lying on a given straight
line through the origin is a subspace of R2.

13. Show that the only subspaces of R2 (considered as a vector space over R) are {0},R2,
and straight lines through the origin. What can be said about R3?

14. Show that any subspace U of R2 can be expressed in the form U = span{X, Y } for
some not necessarily distinct vectors X, Y ∈ R2.

15. If U and W are subspaces of a vector space V and U ⊆ W, is U a subspace of W?
Explain.

16. Let V be the vector space of all n-dimensional column vectors and let U be a subspace
of V. Let P be an n× n matrix. Show that W = {PX|X ∈ U} is also a subspace of
V.

2.5 Linear Combinations and the Span of a Set of Vec-

tors

In the examples in the previous section, we considered a subspace formed by taking all
vectors of the form rX1+sX2 where r and s are scalars and X1 and X2 are vectors. Because
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they are useful in describing subspaces, we will now consider more general sums of this form.
We make the following definition.

Definition 2.5.1. Let V be a vector space and let X1, . . . , Xn ∈ V for some integer n. A
linear combination of X1, . . . , Xn is a vector X of the form X = a1X1 + . . . + anXn for
some scalars a1, . . . , an.

Notice that a linear combination is a sum of finitely many scalar products. We will not
have occasion to consider infinite sums or infinite series. We often say that “X is a linear
combination of X1, . . . , Xn,” meaning X = a1X1 + . . .+ anXn for some a1, . . . , an.

We have seen these before: our alternative perspectives on matrix multiplication give us
a product of two matrices as a matrix whose columns are linear combinations of the columns
in the left matrix, or whose rows are linear combinations of the rows in the right matrix.
That perspective will be helpful again in this section and beyond.

Example 2.5.1. (−1,−16, 0) = 2(1, 1, 3) + (−3)(1, 6, 2) is a linear combination of (1, 1, 3)
and (1, 6, 2). The vector (−1, 4,−4) is also a linear combination of (1, 1, 3) and (1, 6, 2)
since (−1, 4,−4) = (−2)(1, 1, 3) + (1)(1, 6, 2). Notice that the vector (1, 1, 4) is not a linear
combination of (1, 1, 3) and (1, 6, 2), for (1, 1, 4) = r(1, 1, 3)+s(1, 6, 2) = (r+s, r+6s, 3r+2s)
implies that r+s = 1 = r+6s. This means that s = 0 and r = 1, but this fails the condition
4 = 3r + 2s.

�

Example 2.5.2. If we consider the solution set S = {(x, y, z)t|x + y + z = 0} of the linear
equation x + y + z = 0, we see that both of the vectors (1,−1, 0)t and (0, 1,−1)t are
in S. Since S is closed under addition and scalar multiplication, any linear combination
r(1,−1, 0)t + s(0, 1,−1)t is also in S. We will see that S is the set of all of these linear
combinations.

�

THE SPAN

Definition 2.5.2. Let V be a vector space and let S be a nonempty subset of V. By the
span of S we mean the set of all linear combinations of elements of S; we denote the span
of S by span(S). If S = {X1, . . . , Xn} is finite, we will write span{X1, . . . , Xn} for span(S),
and by convention we define span (∅) = {0}.

For a single vector, the span is the set of all scalar multiples of the vector. For two
vectors, the span is the set of all sums of scalar multiples of the two vectors, etc. In R3, let
X1 = (1, 2, 1), X2 = (−1, 0, 2), and X3 = (0, 2, 3). Let us calculate the spans of some of these
vectors.

span{X1} = {rX1|r a scalar} = {r(1, 2, 1)|r a scalar}
span{X2} = {rX2|r a scalar} = {r(−1, 0, 2)|r a scalar}
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span{X1, X2} = {rX1 + sX2|r, s scalars} = {(r − s, 2r, r + 2s)|r, s scalars}.
Notice that since X3 = X1 +X2, X3 ∈ span{X1, X2}, and it follows that

span{X1, X2, X3} = span{X1, X2}.

Notice that span{X1, X2} 6= R3 since (0, 0, 1) /∈ span{X1, X2}.
The span of a collection of vectors may be difficult to determine. One can think of the

span of a set of vectors geometrically. The scalar multiples of a single nonzero vector in, say,
R3 form a straight line in space.

O

X

Figure 2.11: A line in space

Another vector along the same line adds nothing more to the span. The span of two
nonzero, non-collinear vectors contains the plane determined by the two vectors. So, in
Figure 2.12, the vectors X and Y generate all of the vectors lying in the plane.

O X

Y

 

Figure 2.12: A plane spanned by X and Y

We can see that the span of a set of vectors is always defined, even though it may be
difficult to determine. What are the properties of the span, how does it behave? In Example
2.4.1 (c), we saw that the span of a set of vectors is always a subspace of the vector space
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from which the set is taken. This result, along with other properties of spans and linear
combinations are listed in the following:

Theorem 2.5.1. Let V be a vector space.

(a) If S ⊆ V, then span(S) is a subspace of V and S ⊆ span(S).
(The span of a set is a subspace containing the set.)

(b) If S ⊆ S ′ ⊆ V, then span(S) ⊆ span(S ′).
(The span of a bigger set is bigger.)

(c) X ∈ span(S) if and only if span(S ∪ {X}) = span(S).
(A vector is in the span of a set iff it doesn’t increase the span.)

(d) If W is a subspace of V, and S ⊆ W, then span(S) ⊆ W.
(The span of a subset of a subspace lies in the subspace.)

Proof. (a) If S = ∅, then span(S) = {0} and this set is a subspace of V. Assume S 6= ∅,
and say X ∈ S. Then 0 = 0X ∈ span(S) and so span(S) 6= ∅. If X, Y ∈ span(S), then

X = a1X1 + . . .+ anXn and Y = b1Y1 + . . .+ bmYm

for some vectors X1, . . . , Xn, Y1, . . . , Ym ∈ S and some scalars a1, . . . , an, b1, . . . , bm.
Now

X + Y = a1X1 + . . .+ anXn + b1Y1 + . . .+ bmYm ∈ span(S);

that is, a sum of linear combinations of elements of S is a linear combination of elements
of S. Also, if r is some scalar, rX = (ra1)X1 + . . . + (ran)Xn ∈ span(S). It follows
that span(S) is a subspace of V.

Part (b) is straightforward and Parts (c) and (d) are left as exercises.

The rows of a matrix form a set of vectors. One wonders whether the span of these
vectors provides some interesting characterization of the matrix.

THE ROW SPACE

Definition 2.5.3. Let A = [aij] be an m× n matrix. By row i of A, we mean the n-tuple
(or 1 × n matrix) (ai1, ai2, . . . , ain). We will denote row i of A by Ai. The span of the rows
of A is the row space of A and is denoted by R (A) = span{A1, A2, . . . , Am}.

Let A be the 3× 3 matrix

A =







1 −1 0
2 1 2
0 2 1





 .

Then with the above notation, A1 = (1,−1, 0), A2 = (2, 1, 2), and A3 = (0, 2, 1). The
row space of A is R (A) = span{A1, A2, A3} and it can be shown that R (A) = R3 for this
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particular A. Notice also that according to our alternative perspective on matrix multiplica-
tion,

R (A) =
¶î

x1 x2 · · · xm

ó

A : x1, x2, . . . , xm ∈ R
©

.

Theorem 2.5.2. Let A and B be m×n matrices and assume that A is row equivalent
to B. Then R (A) = R (B). (Equivalent matrices have the same row space.)

Proof. Recall that if A is row equivalent to B, then B may be obtained from A by a finite
sequence of elementary row operations. So, to prove R (A) = R (B) it is sufficient to prove
that the row space of A does not change when a single elementary row operation is performed
on it. Recall that there are three types of row operations and three types of elementary row
matrices corresponding to these operations: Ri(a), Rij , and Rij(a). We take three cases
(recall that Ai denotes the row i of A).

R(A) = R(RikA) : This part is straightforward: any linear combination of
A1, . . . , Ai, . . . , Ak, . . . , Am is also a linear combination of A1, . . . , Ak, . . . , Ai, . . . , Am.

R (A) = R (Ri(a)A): Here we assume a 6= 0, so a−1 exists. If X ∈ R (A), then

X = a1A1 + . . .+ aiAi + . . .+ amAm

= a1A1 + . . .+ aia
−1(aAi) + . . .+ amAm

and so X ∈ R (Ri(a)A). So we see that, R (A) ⊆ R (Ri(a)A). Also, Y ∈ R (Ri(a)A)
implies

Y = b1A1 + . . .+ bi(aAi) + . . .+ bmAm

= b1A1 + . . .+ (bia)Ai + . . .+ bmAm ∈ R (A).

It follows that R (A) = R (Ri(a)A).
R (A) = R (Rik(a)A): Let us assume that i < k. As above, let

X = a1A1 + . . .+ amAm ∈ R (A).

Then
X = a1A1 + . . .+ (ai − aak)Ai + . . .+ ak(Ak + aAi) + . . .+ amAm

and so X ∈ R (Rik(a)A).
The proof that R (Rik(a)A) ⊆ R (A) is left as an exercise.

We have considered the rows of a matrix, what about the columns? If A = [aij ] is an
m× n matrix, column j of A is the m× 1 column vector













a1j
a2j
...

amj













.
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If we let A1, . . . , An denote the columns of A, then span{A1, . . . , An} is the column space
of A and it is denoted by C (A). Of course, C (A) is a subspace of the vector space of all
m-dimensional column vectors. One naturally wonders whether there is some relationship
between the row space of a matrix and its column space.

One final note:

C (A) =























A













x1

x2
...
xn













: x1, x2, . . . , xn ∈ R























is the set of all linear combinations of the columns of A by our alternative perspective on
matrix multiplication.

Section 2.5 Exercises

1. Show that R2 = span{(1,−1), (2, 2)}.
2. Find a vector X ∈ R3 with X /∈ span{(1,−1, 2), (2, 2, 1)}.
3. Determine whether (1,−2, 1) ∈ span{(1, 3, 1), (1, 0,−1)}. Give reasons.

4. Show that span{(2,−4), (−1, 2)} = span{(1,−2)}.
5. Determine whether (5, 1, 6) ∈ span{(1, 2, 3), (−1, 1, 0)}. Give reasons.

6. Let A =

ñ

1 −1
2 0

ô

. Show that R (A) = R2.

7. Let A be an m × n matrix and let B be the reduced echelon form of A. What is the
relationship between R (A) and R (B)?

8. Prove parts (c) and (d) of Theorem 2.5.1.

9. Complete the proof of Theorem 2.5.2.

10. Explain what the following statement should mean and then prove it:

IfV is a vector space and S ⊆ V, then span(S) is the smallest subspace ofV containing
S.

11. Show that R2 6= span{X} for any vector X ∈ R2.

12. Show that R3 6= span{X, Y } for any vectors X, Y ∈ R3.

13. Let A be an m × n matrix. How may one determine the least number k such that
R (A) = span{X1, X2, . . . , Xk} for some vectors X1, X2, . . . , Xk.

14. Let A and B be 2 × 2 matrices in reduced echelon form. Assume R (A) = R (B).
Prove that A = B.

15. Let A and B be m × n matrices in reduced echelon form. Assume R (A) = R (B).
Prove that A = B.
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2.6 Linear Independence

Given a set of vectors, there is a certain set spanned by these vectors. In some cases a smaller
set will span the same set, in other cases, no smaller set has the same span. When the latter
case occurs, the vectors are said to be “linearly independent.”

Let us consider the reduction of an m×n matrix A to its reduced echelon form B. As in
Theorem 1.5.1, this can be accomplished by a finite sequence of elementary row operations,
and as a consequence, it is not hard to see that every row of B is a linear combination of the
rows of A. We will see that if a row of zeros appears in B then the rows of A must have been
“linearly dependent.” If no row of zeros appears, the rows of A must have been “linearly
independent.”

Example 2.6.1. If

A =







1 2 0
2 4 1
3 6 1





 ,

then B, the reduced echelon form, is given by

B =







1 2 0
0 0 1
0 0 0







and B is obtained by the following sequence of row operations: R12(−2)R13(−3)R23(−1).
The rows of B and A are related by B1 = A1, B2 = A2 + (−2)A1, and

B3 = 0 = A3 + (−3)A1 + (−1)B2 = A3 + (−3)A1 + (−1)[A2 + (−2)A1] = A3 − A1 −A2.

�

From the above example, it is seen that if B, the reduced echelon form of A, has a row
of zeros, then it must be the case that a linear combination of some of the rows of A was
equal to one of the other rows of A, say Am = a1A1 + . . . + am−1Am−1, so that, when the
linear combination was subtracted, the zero vector was obtained:

−a1A1 − a2A2 − . . .− am−1Am−1 + Am = 0.

The zero vector was obtained as a linear combination of vectors and at least one of the
coefficients in the linear combination was nonzero. This last observation must be made if
the statement is to have any significant meaning, since the zero vector is clearly a linear
combination of any collection of vectors-take all of the coefficients to be the zero scalar. This
condition is known as “linear dependence.”

LINEAR DEPENDENCE

Definition 2.6.1. Let V be a vector space and let X1, . . . , Xn ∈ V. The n vectors
X1, . . . , Xn are linearly dependent if and only if there are scalars a1, . . . , an, not all of
which are zero, such that a1X1 + . . . + anXn = 0. We also say that the set of vectors
{X1, . . . , Xn} is linearly dependent.
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Consider the following vectors in R3: X1 = (1, 2,−1), X2 = (0, 1, 1), and X3 = (2, 6, 0).
These vectors are linearly dependent. To see this, we must find a nonzero solution of aX1 +
bX2 + cX3 = 0, or a(1, 2,−1) + b(0, 1, 1) + c(2, 6, 0) = 0. Evaluating the left-hand side of
this equation we get (a+ 2c, 2a+ b+ 6c,−a + b) = (0, 0, 0), and so we must find a nonzero
solution of the homogeneous system of equations:

a + 2c = 0
2a + b + 6c = 0
−a + b = 0.

We can solve this system using the methods of Section 1.6, or we can solve it by “inspec-
tion.” Note from the last equation that a = b. Let a = b = 1. From the first equation, we
see then that c = 1/2, and we check that these values satisfy the second equation. Thus,
X1 + X2 + (−1/2)X3 = (1, 2,−1) + (0, 1, 1) + (−1,−3, 0) = (0, 0, 0). Notice that because
of this relationship, we can “solve” for one of these vectors as a linear combination of the
others, for example, X3 = 2X1 + 2X2. This happens in general:

Theorem 2.6.1. Let X1, . . . , Xn be elements in the vector space V, n >
1. X1, . . . , Xn are linearly dependent if and only if one of the vec-
tors may be expressed as a linear combination of the remaining vectors.
(In a set of dependent vectors, one vector is contained in the span of the others.)

Proof. (⇒) Assume X1, . . . , Xn are linearly dependent with a1X1 + . . . + anXn = 0 and
some ai 6= 0. For convenience assume a1 6= 0. Then we see that X1 = (−a2/a1)X2 +
. . .+ (−an/a1)Xn.

(⇐) Now assume that some vector in the list is a linear combination of the others. For
convenience we may assume that X1 is a linear combination of the vectors X2, . . . , Xn;
say X1 = a2X2 + . . .+ anXn. But then we see that 1X1 − a2X2 − . . .− anXn = 0, and
so X1, . . . , Xn are linearly dependent.

If three vectors X, Y, and Z in R3 are linearly dependent, then the above theorem tells
us what must happen. One of the vectors, say X , must lie in the span of the other two, Y
and Z. The vectors Y and Z are either collinear or they determine a plane, and so X lies
along the line given by X and Y or X lies in the plane of the two vectors.

Theorem 2.6.2. Let A and B be m×n matrices and assume that A is row equivalent
to B. Then the rows of A are linearly dependent if and only if the rows of B are
linearly dependent. Thus, if the reduced echelon form B of A has a row of zeros, then
the rows of A are linearly dependent. (If a matrix has dependent rows, so does any equivalent matrix.)

Proof. Assume that A is row equivalent to B. Recall that this means that B may be
obtained from A by a sequence of elementary row operations. Also recall that elementary
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Figure 2.13: The span of X and Y in space

row operations are reversible so that the matrix A may be obtained from B by a sequence of
elementary row operations. Because of these facts, it is sufficient to consider the effect of a
single elementary row operation performed on the matrix A. We assume that the rows of A
are linearly dependent and we consider B to be the result of a single elementary operation.

Since the rows of A are dependent, there is a linear combination equal to 0 with a
nonzero coefficient; say 0 = a1A1 + . . .+ amAm, with some ai nonzero. Assume that i < k,
and consider the following:

B = RikA :
0 = a1A1 + . . . + aiAi + . . . + akAk + . . . + amAm

0 = a1A1 + . . . + akAk + . . . + aiAi + . . . + amAm

0 = a1B1 + . . . + akBi + . . . + aiBk + . . . + amBm

B = Ri(c)A :
0 = a1A1 + . . . + aiAi + . . . + amAm

0 = a1A1 + . . . + (ai/c)cAi + . . . + amAm

0 = a1B1 + . . . + (ai/c)Bi + . . . + amBm

B = Rik(c)A :
0 = a1A1 + . . . + aiAi + . . . + akAk + . . . + amAm

0 = a1A1 + . . . + (ai − cak)Ai + . . . + ak(Ak + cAi) + . . . + amAm

0 = a1B1 + . . . + (ai − cak)Bi + . . . + akBk + . . . + amBm

It is not hard to see (but it does need to be checked) that the assumption that there
is a nonzero coefficient in the linear combination of the rows of A implies that a nonzero
coefficient will appear in the linear combination of the rows of the matrix B.

Some sets of vectors are clearly linearly dependent. The zero vector by itself forms a
linearly dependent set (1 · 0 = 0), and similarly, any set of vectors that contains the zero
vector must be linearly dependent. It follows that if a matrix contains a row of 0’s, then
the rows of that matrix must be linearly dependent. These remarks give us an easy way to
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determine whether a set of vectors are dependent: form a matrix with the rows and reduce
the matrix to reduced echelon form. If the echelon form has a row of 0’s then the rows of
the echelon form, and so also the original vectors, must be dependent.

Some sets of vectors are not linearly dependent. For example, if X is a single nonzero
vector and we assume that a linear combination aX of X is zero, then, using Theorem 2.3.1,
we see that a = 0 since X 6= 0. We will see that the nonzero rows of a matrix in reduced
echelon form are not linearly dependent.

For a better example, consider (1, 0), (0, 1) ∈ R2. If a(1, 0) + b(0, 1) = (0, 0), then
(a, b) = (0, 0) so that a = b = 0. We see that the zero vector may not be expressed as a
linear combination of (1, 0) and (0, 1) unless both coefficients are zero. It follows that the
single nonzero vector X is not linearly dependent and the two vectors (1, 0) and (0, 1) in R2

are not linearly dependent - they are “linearly independent.”

LINEAR INDEPENDENCE

Definition 2.6.2. Let V be a vector space and let X1, . . . , Xn ∈ V. The vectors X1, . . . , Xn

are linearly independent if and only if X1, . . . , Xn are not linearly dependent.

Following the terminology used above we also say that the set of vectors {X1, . . . , Xn} is
linearly independent. This opens the question of whether the empty set should be regarded
as linearly independent or linearly dependent. If ∅ is linearly dependent then there exist
vectors X1, . . . , Xn in ∅ with the appropriate nonzero linear combination. But no vectors
exist in ∅, so ∅ is not linearly dependent and so it must be linearly independent.

What does it mean for a collection of vectors to be linearly independent? Using Theorem
2.6.1, we see that in order for a collection of vectors to be independent, no one of the vectors
may lie in the span of the others. Figure 2.14 shows the situation in R3 when three vectors
X, Y , and Z are linearly independent. X cannot lie in the span of Y and so these vectors
cannot be collinear. The vector Z cannot lie in the span of X and Y and so it lies outside
the plane of X and Y .

O

XYZ

 

Figure 2.14: Z is not in the span of X and Y

The definition of linear independence can cause confusion. The problem arises in trying to
prove that a collection of vectors is not linearly dependent. For example, consider the vectors
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E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), . . . , En = (0, . . . , 0, 1) in Rn. We will establish that
these vectors are linearly independent. We argue as follows: Assume that a1, . . . , an are some
scalars and a1E1+. . .+anEn = (0, . . . , 0). Then, collecting terms, we get a1E1+. . .+anEn =
(a1, a2, . . . , an) = (0, 0, . . . , 0). Hence, a1 = 0, a2 = 0, . . . , an = 0. We can now conclude that
the vectors E1, . . . , En are not linearly dependent (that is, they are linearly independent),
for if they were, there would be a linear combination that was equal to zero, but that had a
nonzero coefficient. The above argument shows this to be impossible.

Theorem 2.6.3. Let V be a vector space and let X1, . . . , Xn ∈ V. Then X1, . . . , Xn

are linearly independent if and only if the following condition holds:

(*) a1X1 + . . .+ anXn = 0 for some scalars a1, . . . , an implies a1 = . . . = an = 0.

(Linear independence means that if a combination is 0, all of the coefficients must be 0.)

Proof. Notice that the statement of the theorem involves an equivalence - if and only if.
We must prove two implications: linear independence implies (*) and (*) implies linear
independence. The symbol =⇒ is used for implication. The two parts of the proof are
indicated by ( =⇒ ) and ( ⇐= ).

( =⇒ ) Assume X1, . . . , Xn are linearly independent and a1X1 + . . . + anXn = 0. Then
a1 = a2 = . . . = an = 0, for otherwise X1, . . . , Xn would be linearly dependent and we would
have a contradiction.

( ⇐= ) Assume that the condition (*) holds. If the vectors X1, . . . , Xn were linearly
dependent, there would be a linear combination a1X1+ . . .+anXn = 0 with some coefficient
nonzero. The condition (*) makes this impossible. It follows that X1, . . . , Xn are not linearly
dependent and so X1, . . . , Xn are linearly independent.

Example 2.6.2. The vectors (1, 1) and (1,−1) in R2 are linearly independent, for a(1, 1) +
b(1,−1) = (0, 0) implies (a+ b, a− b) = (0, 0) so that a+ b = 0 and a− b = 0. Adding these
equations, we see that 2a = 0, so a = 0 and a + b = b = 0. We have shown that (1, 1) and
(1,−1) are linearly independent.

�

Example 2.6.3. Consider (1, 0, 0), (1, 1, 0), (1, 1, 1) ∈ R3. These vectors are linearly indepen-
dent, for a(1, 0, 0) + b(1, 1, 0) + c(1, 1, 1) = (0, 0, 0) implies that a+ b+ c = 0, b+ c = 0, and
c = 0. Now c = 0 and b+ c = 0 imply b = 0, and then a+ b+ c = 0 together with b = c = 0
imply a = 0. It follows that a = b = c = 0 and that the vectors are linearly independent.

�

From Section 2.5, we know that a matrix and its reduced echelon form have the same
row space. What can be said concerning the reduced echelon form and linear independence?
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INDEPENDENCE AND THE REDUCED ECHELON FORM

The next result tells us that the nonzero rows in a matrix in echelon form are linearly
independent. We will see in the next section that the number of these rows is the same as
the maximum number of linearly independent rows in the original matrix.

Theorem 2.6.4. Let B = [bij ] be an m × n matrix in echelon form
and let r, j1, j2, . . . , jr be the constants as in the definition of echelon
form. Then the nonzero rows B1, . . . , Br of B are linearly independent.
(The nonzero rows in a matrix in echelon form are independent.)

Proof. Recall that r is the number of nonzero rows and ji is the column in which the first
nonzero entry in row i occurs. Assume a1B1 + . . . + arBr = 0. Then in column j1 of this
linear combination (remember that the linear combination is just a 1 × n row vector), we
find a1 since in column j1 of B there is only one nonzero entry and it is a 1 in row 1. It
follows that a1 = 0. Now we have a2B2 + . . .+ arBr = 0, and similar reasoning shows that
a2 = 0. Continuing, we see that a1 = . . . = ar = 0 and so we have shown that B1, . . . , Br

are linearly independent.

The following result is very important and will be the basis for the work in the next
section. This theorem will help us to see that the number of vectors in a linearly independent
spanning set is an invariant quantity.

Theorem 2.6.5. Let V be a vector space with X1, . . . , Xn ∈ V and assume

V = span{X1, . . . , Xn}.

If Y1, . . . , Yn+1 ∈ V, then Y1, . . . , Yn+1 are linearly dependent.
(In a vector space spanned by n vectors, any n+ 1 vectors are dependent.)

Proof. Since the vectors X1, . . . , Xn span V, each of the vectors Y1, . . . , Yn+1 may be ex-
pressed as a linear combination of the vectors X1, . . . , Xn, say

Y1 = a11X1 + . . . + a1nXn

Y2 = a21X1 + . . . + a2nXn
...

...
...

Yn+1 = an+1,1X1 + . . . + an+1,nXn.

(2.6.1)

Form a matrix from the coefficients and call it A. Then

A =













a11 . . . a1n
a21 . . . a2n
...

. . .
...

an+1,n . . . an+1,n













. (2.6.2)
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Notice that A is (n + 1) × n. Now reduce the matrix A to its reduced echelon form B
(possible by Theorem 1.5.1). Let r, j1, . . . , jr be the constants associated with B. Recall that
r is the number of nonzero rows, ji is the column containing the first nonzero entry in row i
and j1 < j2 < . . . < jr. Now A, and so B, has n columns and since 1 < j1 < j2 < . . . < jr ≤
n, it must be the case that r ≤ n. But B has n+1 rows and so (since r < n+1) at least one
row of B must be zero. Since B has a row of zeros, its rows are linearly dependent and so
by Theorem 2.6.2, the rows of A are linearly dependent. Thus we have a linear combination
of the form

b1A1 + . . .+ bn+1An+1 = 0

with some bi 6= 0. Note that the components in this linear combination are

b1a11 + b2a21 + . . .+ bnan1 in the first coordinate,

b1a12 + b2a22 + . . .+ bnan2 in the second, etc.

These expressions are all equal to 0 and they are the coefficients of X1, . . . , Xn in the
expansion of the linear combination b1Y1 + . . . + bn+1Yn+1. Thus, b1Y1 + . . . + bn+1Yn+1 = 0
with one of the coefficients not equal to 0. In other words, since b1A1 + . . .+ bn+1An+1 = 0,
we see that b1Y1 + . . .+ bn+1Yn+1 = 0.

It follows that Y1, . . . , Yn+1 are linearly dependent.

Corollary 2.6.6. If V is a vector space, V = span{X1, . . . , Xn}, and Y1, . . . , Ym are linearly
independent in V, then m ≤ n. (Independent sets must contain no more vectors than spanning sets.)

Proof. If m > n, then m ≥ (n + 1). By assumption, Y1, . . . , Ym are linearly independent,
and so Y1, . . . , Yn+1 are linearly independent, since a subset of a linearly independent set is
linearly independent by Exercise 10. This is impossible by Theorem 2.6.5 and so m ≤ n.

The following result is useful in extending linearly independent sets of vectors.

Theorem 2.6.7. Let V be a vector space and let X1, . . . , Xn be linearly independent
vectors in V. Then X1, . . . , Xn, Xn+1 are linearly independent for some Xn+1 ∈ V if
and only if Xn+1 /∈ span{X1, . . . , Xn}. (Choosing vectors outside the span expands an

independent set.)

Proof. We will prove the first part and leave the remainder as an exercise. Assume

X1, . . . , Xn, Xn+1

are linearly independent, but that Xn+1 ∈ span{X1, . . . , Xn}. Then Xn+1 = a1X1 + . . . +
anXn and so a1X1 + . . . + anXn + (−1)Xn+1 = 0. This linear combination being zero
with the coefficient of Xn+1 nonzero implies that X1, . . . , Xn, Xn+1 are linearly dependent, a
contradiction. It follows that Xn+1 /∈ span{X1, . . . , Xn}.
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This theorem has an extremely useful application that relates independence and spanning.
It is contained in the following corollary, the proof of which is left as Exercise 17.

Corollary 2.6.8. Let V be a vector space with V = span{X1, . . . , Xn}. If Y1, . . . , Yn are
linearly independent in V then V = span{Y1, . . . , Yn}.

We defined the terms linear dependence and linear independence for a finite set X1, . . . ,
Xn of vectors. If V is a vector space and S ⊆ V (the set S may be infinite), we say that S is
linearly dependent if and only if some finite subset of S is linearly dependent. It follows
that S is linearly dependent if and only if there exist vectors X1, . . . , Xn ∈ S and scalars
a1, . . . , an not all of which are zero, with a1X1 + . . . + anXn = 0. The set S is linearly
independent if and only if it is not linearly dependent; that is, S is linearly independent if
and only if every finite subset of S is linearly independent.

Section 2.6 Exercises

1. Show that the vectors (1, 2), (1, 1) and (3, 2) in R2 are linearly dependent by using the
definition. Which theorem also applies?

2. Show that the vectors (1, 0, 0), (1, 1, 0) and (1, 0, 1) in R3 are linearly independent.

3. For the vectors E1, . . . , En in Rn defined in this section, prove that span{E1, . . . , En} =
Rn.

4. Show that the vectors (1, 2,−1, 0), (1, 0,−1, 0), (0, 1, 0, 1) in R4 are linearly indepen-
dent.

5. Determine whether the vectors (1, 1, 2), (2,−1, 1), (0, 3, 3) in R3 are linearly indepen-
dent or linearly dependent.

6. Determine whether the vectors (1, 2,−1, 2), (3, 1, 1, 1), and (−4, 2,−4, 2) in R4 are lin-
early independent or linearly dependent.

7. Let X1, . . . , X4 be four vectors in R3 with the pair of vectors X1, X2 linearly indepen-
dent and the pair X3, X4 also linearly independent. Show that there is a nonzero vector
in span{X1, X2} ∩ span{X3, X4}.

8. Let Z be the zero vector. Prove that {Z} is linearly dependent.

9. Let X1, . . . , Xn be a set of vectors and assume one of them is the zero vector. Prove
that X1, . . . , Xn are linearly dependent.

10. Let V be a vector space and let S ⊆ S ′ ⊆ V . Prove that:

(a) If S ′ is linearly independent, then S is linearly independent.

(b) If S is linearly dependent, then S ′ is linearly dependent.

11. Complete the proof of Theorem 2.6.7.
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12. Let X1, . . . , Xn be vectors in some vector space V. Assume that two of the vectors
in the list are equal. Prove that the vectors are linearly dependent. (To simplify the
proof it is convenient to assume that X1 = X2.) Note that this makes our terminology
referring to an independent set of vectors inconsistent, for {X1, . . . , Xn} is a dependent
set of vectors, but {X2, . . . , Xn} may be linearly independent and the two sets may be
equal.

13. Can one find vectors X1, X2, X3 ∈ R2 with X1 6= 0, X2 /∈ span{X1}, and X3 /∈
span{X1, X2}?

14. Let X1 and X2 be linearly independent vectors in R2 and let X be any other vector in
R2. Show that X ∈ span{X1, X2}.

15. Let X1 and X2 be vectors in R2 with R2 = span{X1, X2}. Show that X1 and X2 are
linearly independent.

16. Let X1, . . . , Xn be n × 1 column vectors, and let P be an n × n nonsingular matrix.
Prove thatX1, . . . , Xn are linearly independent if and only if PX1, . . . , PXn are linearly
independent. (Can a more general theorem be stated?)

17. Prove Corollary 2.6.8.

2.7 Basis and Dimension

We are now in a position to characterize certain vector spaces in two nice ways - the first is
by finding a “basis” and the second is by its “dimension.” Our notion of dimension coincides
with the usual notion of dimension, and the notion of a basis allows us to characterize a
vector space (that is usually infinite) in terms of finitely many of its elements.

Definition 2.7.1. Let V be a vector space and let B ⊆ V. We say that B is a basis for V
if and only if B is a linearly independent set and span(B) = V. We assume as a convention
that ∅ is a basis for the zero vector space. A basis is an independent set that spans.

For example, the vectors (1, 0), (0, 1) in R2 are linearly independent, as we saw in Section
2.6, and the span of the two vectors is R2, since

(a, b) = a(1, 0) + b(0, 1) ∈ span{(1, 0), (0, 1)}.

Thus, the set {(1, 0), (0, 1)} is a basis for R2, or as we will often say, “the vectors (1, 0)
and (0, 1) form a basis for R2.” We also have observed that the vectors (1, 1) and (1,−1) are
linearly independent in R2. It is not hard to show that span{(1, 1), (1,−1)} = R2 and so the
vectors (1, 1) and (1,−1) form a basis for R2. The basis {(1, 0), (0, 1)} seems more natural,
or standard.
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THE STANDARD BASIS

The vectors E1, . . . , En ∈ Rn were defined in Section 2.6 and shown to be linearly indepen-
dent; recall that Ei is the vector with a 1 in the i-th coordinate and 0’s in the other n − 1
coordinates. It is not hard to see that (a1, a2, . . . , an) = a1E1 + a2E2 + . . . + anEn and so
span{E1, . . . , En} = Rn. It follows that {E1, . . . , En} is a basis for Rn. This basis is called
the standard basis for Rn.

Definition 2.7.2. A vector space V is said to be finite dimensional if and only if there
is a finite set X1, . . . , Xn of vectors in V with span{X1, . . . , Xn} = V. If V is not finite
dimensional, we say that V is infinite dimensional.

Of course, by the above remarks Rn is finite dimensional, but not every vector space
is. For example, consider the vector space R[x] of all polynomials over the real numbers
R (see Example 2.3.1, part (d)). If p1(x), . . . , pn(x) are any polynomials in R[x], then we
can prove that span{p1(x), . . . , pn(x)} 6= R[x]. Let m be the largest of the degrees of the
polynomials p1(x), . . . , pn(x), and observe that any linear combination a1p1(x)+. . .+anpn(x),
for scalars a1, . . . , an, has degree less than or equal to m. But R[x] has polynomials of degree
greater than m and so span{p1(x), . . . , pn(x)} 6= R[x]. From this we see that R[x] is infinite
dimensional.

Theorem 2.7.1. Let V be a finite-dimensional vector space and let {X1, . . . , Xn} and
{Y1, . . . , Ym} be bases for V. Then n = m. (Any two bases have the same number of elements.)

Proof. We make use of Theorem 2.6.5 and its Corollary 2.6.6. The Corollary states that if
V is spanned by n vectors, then any linearly independent set of vectors in V has n or fewer
elements.

Now by our assumptions V = span{X1, . . . , Xn} and Y1, . . . , Ym are linearly independent.
It follows from Corollary 2.6.6 that n ≥ m. But also V = span{Y1, . . . , Ym} and X1, . . . , Xn

are linearly independent and so n ≤ m. It follows that n = m.

Definition 2.7.3. Let V be a finite-dimensional vector space. The dimension of V is the
number of distinct vectors in any one basis of V. If V has dimension n, we will write dim
V = n. (The dimension is the number of elements in a basis.)

By the convention adopted in Definition 2.7.1, ∅ is a basis for the zero vector space and
so dim{0} = 0. Since the standard basis for Rn has n vectors, E1, . . . , En, we see that dim
Rn = n. Also by the above discussion, R[x] has infinite dimension.

The study of infinite-dimensional vector spaces involves some aspects of set theory that
the reader has probably not encountered before and that are too complicated for us to present
here. Because of this, much of the discussion that follows applies only to finite-dimensional
vector spaces. Of course, results applicable to either case will be presented in their most
general form.

Theorem 2.7.2. Let V be a finite-dimensional vector space and let U be a subspace of
V. Then U is finite dimensional. (Finite-dimensional spaces have only finite-dimensional subspaces.)
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Proof. Since V is finite dimensional, V = span{X1, . . . , Xn} for some vectors X1, . . . , Xn.
If U = {0}, then ∅ is a basis by definition, and so U = span{∅}. Assume U 6= {0}. Then
U contains a nonzero vector; call it Y1. If span{Y1} = U, we are done, and if not, there
is a vector Y2 ∈ U with Y2 /∈ span{Y1}. Then by Theorem 2.6.7, Y1 and Y2 are linearly
independent and span{Y1, Y2} ⊆ U. Continue this process; that is, assume Y1, . . . , Yk are
linearly independent vectors in U. If span{Y1, . . . , Yk} = U, we’re done; if not, choose
Yk+1 ∈ U, with Yk+1 /∈ span{Y1, . . . , Yk}.

By Corollary 2.6.6, this process must stop, for since V is spanned by n vectors, any lin-
early independent subset must have n or fewer vectors. It follows that U = span{Y1, . . . , Ym}
for some integer m and so U is finite dimensional.

Corollary 2.7.3. Every subspace of a finite-dimensional vector space has a basis.

Proof. By the proof of Theorem 2.7.2, the subspace of U of the finite-dimensional vector
space V is spanned by vectors Y1, . . . , Ym for some integer m. By construction, Y1, . . . , Ym

are linearly independent, and so these vectors form a basis for U.

Since every vector space is a subspace of itself, the preceding corollary immediately gives
the following:

Corollary 2.7.4. Every finite-dimensional vector space has a basis.

The term “dimension” was defined for finite-dimensional vector spaces with reference to
a basis for the space, but prior to Corollary 2.7.4, the existence of a basis for any given
finite-dimensional vector space had not been established. Now we know that every finite-
dimensional vector space has a basis and so its dimension is defined.

Corollary 2.7.5. Let V be a finite-dimensional vector space and let U be a subspace of V.
Then dimU ≤ dimV. (Subspaces have the same dimension or smaller dimension.)

Proof. By the previous corollaries, both U and V have bases, and so dim U and dim V are
both defined. If {X1, . . . , Xm} is a basis for U and {Y1, . . . , Yn} is a basis for V, then the
vectors X1, . . . , Xn are independent in V and so m ≤ n (by Corollary 2.6.6). It follows that
dim U ≤ dimV.

Theorem 2.7.2 and its corollaries tell us that there is a limit on the size of independent
sets in a finite-dimensional vector space. Suppose that we have a basis for a subspace of a
finite-dimensional vector space. Is this basis contained in some basis for the whole space?
The following theorem says “yes” and the proof of the theorem tells us how to find the basis.

EXTENSION OF A BASIS

Theorem 2.7.6. Let V be a finite-dimensional vector space and let U be a subspace
of V with {X1, . . . , Xk} a basis for U. Then there exist vectors Xk+1, . . . , Xn ∈ V
such that {X1, . . . , Xk, Xk+1, . . . , Xn} is a basis for V.
(A basis for a subspace can be extended to a basis for the whole space.)
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Proof. The method here is much like Theorem 2.7.2 If U = V, we’re done and X1, . . . , Xk

form a basis for V. If U 6= V, choose Xk+1 ∈ V, Xk+1 /∈ U. Then X1, . . . , Xk, Xk+1

are linearly independent. If we continue this process, eventually we see that for some n,
span{X1, . . . , Xk, . . . , Xn} = V and a basis has been found.

To illustrate the method of the theorem above, let us consider the subspace

U = span{(1, 1,−1, 0), (2, 1, 1, 1)}

of R4. The two vectors X1 = (1, 1,−1, 0) and X2 = (2, 1, 1, 1) form a basis for U. We wish to
“extend” this basis {X1, X2} to a basis for R4. Choose X3 satisfying X3 ∈ R4, but X3 /∈ U.
To do this, observe that

U = {a(1, 1,−1, 0) + b(2, 1, 1, 1)|a, b scalars}.
We can see that (0, 0, 0, 1) /∈ U for a(1, 1,−1, 0) + b(2, 1, 1, 1) = (0, 0, 0, 1) implies (a +

2b, a + b,−a + b, b) = (0, 0, 0, 1). From this, we see that b = 1,−a + b = 0 and a + b = 0.
This implies b = a = −a = 1, and so no such a and b can exist. So (0, 0, 0, 1) /∈ U . Now let
X3 = (0, 0, 0, 1) and observe that X1, X2, and X3 are linearly independent. We know that
span{X1, X2, X3} 6= R4 and so we can choose X4 /∈ span{X1, X2, X3}.

To do this, we will reason as follows: One of the standard basis vectors must lie outside
span{X1, X2, X3}, for otherwise span{X1, X2, X3} = R4 and this would prove dim R4 = 3, a
contradiction. Now an arbitrary element of span{X1, X2, X3} is of the form a(1, 1,−1, 0) +
b(2, 1, 1, 1)+c(0, 0, 0, 1). This could not equal (1, 0, 0, 0), for this equality would imply a+b =
0,−a+ b = 0 so that a = b = 0, a contradiction. Hence X4 = (1, 0, 0, 0) /∈ span{X1, X2, X3}
and so X1, X2, X3, and X4 are linearly independent. Now span{X1, X2, X3, X4} = R4, for
otherwise we could find a vector X5 ∈ R4, X5 /∈ span{X1, X2, X3, X4}. This would imply
that X1, . . . , X5 are linearly independent vectors in R4, but this is impossible. It follows that
{X1, X2, X3, X4} is a basis for R4 and it contains the two original vectors X1 and X2.

Section 2.7 Exercises

1. Show that the vectors (1, 0, 0), (1, 1, 0), and (1, 1, 1) form a basis for R3.

2. Find a basis for R3 that contains the vector (1,−1, 2).

3. Show that the vectors (1, 0, 1), (1, 1, 0), and (2, 1, 1) do not form a basis for R3.

4. Find a basis for R2 that contains the vector (1, 3).

5. Let X and Y be vectors in R2 with Y 6= 0 and X 6= kY for any scalar k. Show that
{X, Y } is a basis for R2.

6. Prove: If V is a vector space with dim V = n and X1, . . . , Xn are n distinct, linearly
independent vectors in V, then X1, . . . , Xn forms a basis for V.
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7. Let X be a nonzero vector in Rn, say X = (a1, . . . , an) with ak 6= 0. Show that
E1, . . . , Ek−1, X, Ek + 1, . . . , En are linearly independent in Rn and so form a basis for
Rn. (Recall that the Ei’s are the standard basis vectors.)

8. Let W = {(x, y, z)|x = −y}. Then W is a subspace of R3. Find a basis for W. What
is the dimension of W?

9. Find a basis for the subspace U = {(x, y, z, t)|x = y, z = 2t} of R4 and extend it to a
basis for R4. What is the dimension of U?

10. Prove: If V is a vector space and dim V = n and V = span{X1, . . . , Xn}, then X

1, . . . , Xn are linearly independent and so form a basis for V.

11. Let V be a finite-dimensional vector space and let U be a subspace of V with V 6= U.
Prove that there exists a basis X1, . . . , Xn of V such that Xi /∈ U for all i = 1, 2, . . . , n.

12. Find a basis for R[x].

13. Show that sin x and cosx are linearly independent vectors in C[0, 2π] so that dim
span{sin x, cosx} = 2.

14. Let U be a subspace of the space of n-dimensional column vectors and let P be a
nonsingular n × n matrix. Let V = {PX|X ∈ U}. Show that dim U = dimV. (See
Exercises 2.4.16 and 2.6.16.)

15. Prove: Let V be a vector space and let X1, . . . , Xn ∈ V . Then X1, . . . , Xn forms a
basis for V if and only if every vector X ∈ V can be expressed as a linear combination
of X1, . . . , Xn in one and only one way.

16. Let V = span{Y1, . . . , Ym} be a subspace of Rn. Let A be the m× n matrix with the
i-th row vector Ai of A being Yi; that is, Ai = Yi. Let B be the reduced echelon form
of A. Prove that the nonzero row vectors of B (B1, . . . , Br) form a basis for V.

17. Let B be a matrix in reduced echelon form with r being the number of nonzero rows.
LetC (B) be the column space of B (see Section 2.5). Prove thatC (B) has dimension
r.

2.8 The Rank of a Matrix and Consistency in Systems

of Equations

We can use the notion of dimension to give a clear condition on the coefficient and augmented
matrices that will guarantee that a system of linear equations is consistent. This result will
be of theoretical interest, though not of importance computationally. We will first need to
make some general observations about matrices.

Let A = [aij ] be an m × n matrix. As before, we denote row i of A by Ai; that is,
Ai = (ai1, ai2, . . . , ain) for i = 1, . . . , m. In Section 2.5, the row space of A was defined as the
span of the rows of A and was denoted R (A). So we have R (A) = span{A1, A2, . . . , Am}.
The dimension of R (A) is a useful quantity and we give it a name.
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Definition 2.8.1. The rank of a matrix A is the dimension of R (A), the row space of A,
and is denoted by rank(A). (rank(A) = dim R (A))

The definition is straightforward. For example, consider the matrices

A =

ñ

1 0
1 1

ô

and B =

ñ

1 1
1 1

ô

.

The matrix A has rank two (rank(A) = 2), while B has rank 1 (rank(B) = 1).
By Theorem 2.5.2, row-equivalent matrices have the same row space; that is, A row

equivalent to B implies R (A) = R (B). We see that dim R (A) = dimR (B) and so the
following result is established:

Theorem 2.8.1. If A and B are row-equivalent matrices, then A and B have the
same rank, that is, rank(A) = rank(B). (Equivalent matrices have the same rank.)

Now let B be an m × n matrix in reduced echelon form and assume B1, . . . , Br are the
nonzero rows and that the otherm−r rows are all zeros. ThenR (B) = span{B1, . . . , Bm} =
span{B1, . . . , Br} since the rows of zeros add nothing to the span. By Theorem 2.6.3, the
nonzero rows B1, . . . , Br are linearly independent since B is in reduced echelon form. We see
that the vectors B1, . . . , Br form a basis for R (B). Thus, R (B) has dimension r and so B
has rank r; that is, rank(B) = r. By the above theorem, row-equivalent matrices have the
same rank, and we know that every matrix is row-equivalent to a matrix that is in reduced
echelon form. By the comments above we have proved:

Theorem 2.8.2. Let A be an m × n matrix and let B be the reduced ech-
elon form of A. The rank of A is the number of nonzero rows in B.
(The rank is the number r in the reduced echelon form.)

Example 2.8.1. Consider the matrix A =







1 −1 2
0 1 −1
2 1 1





. The row space of A is the space

spanned by the three rows A1, A2, and A3; that is, R (A) = span{A1, A2, A3}. The row
vectors A1, A2, and A3 are not linearly independent since A3 = 2A1 + 3A2, and it follows
that R (A) = span{A1, A2}. Now A1 and A2 are linearly independent and so dim R (A) =
2 = rank(A). Thus, A has rank 2.

�

CONSISTENCY

The notion of rank provides a convenient means for characterizing consistency in systems of
linear equations. Recall that a system of linear equations can be expressed more compactly
in the form of a matrix equation, AX = H , where, for some integers m and n, A is an m×n
matrix, X is n× 1, and H is m× 1. The system AX = H is said to be consistent provided
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that there exists at least one n× 1 column vector X0, with AX0 = H . That is, the solution
set is nonempty. Not all systems are consistent. For example, the system of linear equations
x+y = 1, x+y = 2 has no simultaneous solution. The augmented matrix of this inconsistent
system is

ñ

1 1 1
1 1 2

ô

,

and reducing the matrix to its reduced echelon form we get

ñ

1 1 0
0 0 1

ô

.

This is the augmented matrix of the system of equations x + y = 0, 0x + 0y = 1. Clearly,
there is no solution. The coefficient matrix is

ñ

1 1
1 1

ô

and it has

ñ

1 1
0 0

ô

as its reduced echelon form, and so has rank one. The augmented matrix of the system has
rank two. The following theorem states that if the ranks of the coefficient and augmented
matrices are equal, then the system is consistent.

Theorem 2.8.3. Consider a system of equations AX = H, where A is
an m × n matrix and X and H are n × 1 and m × 1 column vec-
tors, respectively. The system AX = H is consistent if and only if the
coefficient matrix A and the augmented matrix [A|H ] have the same rank.
(A system is consistent if and only if the coefficient and augmented matrices have the same rank.)

Proof. Let [B|K] be the reduced echelon form of the augmented matrix [A|H ]. Then BX =
K is equivalent to AX = H by Theorems 1.4.2 and 1.5.1, and so AX = H is consistent if
and only if BX = K is consistent. By the comments above, A and B have the same rank
and [A|H ] and [B|K] have the same rank. From this we see that it is sufficient to prove:
BX = K is consistent if and only if B and [B|K] have the same ranks.

(⇒) If BX = K is consistent and the rank of B is r, then [B|K] has rank at least r. If
[B|K] has rank r+1, then the (r+1)-th row of [B|K] is (0, . . . , 0, 1). The equation in
the system BX = K corresponding to this row is 0x1 + . . .+ 0xn = 1. This equation
has no solution, but the system is assumed to be consistent and so the rank of [B|K]
must be r.
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(⇐) Now assume that B and [B|K] have the same rank, say r. Let j1, . . . , jr be the columns
of the first nonzero entries in the first r rows - as in the definition of reduced echelon
form. Let B = [bij ] and

K =













k1
k2
...
km













.

Define a solution by

xj1 = k1, xj2 = k2, . . . , xjr = kr

and xj = 0 for j 6= j1, . . . , jr. It is not hard to see that this defines a solution and so BX = K
is consistent.

The above theorem, while it seems impressive, is of little use in solving systems of equa-
tions. Given a system of equations AX = H , we determine the ranks of A and [A|H ] by
reducing to reduced echelon form. Once the reduced echelon form of [A|H ] is in hand, the
solution of the system is not hard to obtain. So establishing the existence of a solution of
the system involves nearly the same effort as finding the solution. We will see in the coming
chapters that the notion of rank is helpful in a variety of practical situations.

Section 2.8 Exercises

1. Find the rank of A =







2 0 4
2 1 3
−1 0 −2





.

2. Find the rank of B =







1 2 0 −1
1 3 1 0
2 4 0 −2





.

3. Find the rank of C =







1 −2
1 3
−2 4





.

In problems 4 - 6, determine whether the system of equations is consistent or inconsis-
tent: (If it is consistent, find the general solution.)

4. x1 − 2x2 + x3 − x4 = −1
3x1 − 2x3 + 3x4 = −4
5x1 − 4x2 + x4 = −3

5. 2x1 + 3x4 = −1
x1 + x2 − x3 − 2x4 = 1
3x1 − x2 + x3 + 4x4 = −4
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6. 2x1 + 2x2 + 2x3 = 3
x1 + x2 + x3 − x4 = 2
x1 + x2 − x3 − x4 = 3
x1 − x2 − x3 − x4 = 4

7. Find all values of α for which the following system of equations has a solution:

x − 3y + 2z = 4
2x + y − z = 1
3x − 2y + z = α

8. Let

A =







4 −1 2 6
−1 5 −1 −3
3 4 1 3





 .

Find all vectors H such that AX = H has a solution.

9. Is the following matrix row equivalent to the matrix B in Exercise 2?

A =







1 0 0 1
2 1 0 3
0 2 1 −1







10. If A and B are two m× n matrices and A and B have the same rank, must A be row
equivalent to B? Prove your answer.

11. We know that row-equivalent matrices have the same row space. Is the converse true?
That is, is the following statement true: If A and B are two m × n matrices and
R (A) = R (B), then A is row equivalent to B. Prove your conclusion.

12. Can a 3× 2 matrix have rank 3? Explain your answer.

13. If A is an m× n matrix, what can be said about the rank of A? That is, what are the
limits on the possible values of the rank of A?

14. Can a condition be found on the rank of a matrix A that will guarantee that the
system of equations AX = H has a unique solution? (Assume that A is m × n. Find
a condition involving m,n, and the rank of A.)

15. Assume that the system of equations AX = H has a unique solution. Describe the
reduced echelon form B of A.



104 CHAPTER 2. VECTOR SPACES

2.9 The Dimension of the Solution Space of a Homo-

geneous System

Recall that a homogeneous system of m equations in n unknowns may be regarded as a
matrix equation of the form AX = 0, where A is an m × n matrix and X is an n × 1
column vector. In Section 2.4, we observed that the solution set of a homogeneous system
was a subspace of the space of n-dimensional column vectors and as such, it is natural to
inquire about the dimension of this subspace and to try to determine a basis. Recall that
this solution set is called the nullspace of A and is denoted by null(A).

Theorem 2.9.1. Let A be an m × n matrix and assume that A has rank r. Then
null(A) has dimension n− r. (The nullspace has dimension n− r.)

Proof. By previous results, the solution space of AX = 0 is exactly the same as the solution
space of BX = 0, where B = [bij ] is the reduced echelon form of A. Let r, j1, . . . , jr be the
constants associated with B, as in the definition of echelon form. (Recall that by Section
2.8, the rank of A and the number of nonzero rows in B are the same.) Recall that the first
nonzero entry in row i of B is a one in column ji, for i = 1, . . . , r, and it is the only nonzero
entry in column ji.

We will establish that the solution space of BX = 0 (and so also AX = 0) has dimension
n−r by constructing a basis. Now observe that for i = 1, . . . , r, row i of the matrix equation
BX = 0 gives an equation of the form:

xji + bijr+1
xjr+1

+ . . .+ bijnxjn = 0,

where jr+1, . . . , jn is some numbering of the columns other than j1, . . . , jr. Solving the
equations for the variables xj1, . . . , xjr in terms of the “other” variables – that is, those with
the subscripts jr+1, . . . , jn – we obtain the following equivalent system of equations:

xj1 = − b1jr+1
xjr+1

− . . . − b1jnxjn
...

...
...

xjr = − brjr+1
xjr+1

− . . . − brjnxjn .

Now we can see that every choice of values for the variables

xjr+1
, . . . , xjn

uniquely determines a solution and, conversely, every solution is obtained in this manner.
For r < i ≤ n , let Xi be the solution obtained by setting

xji = 1 and xjk = 0 for k 6= i, r < k ≤ n.

Then the vectors Xr+1, . . . , Xn are linearly independent, and since a solution with any
given values for the variables

xjr+1
, . . . , xjn
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can be obtained as a linear combination of the solutions Xr+1, . . . , Xn, we see that

{Xr+1, . . . , Xn}

is a basis for the solution space. It follows that the solution space has dimension n− r.
Here is an alternate proof:
Begin as before, with B the reduced echelon form of A and r, j1, . . . , jr the constants

associated with B. By relabeling the variables if necessary, we may assume that j1 = 1, j2 =
2, . . . , jr = r. That is, if, for example, j1 = 3, then let y1 = x3 and rewrite the equations
with y1 replacing x3. Continue by replacing each xji with yi, and then let yr+1, . . . , yn replace
the remaining x’s. This will give Ir for the upper left r × r block of B′, the reduced row
echelon form of A′, the coefficient matrix of the system after it has been rewritten with y’s.
(This is what is meant by the expression, “without loss of generality, we may assume that
j1 = 1, . . . , jr = r.)”

The system corresponding to B′X = 0 is

y1 = − b1,r+1yr+1 − . . . − b1,nyn
...

...
...

yr = − br,r+1yr+1 − . . . − br,nyn.

Each choice of yr+1, . . . , yn yields a solution, and every solution corresponds to such a
choice. We may now finish the proof as before.

The above method of proof seems complicated, but it is not really too unwieldy. In
effect, the solutions X1, . . . , Xn−r that make up the basis are chosen so that the standard
basis vectors are embedded in the solutions. This has the effect of guaranteeing that the
vectors are linearly independent and also guaranteeing that any solution may be expressed
as a linear combination of these vectors.

Example 2.9.1. Consider the following system of linear equations:

x1 + x2 + 2x3 = 0
−x1 − x2 − 2x3 + x4 = 0
2x1 + 2x2 + 4x3 + 3x4 = 0.

The coefficient matrix is







1 1 2 0
−1 −1 −2 1
2 2 4 3







and the reduced echelon form of this matrix is







1 1 2 0
0 0 0 1
0 0 0 0





 .

The constants associated with this matrix are r = 2, j1 = 1, j2 = 4 (first and fourth
columns are where the first nonzero entry, a 1, appears in rows 1 and 2, respectively),



106 CHAPTER 2. VECTOR SPACES

j3 = 2, and j4 = 3. The general solution is x1 = −x2 − 2x3, x4 = 0; x2, x3 arbitrary.
The solution space has dimension n − r = 4 − 2 = 2 and a basis is formed by calculating
the two solutions where the first has x2 = 1, x3 = 0 and the second has x2 = 0, x3 = 1.
Calculating these solutions and expressing them as row vectors, we see that the basis is
X1 = (−1, 1, 0, 0), X2 = (−2, 0, 1, 0), and so every solution of the original system may be
expressed uniquely in the form

X = a(−1, 1, 0, 0) + b(−2, 0, 1, 0).

�

Let us summarize: Let A be an m× n matrix of rank r. We have discussed three spaces
associated with A: the row space of A denoted by R (A), the column space of A denoted by
C (A), and the nullspace of A denoted by null(A). By results we have established, R (A)
has dimension r (by Theorem 2.8.2), C (A) has dimension r (by Exercises 2.7.14 and 2.7.17),
and null(A) has dimension n− r by the above theorem.

Consideration of symmetry would imply that there should be one more space to consider
in addition to those above. The missing space is the set of all m-dimensional row vectors X
with XA = 0 (sometimes called the left nullspace of A). It is not too difficult to see that
this space has dimension m− r.

Section 2.9 Exercises

1. If the matrix A is 3 × 4 and has rank 2, what is the dimension of the solution set of
AX = 0?

2. If the matrix A is 3× 3 and has rank 3, what is the solution set of AX = 0?

3. Find the general solution of the following system of linear equations and find a basis
for the solution space. What is the dimension of the solution space?

x − 2y = 0
−2x + 4y = 0.

4. Find the general solution of the following system of linear equations and find a basis
for the solution space:

x + y = 0
x − y = 0.

5. If the general solution of a system of equations is given by

x1 = −3x3

x2 = 2x3,

where x3 is arbitrary, find a basis for the solution space of AX = 0. What is the
dimension of the solution space?
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6. If the general solution of a system of equations is given by

x1 = x2 − 3x5

x3 = 2x5 − x6

x4 = − 3x5 + 2x6,

with x2, x5, and x6 arbitrary, find the dimension of the solution space and find a basis
for the solution space.

7. Find the general solution and a basis for the solution space of the following system of
equations in the variables x1, x2, x3, x4, x5 :

x2 + 2x3 + 2x5 = 0
x4 + x5 = 0.

8. Find the general solution and a basis for the solution space of the following system:

x1 − x2 + 2x4 = 0
3x1 + x2 − x3 + x4 = 0

2x2 + x3 + 2x4 = 0.

9. Let A be a 3× 4 matrix. Can a nonzero solution of AX = 0 be found? Why?

10. Let A be a 4× 7 matrix. What can be said about the dimension of the solution space
of AX = 0?

11. Consider a homogeneous system of four linear equations in six unknowns. Show that
two linearly independent, nonzero solutions may be found.

12. What may be said about the solution space of a homogeneous system of six linear
equations in four unknowns?

13. What is the relationship between the dimension of the solution space of a homogeneous
system of linear equations and the number of arbitrarily chosen variables in the general
solution of the system?

14. Let (a, b) and (c, d) be linearly independent vectors. Prove that for any numbers e and
f the vectors (a, e, b) and (c, f, d) are linearly independent.

15. Let (a, b) and (c, d) be linearly independent vectors. Determine whether the vectors
(a, b, e) and (f, c, d) are linearly independent for values e and f . What about the
vectors (a, b, e) and (c, d, f)?
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Chapter 3

LINEAR TRANSFORMATIONS
AND MATRICES

3.1 Definitions and Examples

While calculus may be thought of as the study of the real number system, it is perhaps
better to consider it the study of functions defined on the real number system. For many
of the fundamental structures in mathematics a similar statement holds - it is the study of
the functions on the structures that proves to be of interest. Most often the collection of all
functions is too broad and functions with special properties are studied. In calculus the sets
of continuous functions and differentiable functions are of most interest. What functions
defined on a vector space are of interest?

In Chapter 1, we studied systems of linear equations in the form of a matrix equation
AX = H where for some integersm and n, A is anm×nmatrix andX andH are respectively
n × 1 and m × 1 column vectors. One may think of this matrix multiplication operation
as a function or transformation that associates with the vector X , another vector AX or
H . Recall further that for homogeneous systems, AX = 0, we showed that the solution set
was a subspace of the vector space of all n × 1 column vectors and that in Chapter 2 this
subspace was characterized by finding a basis for the subspace. The important properties
needed in proving that the solution set is a subspace are

A(X + Y ) = AX + AY and

A(aX) = a(AX).

We define now a class of functions having the above properties and in this chapter we
will study these functions. These functions, called linear transformations, occur in many
different applications. In calculus, rotations are used to simplify certain quadratic equations.
In physics, angular momentum is an example of a linear transformation (see Section 5.8). We
will see that linear transformations defined on finite dimensional vector spaces are associated
with matrices and we will investigate this association. In Chapters Five and Six we will find
that linear transformations are associated with matrices of a relatively simple form. For
information on functions the reader is referred to Appendix B.

109
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Definition 3.1.1. Let U and V be vector spaces over the same field F . A function T :
U → V is called a linear transformation if and only if the following two conditions are
satisfied:

(a) T (X + Y ) = T (X) + T (Y ) for all X, Y ∈ U.

(b) T (rX) = rT (X) for all X ∈ U, r ∈ F.

The notation T : U → V is read “T maps U into V” or “T mapping U into V.”
We express the first part of the definition by saying that T “preserves addition” and the
second by saying that T “preserves scalar multiplication”. Notice that combining these two
properties we can see that T (rX+ sY ) = T (rX)+T (sY ) = rT (X)+ sT (Y ). Also note that
T (X + Y + Z) = T (X + Y ) + T (Z) = T (X) + T (Y ) + T (Z). The most general version of
these observations (see Exercise 13) states that

T

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

aiT (Xi).

Because of this, the action of a linear transformation is completely determined by its action
on a basis. That is, if we know T (Xi) for all elements Xi in some basis, then T (X) can be
computed (using the above observation) for any vector X in the vector space. In Example
3.1.1 j) below, we see that this observation may also be used to define a linear transformation
which maps basis elements to arbitrary elements of another vector space.

Properties of linear transformations are explored in the next section. Here we present
a rather lengthy list of examples of linear transformations and constructions that result in
such transformations.

Example 3.1.1. (a) As with most definitions, there are trivial examples. Let V be any
vector space. Define Iv : V → V by Iv(X) = X for all X ∈ V. Then Iv is a linear
transformation called the identity transformation. The function Iv satisfies (a) and
(b) trivially. To simplify the notation, Iv will be denoted by I when no confusion will
result.

Define Ov : V → V by Ov(X) = 0 (the zero vector) for all X ∈ V. Ov is a linear
transformation called the zero transformation on V. As above, we will most often
use O to denote Ov.

(b) For a vector X ∈ R2, let T (X) be the vector obtained from X by rotating X in the
counterclockwise direction through an angle θ. (See Figure 3.1.) Then T is a linear
transformation and in fact:

T (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

(c) Define πi : R
n → Rn by πi((x1, . . . , xn)) = (0, . . . , 0, xi, 0, . . . , 0). πi is a linear trans-

formation called the projection onto the ith coordinate. See Figure 3.2.

(d) Define D : C1[a, b] → C[a, b] by D(f) = f ′ = df/dx. Then, since (f + g)′ = f ′ + g′ and
(rf)′ = rf ′, we have that D is a linear transformation.
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Figure 3.1: Rotation by θ

X
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Figure 3.2: Projection onto the ith coordinate

(e) As in (d), we can think of D as a linear transformation defined on R[x], the vector
space of all polynomials over the real field R. If p(x) = a0 + a1x + . . . + anx

n, then
p′(x) = a1+2a2x+ . . .+nanx

n−1 ∈ R[x] so D : R[x] → R[x] defined by D(p(x)) = p′(x)
is a linear transformation.

(f) Consider R as a vector space over itself and define S : C[a, b] → R by

S(f) =
∫ b

a
f(x)dx.

Then since
∫ b

a
[f(x) + g(x)]dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx and

∫ b

a
rf(x)dx = r

∫ b

a
f(x)dx,

we see that S is a linear transformation.

(g) Let S : U → V and T : V → W be linear transformations, where U,V, and W are
vector spaces over a given field F . The composite TS of S and T is the function
TS : U → W defined by TS(X) = T [S(X)]. TS is a linear transformation since
TS(X + Y ) = T (S(X + Y )) = T (S(X) + S(Y )) = T (S(X)) + T (S(Y )) = TS(X) +
TS(Y ) and TS(rX) = T (S(rX)) = T (rS(X)) = rT (S(X)) = rTS(X).
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(h) If S, T : U → V are linear transformations, then T + S : U → V is defined by
(T + S)(X) = T (X) + S(X). T + S is also a linear transformation and is called the
sum of T and S.

(i) If T : U → V is a linear transformation and r is a scalar, then rT : U → V is the
linear transformation defined by: (rT )(X) = rT (X). The transformation rT is called
the scalar product of r and T .

(j) Let U and V be vector spaces with X1, . . . , Xn a basis for U. Let Y1, . . . , Yn be any
(not necessarily distinct) vectors in V. Any vector X can be expressed as:

X =
n
∑

i=1

aiXi = a1X1 + . . .+ anXn,

where a1, . . . , an are scalars. Define T : U → V by

T (X) = T

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

aiYi = a1Y1 + . . .+ anYn

Then T is a linear transformation.

(k) Finally, the example with which we began the discussion. Let A be an m × n matrix
over some field and for an n × 1 column vector X , define TA(X) by TA(X) = AX .
Then as we saw before TA is a linear transformation from the space of n × 1 column
vectors to the spaces of m × 1 column vectors. We will see in Section 3.5 that many
linear transformations can be characterized by a matrix in the above manner.

�

Section 3.1 Exercises

1. Define T : R2 → R2 by T (x, y) = (x − y, x + 3y). Calculate T (1, 2), T (1, 0), T (0, 2),
and T (1, 0) + T (0, 2).

2. Define T : R2 → R2 by T (x, y) = (x + 2y, 2x− y). Calculate T (2, 3), T (2, 0), T (0, 3),
and T (2, 0) + T (0, 3).

3. Define T : R3 → R2 by T (x, y, z) = (x+ y, 2y − x). Calculate T (2, 1, 1) and T (2, 3, 1).

4. Define T : R3 → R2 by T (x, y, z) = (x+ z, y − x). Calculate T (3, 2, 1) and T (1, 3, 1).

5. With T as in Exercise 3, find a nonzero vector (x, y, z) with T (x, y, z) = (0, 0).

6. With T as in Exercise 1, determine whether one can find a nonzero vector (x, y) with
T (x, y) = (0, 0). Give a reason for your answer.
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7. As in Example 3.1.1 (j), there is a linear transformation T : R3 → R3 that is determined
by T (1, 0, 0) = (0, 1, 0), T (0, 1, 0) = (1, 2, 1), and T (0, 0, 1) = (−1,−3,−1). Compute
T (1, 2, 3).

8. Is there a linear transformation T : R2 → R2 with T (1, 0) = (2, 3) and T (0, 1) =
(−1, 2)? Give a reason for your answer.

9. Is there a linear transformation T : R2 → R2 with T (1, 0) = (2, 3), T (0, 1) = (−1, 2),
and T (1, 1) = (2, 0)? Give a reason for your answer.

10. Let S and T be linear transformations of U into V and let X1, . . . , Xn be a basis for
U. Prove that if S(Xi) = T (Xi) for i = 1, . . . , n then S = T.

11. Let T : U → V be a linear transformation. Show that T (0) = 0 and T (−X) = −T (X).

12. Let T : U → V be a linear transformation and let IU : U → U and IV : V → V
be the identity transformations on U and V, respectively. Show that TIU = T and
IVT = T .

13. Let T : U → V be a linear transformation and let X1, . . . , Xn ∈ U and let a1, . . . , an
be scalars. Using mathematical induction (see Appendix E) prove that

T

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

aiT (Xi).

14. Let T : U → V be a linear transformation and assume that T (X) = T (Y ) for some
distinct X, Y ∈ U . Prove that there is a nonzero vector Z ∈ U with T (Z) = 0.

15. Let T : R2 → R3 be a linear transformation. Prove that there is a vector Y ∈ R3 with
T (X) 6= Y for all X ∈ R2.

16. Show that T in Example 3.1.1 (j) is a linear transformation.

3.2 Properties of Linear Transformations

In calculus, the idea of a function of a real variable is introduced, but it is the functions
with special properties, such as continuity and differentiability, that are of greatest interest.
The same holds true of linear transformations - nonsingular linear transformations are of
considerable importance. In this section we will investigate nonsingular transformations and
some special sets that are naturally associated with these transformations.

Associated with linear transformations there are two subspaces that, along with their
associated dimensions, help to give information about the transformation. They are called
the image and nullspace.

Definition 3.2.1. Let T : U → V be a linear transformation. The image of T is the set
Im(T ) = {Y ∈ V|Y = T (X) for some X ∈ U}. The nullspace of T is the set null(T ) =
{X ∈ U|T (X) = 0}, also denoted N(T ).
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For example, suppose that T : R3 → R3 is defined by T (x, y, z) = (x− y, y− x, y). Then
T (x, y, z) = (0, 0, 0) implies that x − y = 0, y − x = 0, and y = 0. From this we see that
x = y = 0 and it follows that null(T ) = {(0, 0, z)|z ∈ R}. Likewise,

Im(T ) = {T (x, y, z)|(x, y, z) ∈ R3}
= {(x− y, y − x, y)|(x, y, z) ∈ R3}
= {(a,−a, b)|a, b ∈ R}.

One may consider the nullspace of T to be the solution set of the equation T (X) = 0.
Just as with the homogeneous systems of linear equations, this solution set forms a subspace.

Theorem 3.2.1. If T : U → V is a linear transformation, then Im(T ) is a subspace
of V and null(T ) is a subspace of U. (The image and nullspace of a transformation are subspaces.)

Proof. See Exercise 8.

Functions that are one-to-one and onto are often of importance in mathematics. For
linear transformations, the nullspace is related to whether the transformation is one-to-one,
and of course, the image of the transformation is related to whether the function is onto. As
a consequence, the dimensions of these subspaces are useful quantities.

RANK AND NULLITY

Definition 3.2.2. Let T : U → V be a linear transformation. The nullity of T is the
dimension of null(T ) and is denoted by nullity(T ). The rank of T is the dimension of Im(T )
and is denoted by rank(T ).

If T is the linear transformation defined above (T : R3 → R3 is defined by T (x, y, z) =
(x− y, y−x, y)), we see that the nullspace of T has dimension 1 so that T has nullity 1, and
the image of T has dimension 2 so that T has rank 2.

The following theorem relates the rank and nullity of a linear transformation to the
dimension of the domain of the transformation. We will see that it is a useful result.

Theorem 3.2.2. Let T : U → V be a linear transformation and suppose dimU = n.
Then rank(T ) + nullity(T ) = n. (The rank plus the nullity is the dimension of the domain.)

Proof. Let nullity(T ) = k and choose a basis X1, . . . , Xk for null(T ). Extend this basis to a
basis X1, . . . , Xk, Xk+1, . . . , Xn for the entire vector space U. We claim that T (Xk+1), . . . ,
T (Xn) is a basis for Im(T ). To show this we must prove that the vectors T (Xk+1), . . . , T (Xn)
are linearly independent and that they span the image of T .

To show that the vectors are linearly independent, let ak+1T (Xk+1)+ . . .+ anT (Xn) = 0.
Then T (ak+1Xk+1 + . . .+ anXn) = 0 so ak+1Xk+1 + . . .+ anXn ∈ null(T ). Since X1, . . . , Xk
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is a basis for null(T ), ak+1Xk+1+ . . .+anXn = a1X1+ . . .+akXk for some scalars a1, . . . , ak.
Now rearranging we get a1X1 + . . .+ akXk − ak+1Xk+1 − . . .− anXn = 0. Since X1, . . . , Xn

are linearly independent, we must have a1 = . . . = ak = . . . = an = 0. It follows that
T (Xk+1), . . . , T (Xn) are linearly independent.

We next show that the vectors span the image. Let Y ∈ Im(T ). Then Y = T (X) for
some X ∈ U. Let X = b1X1 + . . .+ bnXn. Then

Y = T (X)

= T (b1X1 + . . .+ bnXn)

= b1T (X1) + . . .+ bkT (Xk) + bk+1T (Xk+1) + . . .+ bnT (Xn)

= bk+1T (Xk+1) + . . .+ bnT (Xn)

since T (X1) = . . . = T (Xk) = 0, and so T (Xk+1), . . . , T (Xn) span Im(T ).

It follows that T (Xk+1), . . . , T (Xn) is a basis for Im(T ) and so rank(T ) + nullity(T ) =
(n− k) + k = n.

By Appendix B, functions which are one-to-one and onto have inverses. Linear transfor-
mations which have inverses are called nonsingular.

NONSINGULARITY

A linear transformation is a correspondence that associates with a given vector X another
vector Y — we may represent this correspondence by X → Y . Under certain circumstances
the “reverse” correspondence, Y → X is also a linear transformation. When this reverse
correspondence satisfies the definition of a function, it is called the “inverse” function of the
original function. The reader has no doubt encountered this situation in previous mathemat-
ics courses: the natural logarithm function ln(x) is the inverse of the exponential function
ex, and the inverses of the trigonometric functions are studied. The following definition and
theorem characterize this situation for linear transformations.

Definition 3.2.3. A linear transformation T : U → V is nonsingular if and only if
null(T ) = {0} and Im(T ) = V. Linear transformations that fail to satisfy this condition are
called singular.

Example 3.2.1. Define T : R2 → R2 by T (x, y) = (x− y, 2y). Then T is a linear transforma-
tion and we can see that T is nonsingular since T (x, y) = (0, 0) implies x−y = 0 and 2y = 0,
so x = y = 0. Further, if (a, b) ∈ R2, then T (a + b/2, b/2) = (a, b) and so Im(T ) = R2. It
follows that T satisfies the two parts of the definition of nonsingularity.

�

The following theorem relates the definition of nonsingularity to the existence of an
inverse correspondence.
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Theorem 3.2.3. Let T : U → V be a linear transformation. T is nonsingular if
and only if there is a linear transformation S : V → U such that ST = IU (the
identity transformation on U) and TS = IV (the identity transformation on V).
(A transformation is nonsingular iff it has an inverse.)

Proof. Assume a transformation S : V → U exists as in the statement of the theorem. If
X ∈ null(T ), then T (X) = 0, so ST (X) = S(T (X)) = S(0) = 0 = I(X) = X . It follows
that null(T ) = {0}. If Y ∈ V, Y = I(Y ) = TS(Y ) = T (S(Y )) and so Y ∈ Im(T ). By the
definition of nonsingularity, we see that T is nonsingular.

Now assume T is nonsingular. We must define a linear transformation S : V → U as
in the statement of the theorem and prove that it has the given properties. For a vector
Y ∈ V, there is a vector X ∈ U with T (X) = Y since Im(T ) = V. Define S(Y ) = X.

To complete the proof we need to show that S is well-defined, that S is a linear trans-
formation and that S satisfies the “inverse” relationships as stated in the theorem. Assume
that S(Y ) = X and S(Y ) = X ′. Then T (X) = Y and T (X ′) = Y. It follows that (using
Exercise 12) T (X)− T (X ′) = T (X −X ′) = 0 so that X −X ′ ∈ null(T ). But null(T ) = {0},
so X −X ′ = 0 and hence X = X ′. It follows that S is well defined.

The remaining parts of the proof are left as an exercise.

The linear transformation S is called the inverse of T and will be denoted by T−1. The
word “the” implies uniqueness, as does the use of the T−1 notation for the transformation
S. What if there were several transformations that had the same properties as S?

Let us suppose that two transformations S1 and S2 behave like the transformation S in
the above theorem. Then S1T = S2T = IU and TS1 = TS2 = IV. Computing, we get
S1(TS2) = (S1T )S2 = S1IV = IVS2. We see that S1 = S2, and so we have proved the
following:

Theorem 3.2.4. The inverse of a linear transformation is unique.

Section 3.2 Exercises

1. Define T : R2 → R2 by T (x, y) = (x+ 2y, 2x− y). Show that (2,−1) ∈ Im(T ).

2. Define T : R2 → R3 by T (x, y) = (x+ 2y, x, 2x− y). Show that (1, 1, 2) ∈ Im(T ).

3. Define T : R3 → R2 by T (x, y, z) = (x+ z, y − x). Find a nonzero vector X ∈ null(T ).

4. Define T : R3 → R2 by T (x, y, z) = (2x+3z, 2y+x). Find a nonzero vectorX ∈ null(T ).

5. Determine the image, nullspace, rank and nullity of the transformation T of Exercise
1.

6. Determine the image, nullspace, rank and nullity of the transformation T of Exercise
2.
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7. Show that T : R3 → R3 defined by T (x, y, z) = (2x + y, z, 2y) is nonsingular and
determine T−1.

8. Prove Theorem 3.2.1.

9. Let T : U → U be a linear transformation where U is a finite-dimensional vector
space. Assume that null(T ) = {0}. Prove that T is nonsingular.

10. Complete the remaining parts to the proof of Theorem 3.2.3.

11. Show that any linear transformation T : R3 → R2 is singular.

12. Show that any linear transformation T : R2 → R3 is singular.

13. Let T : U → V be a nonsingular linear transformation with U and V finite-dimen-
sional vector spaces. Prove that dim(U) = dim(V).

14. Use Theorem 3.2.3 and Theorem 3.2.4 to prove that if T : U → V is a nonsingular
linear transformation, then T−1 is nonsingular, and (T−1)−1 = T.

15. Use Theorem 3.2.3 and Theorem 3.2.4 to prove that if T : U → V and S : V → W are
nonsingular linear transformations, then ST is nonsingular, and (ST )−1 = T−1S−1.

3.3 The Matrix of a Linear Transformation

In some of the examples and exercises of Section 3.1, we saw that many linear transformations
are closely related to matrices and that the action of a transformation is determined by its
action on a basis. In this section, we define the matrix of a linear transformation that is
defined on a finite-dimensional vector space and we discover that the matrix of the composite
of two linear transformations is the product of the corresponding matrices.

Let T : U → V be a linear transformation and let B = {X1, . . . , Xn} be a basis for U
and let C = {Y1, . . . , Ym} be a basis for V. We are assuming, of course, that U and V are
finite-dimensional vector spaces. Since C is a basis for V and since T (Xi) ∈ V, each T (Xi)
can be written as a linear combination of Y1, . . . , Ym. Expanding the images of the elements
in the basis B in terms of the basis C we have the following relationships:

T (X1) = a11Y1 + a21Y2 + . . . + am1Ym

T (X2) = a12Y1 + a22Y2 + . . . + am2Ym
...

...
...

T (Xn) = a1nY1 + a2nY2 + . . . + amnYm.

(3.3.1)

for some scalars aij .
Note that using this notation,

T (Xj) =
m
∑

k=1

akjYk (3.3.2)
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The matrix of T relative to the bases B and C (with the elements of B and C listed
in a fixed order) is defined to be the m× n matrix













a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn













. (3.3.3)

This matrix is denoted by [T : B,C] or TC

B
. Notice that the scalars in the first equation

of 3.3.1 are a11, a21, . . . , am1, and that these scalars become the entries in column one of
the matrix of the transformation 3.3.3. In effect, the “rows” of the equations become the
“columns” in the matrix. This switch is made because it “works” and is consistent with
other choices of notation. The underlying reason that the switch is necessary comes from
the old habit of writing the function on the left of the variable or argument; that is, T (X)
with T on the left as opposed to (X)T , with T on the right. The author has decided that it
is best to use the traditional notation, in spite of the problems it carries, and so the reader
must remember to make the “switch.”

A further warning concerning notation is needed: We have used B and C (in bold face
type) to denote the two bases in the above discussion. In other places in this text, we have
used A,B, and C (italic, but not boldface) to represent matrices. It is important that the
two not be confused! In particular, do not confuse the basis B with the matrix [bij ].

Example 3.3.1. (a) Let T : R3 → R2 be defined by T (x, y, z) = (2x + y, y + z). Let
B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} and C = {(1, 0), (0, 1)}. Then:

T (1, 0, 0) = (2, 0) = 2(1, 0) + 0(0, 1)
T (1, 1, 0) = (3, 1) = 3(1, 0) + 1(0, 1)
T (1, 1, 1) = (3, 2) = 3(1, 0) + 2(0, 1)

Thus, the matrix of T relative to B,C is

[T : B,C] =

ñ

2 3 3
0 1 2

ô

.

(b) Let I : R2 → R2 be the identity transformation and let D = {(1, 0), (1, 1)}. We would
like to compute [I : D,D] and [I : D,C]. We compute the action of the transformation
I on the basis D :

I(1, 0) = (1, 0) = 1(1, 0) + 0(1, 1) = 1(1, 0) + 0(0, 1)
I(1, 1) = (1, 1) = 0(1, 0) + 1(1, 1) = 1(1, 0) + 1(0, 1)

From this we see that

[I : D,D] =

ñ

1 0
0 1

ô

and [I : D,C] =

ñ

1 1
0 1

ô

.

The matrices come by taking the coefficients of the basis vectors in the image and
entering them into the columns of the matrix.
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�

Notice that since C was the standard basis in part (a), it was easy to express the images
of the basis vectors in B in terms of this basis. If another basis were involved, it would
possibly be necessary to solve equations in order to find the proper expression.

THE MATRIX OF A COMPOSITE

We want now to determine the matrix of the composite of two linear transformations T and
S.

Let S : U → V and T : V → W be linear transformations and let B = {X1, . . . , Xr},
C = {Y1, . . . , Yn}, and D = {Z1, . . . , Zm} be bases for U,V, and W, respectively. Let
[S : B,C] be the n × r matrix [bij ] and let [T : C,D] be the m × n matrix [aij ]. Then we
have (using Equation 3.3.2):

TS(Xj) = T (S(Xj))

= T

(

n
∑

k=1

bkjYk

)

=
n
∑

k=1

bkjT (Yk)

=
n
∑

k=1

bkj

(

m
∑

i=1

aikZi

)

=
m
∑

i=1

(

n
∑

k=1

bkjaikZi

)

=
m
∑

i=1

(

n
∑

k=1

aikbkj

)

Zi.

It follows that [TS : B,D] is the m× r matrix [cij], where

cij =
n
∑

k=1

aikbkj.

Recalling the definition of the product of two matrices as given in Section 1.2, we see
that the matrix [cij] is the product of the two matrices [aij ] and [bij ] in that order, and so
we have proved the following theorem.

Theorem 3.3.1. If T, S,U,V,W,B,C, and D are as defined above, then

[TS : B,D] = [T : C,D][S : B,C],

or
(TS)D

B
= TD

C
SC

B
.

(The matrix of a composite is the product of the matrices of the transformations and in the same order.)
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The above theorem can be difficult to remember because of the “unnatural” order of the
transformations and bases. To make it easier to remember, consider with a picture like the
following:

S T
U → V → W
| | |
B C D

(3.3.4)

where S and T are the transformation and U,V, and W are the vector spaces with B,C,
and D the corresponding bases. Now recall that the order of the composite transformation
is TS. To see this note that for X ∈ U, T (S(X)) is always defined since S(X) is defined
for all X ∈ U and the result is an element of V on which T is defined. Notice also that
S(T (X)) is not defined, and remember that the matrix of the composite is the product of the
matrices of the individual transformations in the same order as the transformations occur in
the composite. Considering this, we now know that:

[TS : , ] = [T : , ][S : , ] (3.3.5)

Now refer to the diagram 3.3.4 and fill in the bases in the natural order of occurrence.
The composite TS is the transformation from U to W and so the bases are B and D. We
get [TS : B,D]. Likewise T maps V into W and so the bases are C and D, from which
[T : C,D] results; similarly, we obtain [S : B,C]. Thus, the missing bases in 3.3.5 can be
filled in, and you can recall the result of Theorem 3.3.1.

On the other hand, the alternative notation recalls the structure of a definite integral:
we go from the lower index to the upper index. The nice thing about this notation is that
the upper and lower indices “cancel” in the sense that if the map goes from B to C and then
C to D, then we might as well skip the middle step (pausing at C) and go straight from B
to D.

Section 3.3 Exercises

1. Define T : R2 → R2 by T (x, y) = (x + y, x − y) and let E = {(1, 0), (0, 1)} be the
standard basis for R2. Calculate [T : E,E].

2. Define T : R2 → R2 by T (x, y) = (2x− y, x+ 3y) and let E be the standard basis for
R2. Calculate [T : E,E].

3. Define T : R3 → R3 by T (x, y, z) = (x+ y+ z, x− y, 2z) and let E = {(1, 0, 0), (0, 1, 0),
(0, 0, 1)} be the standard basis for R3. Calculate [T : E,E].

4. Define T : R3 → R2 by T (x, y, z) = (x + y, x + y − 2z) and let E3 and E2 be the
standard bases for R3 and R2, respectively. Calculate [T : E3,E2].

5. Define T : R2 → R2 by T (x, y) = (x + y, 2x − y) and let B = {(1, 0), (1, 1)},C =
{(1,−1), (1, 1)}, and E = {(1, 0), (0, 1)} be bases for R2. Calculate the following:
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(a) [T : B,E]

(b) [T : E,B]

(c) [T : B,C]

6. Define T : R2 → R2 by T (x, y) = (x − y, x + 2y) and let E = {(1, 0), (0, 1)},E1 =
{(0, 1), (1, 0)},E2 = {(1, 0), (0, 2)}, and E3 = {(1, 0), (1, 1)} be bases for R2. Notice
that E is the standard basis for R2 and that the other bases are obtained from E by
“elementary operations.” Calculate the following:

(a) TE

E

(b) TE1

E

(c) TE2

E

(d) TE3

E

How are the matrices in parts b) - d) related to the matrix in part a)?

7. Let T, S : R2 → R2 be the linear transformations defined by T (x, y) = (2x + y, 3y),
S(x, y) = (x+y, x−y). Let E = {(1, 0), (0, 1)} be the standard basis for R2. Compute
[T : E,E], [S : E,E], and [TS : E,E]. Also compute [T : E,E][S : E,E].

8. Let T : R2 → R2 be a linear transformation and let E = {(1, 0), (0, 1)} be the standard
basis for R2. Assume that

[T : E,E] =

ñ

1 −1
2 3

ô

.

Find the following:

(a) T (1, 0)

(b) T (0, 1)

(c) T (−2, 3)

9. Let T : R3 → R2 be defined by T (x, y, z) = (x− z, y + z) and assume that

[T : E,B] =

ñ −1 −1 0
0 1 1

ô

.

where E is the standard basis for R3 and B is some basis for R2. Find the basis B.

10. Let I : R2 → R2 be the identity transformation and let B be some basis for R2. If
E is the standard basis for R2, describe the matrix [I : B,E] in terms of the basis
B. (Assume that the vectors in it are known and choose some representation for these
vectors.)
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11. Let T : R2 → R2 be a linear transformation and let B = {(1, 1), (−1, 2)} be a basis
for R2. Use Theorem 3.3.1 to find the relationship between [T : B,B] and [T : B,E].
(Hint: consider the “picture” below:

T I
R2 → R2 → R2

| | |
B B E

Apply Theorem 3.3.1 along with the fact that IT = T .)

12. Let V be a finite-dimensional vector space with the basis B. Find the matrix of the
identity transformation IV relative to B; that is, determine [IV : B,B].

13. Let T : U → V be a linear transformation defined on the finite-dimensional vector
spaces U and V. Assume that B and C are bases for U and V, respectively. Assume
that T is a nonsingular linear transformation with inverse T−1. Express the inverse of
the matrix [T : B,C] in terms of T−1,B, and C.

14. Let B and C be any two bases for the n-dimensional real vector space Rn, and let I be
the identity transformation on Rn. Show that [I : B,C] is a nonsingular matrix and
express its inverse in terms of B and C.

3.4 Properties of Matrices and Matrix Multiplication

In the previous section, matrices once again arose - this time in relation to a linear trans-
formation. Also, products of matrices became important in describing the matrix of the
composite of two linear transformations. In this section (for want of a better place) we
present some topics related to matrices and matrix multiplication that will be needed and
used in the coming sections and chapters.

BLOCK MULTIPLICATION

The first topic is block multiplication. A matrix is made up of scalar entries, but in certain
situations, it is useful to imagine a matrix partitioned into submatrices or blocks. In
the discussion that follows we will show that the product of two partitioned matrices can
be calculated by calculating the sums of products of the blocks — just as one does with
the scalar entries in a matrix that is not partitioned — assuming all sums and products are
defined.

Let X =
î

x1 . . . xn

ó

be a 1× n matrix (or row vector) and let

Y =









y1
...
yn








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be an n × 1 matrix (or a column vector). The matrix product XY is the 1 × 1 matrix
[x1y1 + . . . + xnyn]. We will identify a 1 × 1 matrix [a] with its scalar entry a. Now if we
write

x1y1 + . . .+ xnyn = (x1y1 + . . .+ xkyk) + (xk+1yk+1 + . . .+ xnyn),

we see that we can think of XY as a sum of two matrix products X1Y1 + X2Y2 where
X1 = [x1 . . . xk], X2 = [xk+1 . . . xn], and

Y1 =









y1
...
yk









and Y2 =









yk+1
...
yn









.

Think of X and Y “partitioned” as X =
î

X1 X2

ó

and Y =

ñ

Y1

Y2

ô

. The computation

above shows that

XY =
î

X1 X2

ó

ñ

Y1

Y2

ô

= X1Y1 +X2Y2.

It is not hard to see that the same sort of thing would work if X and Y were partitioned
into more “submatrices.”

Now let A and B be matrices, A m × n, B n × r. Each entry in the product AB is a
product of a “row vector” of A times a “column vector” of B, so if A = [Aij ] and B = [Bij ]
are partitioned into submatrices or blocks Aij and Bij such that all the appropriate sums
and products are defined, then the product AB is given by AB = [Aij ][Bij ] = [Cij ], where

Cij =
h
∑

k=1

AikBkj

and h is the number of blocks along a row in the partition of A or along a column of B.
In applications, we will need only the following special cases of this block multiplication.

1.

ñ

A B
C D

ô ñ

E F
G H

ô

=

ñ

AE +BG AF +BH
CE +DG CF +DH

ô

2.
î

X1 . . . Xn

ó













a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an













=
î

a1X1 . . . anXn

ó

3. A
î

X1 . . . Xn

ó

=
î

AX1 . . . AXn

ó

The above rules are only valid, of course, when all sums and products are defined. In 2)
and 3), the vectors X1, . . . , Xn, may be thought to represent the columns of the matrix, and
in our use of these special cases, this will always be the case.

Notice also that our alternative perspective on matrix multiplication is a special case of
block matrix multiplication.
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Example 3.4.1. The following computations illustrate the three cases above. The lines form
the partitions in the matrices.

1. In the following product of a 3× 3 matrix and a 3× 2 matrix, each matrix is divided
into blocks making 2× 2 matrices of blocks:







2 1 −1
1 −1 2
0 1 3













1 4
1 1
0 2







=











ñ

2 1
1 −1

ô ñ

1
1

ô

+

ñ −1
2

ô

î

0
ó

ñ

2 1
1 −1

ô ñ

4
1

ô

+

ñ −1
2

ô

î

2
ó

î

0 1
ó

ñ

1
1

ô

+
î

3
ó î

0
ó î

0 1
ó

ñ

4
1

ô

+
î

3
ó î

2
ó











=







3 7
0 7
1 7







=







3 7
0 7
1 7





 .

2. In the following product, the first matrix is partitioned into its columns and the second
matrix is a diagonal matrix.

ñ

1 −1
0 2

ô ñ

2 0
0 3

ô

=

ñ

2

ñ

1
0

ô

3

ñ −1
2

ô ô

=

ñ

2 −3
0 6

ô

.

3. In the product that follows, the second matrix is partitioned into columns:

ñ

1 −1
0 2

ô ñ

1 −2
3 1

ô

=

ñ ñ

1 −1
0 2

ô ñ

1
3

ô ñ

1 −1
0 2

ô ñ −2
1

ô ô

=

ñ −2 −3
6 2

ô

=

ñ −2 −3
6 2

ô

.

�

The matrix in special case 2) above is called a diagonal matrix since the only nonzero
entries lie on the diagonal of the matrix. We write diag(a1, . . . , an) for the n× n matrix













a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an













.
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Recall that in Section 1.3, the n×n identity matrix In was introduced using the Kronecker
δ; that is, In =

î

δij
ó

. Using the diagonal matrix notation, In = diag(1, 1, . . . , 1). Recall
also that in Theorem 1.3.8, we showed that In behaves like an “identity” with respect to
matrix multiplication; that is, if A is an m × n matrix, then ImA = A and AIn = A. Also
in Section 1.3, the notion of a “nonsingular” matrix was defined. In Section 3.2, we defined
the term “nonsingular” for linear transformations. We need to relate the two definitions.

NONSINGULARITY AGAIN

Let V be a finite-dimensional vector space with dimV = n and B any basis for V. For each
X ∈ B, I(X) = X, where I : V → V is the identity transformation. It is not hard to see
that [I : B,B] = In.

In general, terminology applied to a linear transformation T is valid also for the matrix
[T : B,C] representing the transformation. For example, suppose T : U → V is a nonsin-
gular transformation. Then there is a transformation S : V → U such that ST = I and
TS = I, where I is the identity transformation. Then for bases B and C of U and V,
respectively, [T : B,C][S : C,B] = I and [S : C,B][T : B,C] = I. It follows that the matrix
associated with a nonsingular linear transformation is a nonsingular matrix. (See Section
1.3 for the definition of nonsingular matrix and see Exercise 3.3.13.)

In Theorem 3.2.4, we saw that the inverse of a linear transformation is unique. This means
that any transformation that behaves like the inverse of a given linear transformation, in
fact is (or equals) that inverse. The same holds true for inverses of matrices.

Theorem 3.4.1. If A is a nonsingular n × n matrix and AB1 = B1A =
I and AB2 = B2A = I for n × n matrices B1 and B2, then B1 = B2.
(The inverse of a nonsingular matrix is unique.)

Proof. Assume B1 and B2 are as above. Then:

(B1A)B2 = IB2 = B2

and

(B1A)B2 = B1(AB2) = B1I = B1.

We see that B1 = B2, and so the inverse of A is unique.

We denote this unique inverse of the matrix A by A−1. The implication of the theorem
above is that any matrix that behaves like the inverse of a matrix, must in fact, be the
inverse of the matrix. In Exercise 14, the reader is asked to prove that (AB)−1 = B−1A−1.

As a special case of the above remarks applied to the nonsingular transformation I, we
can prove the following theorem. (See Exercise 3.3.14.)
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Theorem 3.4.2. Let V be an n-dimensional vector space and let B and C be bases
for V. If I : V → V is the identity transformation, then IC

B
is nonsingular; in fact,

(IC
B
)−1 = IB

C
. (The matrix of the identity transformation is nonsingular.)

Proof. Using Theorem 3.3.1, we see that:

IC
B
IB
C
= (II)C

C
= IC

C
= In and

IB
C
IC
B
= IIB

B
= IB

B
= In

since the composite II equals I and IB
B

= IC
C

= In by previous comments. Using the
preceding theorem, we see that (IC

B
)−1 = IB

C
.

The introduction of the notion of a nonsingular matrix gives rise to some problems: a)
Which matrices are nonsingular? b) How can one determine whether a matrix is nonsingular?
and c) Given that a matrix is nonsingular, how can one find its inverse? We will discover
several methods for answering these questions later on, but for now let us use a crude method
that might be described as “the method of undetermined entries.” An example should suffice.

Example 3.4.2. Consider the 2 × 2 matrix A =

ñ −1 3
2 −4

ô

and suppose that we wish to

determine whether A is nonsingular. We will assume that A is nonsingular and that its

inverse is B =

ñ

a b
c d

ô

. Then:

AB =

ñ −1 3
2 4

ô ñ

a b
c d

ô

=

ñ −a + 3c −b+ 3d
2a+ 4c 2b+ 4d

ô

=

ñ

1 0
0 1

ô

.

From this computation, we obtain the following two systems of two linear equations:

−a + 3c = 1 −b + 3d = 0
2a − 4c = 0 2b − 4d = 1

Solving, we obtain a = 2, b = 3/2, c = 1, and d = 1/2, so that B =

ñ

2 3/2
1 1/2

ô

. Checking

the product in the reverse order, we get:

BA =

ñ

2 3/2
1 1/2

ô ñ −1 3
2 −4

ô

=

ñ

1 0
0 1

ô

.

It follows that B is the inverse of A.

�

Notice that to find the inverse of an n×n matrix using the above method we would have
to solve n systems of n equations in n unknowns. There must be a better way!

Section 3.4 Exercises
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In Exercises 1 - 6, verify that rules 1), 2), and 3) above do in fact work by performing the
computations using both block multiplication and ordinary multiplication.

1. Check out rule 1) by computing the following product first by block multiplication and
then by ordinary matrix multiplication.







1 0 2
2 1 0

−1 0 1













0 −1 0 −1
1 2 1 −3
0 0 1 1







2. Check out rule 1) by computing the following product first by block multiplication,
then by ordinary matrix multiplication:







2 1 2
0 1 0

−2 2 2













1 −2 2 −2
1 3 1 −5
1 1 3 1







3. Check out rule 2) by computing the following product first by block multiplication,
then by ordinary matrix multiplication:

ñ

1 −1
1 2

ô ñ

2 0
0 −1

ô

4. Check out rule 2) by computing the following product first by block multiplication,
then by ordinary matrix multiplication:

ñ

2 −3
4 1

ô ñ

1 0
0 −4

ô

5. Check out rule 3) by computing the following product first by block multiplication,
then by ordinary matrix multiplication:

ñ

0 −1
2 −1

ô ñ

0 1
0 1

ô

6. Check out rule 3) by computing the following product first by block multiplication,
then by ordinary matrix multiplication:

ñ

1 −2
3 −2

ô ñ

1 3
−1 2

ô

7. Let A = diag(a1, . . . , an) and B = diag(b1, . . . , bn). Show that AB = diag(a1b1, . . . ,
anbn).

8. Compute the inverse of

ñ

1 2
1 1

ô

.
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9. Compute the inverse of

ñ

1 1
0 −2

ô

.

10. Show that

ñ −1 2
2 −4

ô

is singular.

11. Determine whether

ñ

0 1
1 1

ô

is singular or nonsingular.

12. Let B = {(1, 2), (0, 1)} and C = {(−1, 0), (0, 2)} be bases for R2. Find the inverse of
the matrix IC

B
and express it as the matrix of a linear transformation.

13. Let A and B be 3× 3 matrices and assume AB = I. Show that BA = I.

14. Assume that A and B are nonsingular n × n matrices. Prove that AB is nonsingular
and that (AB)−1 = B−1A−1.

3.5 Change of Basis

We return now to the idea of the matrix of a linear transformation that was defined in
Section 3.2. In this section we propose to answer two questions: First, how does the matrix
of a transformation relate to the operation performed on the vectors by the transformation,
and second, what happens to the matrix of a transformation when the bases are changed?
This investigation will lead us to important new relationships between matrices: equivalence
and similarity. An idea that is explored in Chapters 5 and 6 emerges here: Given a lin-
ear transformation, perhaps a special basis can be found so that the matrix of the linear
transformation, relative to this basis, is simple and the transformation can be more easily
understood.

LINEAR TRANSFORMATIONS AND MATRIX MULTIPLICA-
TION

Let T : U → V be a linear transformation and let B = {X1, . . . , Xn} and C = {Y1, . . . , Ym}
be bases for U and V, respectively. Let A = [aij ] = TC

B
. If X ∈ U, then X = x1X1 + . . .+

xnXn for some scalars x1, . . . , xn. The scalar xi is the i-th coordinate of X relative to
the basis B. The column vector consisting of these coordinates is denoted by XB. With
the above notation,

XB =













x1

x2
...
xn













.

Now computing T (X) under the above assumptions, we get:
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T (X) = T (x1X1 + . . .+ xnXn) =
n
∑

j=1

xjT (Xj) =
n
∑

j=1

xj

m
∑

i=1

aijYi =
m
∑

i=1

Ñ

n
∑

j=1

aijxj

é

Yi.

Computing the product of the matrices A and XB, we get:

AXB =













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn





















x1
...
xn









=









a11x1 + . . . a1nxn
...

am1x1 + . . .+ amnxn









.

By comparing the coefficients of Yi in the expansion of T (X) with the i-th entry of AXB

we see that T (X)C = AXB, and so we have proved:

Theorem 3.5.1. With the above notation, T (X)C = AXB.
(The image of a vector under a linear transformation can be obtained by matrix multiplication.)

The above theorem almost says that T (X) = AX . This is true, provided that the vectors
X are column vectors and the bases B and C are the standard bases. Consider the linear
transformation T : R3 → R2 defined by T (x, y, z) = (2x+ z, x+ y + z). Let us calculate the
matrix A = TE′

E
where E and E′ are the standard bases for R3 and R2 respectively. Now

T (1, 0, 0) = (2, 1) = 2(1, 0) + 1(0, 1)

T (0, 1, 0) = (0, 1) = 0(1, 0) + 1(0, 1)

T (0, 0, 1) = (1, 1) = 1(1, 0) + 1(0, 1)

and so

A = TE′

E
=

ñ

2 0 1
1 1 1

ô

.

Now

AXE =

ñ

2 0 1
1 1 1

ô







x
y
z





 =

ñ

2x+ z
x+ y + z

ô

and T (XE) =

ñ

2x+ z
x+ y + z

ô

.

Notice the unnaturalness in the switch of (2x + z, x + y + z) to

ñ

2x+ z
x+ y + z

ô

. This

difficulty comes from two traditional practices - writing functions on the left and writing
vectors as rows instead of columns. A change in either of these would simplify matters.
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CHANGING THE BASIS

The following theorem describes what happens to the matrix of a linear transformation when
the bases are changed.

Theorem 3.5.2. Let T : U → V be a linear transformation; B,B′ bases for U and
C, C′ bases for V. If P = [IU : B′,B], Q = [IV : C,C′], and A = [T : B,C], then
[T : B′,C′] = QAP . In addition, P and Q are nonsingular.
(To change bases in the matrix of a transformation, left multiply by [I : B′,B] and right multiply by [I : C,C′].)

Proof. By Theorem 3.3.1, we have QAP = [IV : C,C′][T : B,C][IU : B′,B] = [IVT :
B,C′][IU : B′,B] = [IVTIU : B′,C′] = [T : B′,C′] since T = IVTIU. By Theorem 3.3.1, P
and Q are nonsingular.

Corollary 3.5.3. If T : U → U is a linear transformation, B and C are bases for U, and
A = TB

B
, then TC

C
= PAP−1, where P = IC

B
.

Proof. Since P−1 = IB
C
, we have by Theorem 3.5.2 that PAP−1 = TC

C
.

This “change of basis” theorem and its corollary are not easy to recall, but as with
Theorem 3.2.1, there is a picture that makes it easier to remember. Let T : U → V be a
linear transformation, where U and V are finite-dimensional vector spaces with bases B and
C respectively. To change the basis C, add the identity transformation IV : V → V on the
right and to change B, add the identity transformation IU : U → U on the left. Remember
the picture:

IU T IV
U → U → V → V
| | | |
B′ B C C′

and write the appropriate product of matrices using the order determined by the composite:
IVTIU.

Given two matrices, they might both be matrices for a given linear transformation. This
provides a relationship between matrices.

EQUIVALENCE AND SIMILARITY

We make two definitions concerning matrices that are related in a manner similar to the
above theorem and corollary.

Definition 3.5.1. Two m × n matrices A and B are equivalent if and only if there is a
nonsingular m×m matrix P and a nonsingular n× n matrix Q such that A = PBQ. Two
n× n matrices A and B are similar if and only if there is a nonsingular matrix S such that
S−1BS = A.
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In Chapters 5 and 6 we will study similarity of matrices. Recall that in Chapter 2, we
introduced the notion of row-equivalence. In the next section, we will show the relationship
between these two “equivalences.”

We conclude this section with some examples illustrating the change of basis process.

Example 3.5.1. First, let’s just change the basis with no other linear transformation involved.
That is, we will take T to be the identify transformation I. Let B = {(3, 1), (2,−3)} and
C = {(−1, 4), (1, 2)} be bases for R2. It is more complicated than we would like to express
the vectors in B in terms of those in C, so let’s work around that. Let E2 be the standard
basis for R2, and notice that

IE2

B
=

ñ

3 2
1 −3

ô

and IE2

C
=

ñ −1 1
4 2

ô

.

Now

IC
B
= IC

E2
IE2

B

= (IE2

C
)−1IE2

B

= −1

6

ñ

2 −1
−4 −1

ô ñ

3 2
1 −3

ô

= −1

6

ñ

5 7
−13 −5

ô

.

Thus, if (for example) vB =

ñ

4
1

ôB

, then

vC = IC
B
vB = −1

6

ñ

5 7
−13 −5

ô ñ

4
1

ôB

= −1

6

ñ

27
−57

ô

= −1

2

ñ

9
−19

ôC

.

We can check that this is correct. In the standard basis,

vB =

ñ

4
1

ôB

= 4

ñ

3
1

ô

+ 1

ñ

2
−3

ô

=

ñ

14
1

ô

.

On the other hand,

vC = −1

2

ñ

9
−19

ôC

= −1

2

Ç

9

ñ −1
4

ô

− 19

ñ

1
2

ôå

= −1

2

ñ −28
−2

ô

=

ñ

14
1

ô

,

the same thing!
Notice that we are not indicating the basis in a superscript when we are presenting vectors

in the standard basis.

�
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Example 3.5.2. Let T : R2 → R2 be defined by T (x, y) = (x− y, 2x). Let B = {(1, 0), (0, 1)}
be the standard basis for R2 and let C = {(2, 1), (1, 0)}. Then T (1, 0) = (1, 2) and T (0, 1) =
(−1, 0), so

TB

B
=

ñ

1 −1
2 0

ô

.

We can now compute IC
B
:

I(1, 0) = (1, 0) = 0(2, 1) + 1(1, 0)

I(0, 1) = (0, 1) = 1(2, 1) + (−2)(1, 0)

and so IC
B
=

ñ

0 1
1 −2

ô

.

Likewise, I(2, 1) = (2, 1) and I(1, 0) = (1, 0), so

IB
C
=

ñ

2 1
1 0

ô

.

(Recall that IC
B
= (IB

C
)−1.)

By Theorem 3.5.2 and its corollary, we then have the following:

TC

B
= IC

B
TB

B
=

ñ

0 1
1 −2

ô ñ

1 −1
2 0

ô

=

ñ

2 0
−3 −1

ô

and

TC

C
= TC

B
IB
C
=

ñ

2 0
−3 −1

ô ñ

2 1
1 0

ô

=

ñ

4 2
−7 −3

ô

.

Also note

IC
C
IC
B
IB
C
=

ñ

0 1
1 −2

ô ñ

2 1
1 0

ô

=

ñ

1 0
0 1

ô

= I2,

but this is as expected.

�

Example 3.5.3. Define T : R2 → R3 by T (x, y) = (4x − 2y, 2x + y, 3x − y), and let B =
{(3, 1), (2, 2)} and C = {(4, 1, 1), (2, 3, 1), (−1, 1, 2)} be bases for R2 and R3, respectively.
We will find TC

B
.

First, note that TC

B
= IC

E3
TE3

E2
IE2

B
, where E2 and E3 are the standard bases of R2 and

R3, respectively. Since T (1, 0) = (4, 2, 3) and T (0, 1) = (−2, 1,−1), we find

IC
E3

= (IE3

C
)−1 =

Ü







4 2 −1
1 3 1
1 1 2







E3

C

ê−1

=
1

20







5 −5 5
−1 9 −5
−2 −2 10







C

E3

(courtesy of Python),
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TE3

E2
=







4 −2
2 1
3 −1







E3

E2

, and

IE2

B
=

ñ

3 2
1 2

ôE2

B

, giving us

TC

B
= IC

E3
TE3

E2
IE2

B
=







5 −5 5
−1 9 −5
−2 −2 10







C

E3







4 −2
2 1
3 −1







E3

E2

ñ

3 2
1 2

ôE2

B

=
1

20







55 10
13 30
46 20







C

B

.

As a partial check, note that T (3, 1) =







10
7
8





 =
1

20







55 10
13 30
46 20







C

B

ñ

1
0

ôB

. Verify that T

and multiplication by TC

B
take (2, 2) =

ñ

0
1

ôB

to the same place. (You should get (4, 6, 4)

in the standard basis in both cases.)

�

Section 3.5 Exercises

1. Let B be the basis {(1, 1), (1,−1)} for R2 and let X = (2, 1) ∈ R2. Calculate XB.

2. With B as in Exercise 1, calculate XB, where X = (−1, 3).

3. Let B be the basis {(1, 0, 0), (1, 1, 0), (1, 1, 1)} for R3 and let X = (0, 1, 2). Calculate
XB.

4. With B as in Exercise 3, calculate XB, where X = (2, 3,−1).

5. Let E be the standard basis for R2. Determine XE where X = (−3, 2).

6. Let E be the standard basis for R2. Show that for any X = (x, y) ∈ R2, XE =

ñ

x
y

ô

.

7. Let D = {(1, 1), (0, 1)}. With T and B as in Example 3.5.2, compute [I : B, D], [T :
B, D], [I : D,B], and [T : D,D]. Show that

[T : D,D] = [T : B, D][I : D,B] and that [I : D,B][I : B, D] = I2.

8. With T and B and C as in Example 3.5.2 above, compute matrices P and Q such that
P [T : C,B]Q = [T : B,C]. Express P and Q in the form [I :?, ?].

9. Define T : R3 → R3 by T (x, y, z) = (x− y, z, 2y). Let B = {(0, 1, 0), (1, 0, 0), (0, 0, 1)}
and C = {(1, 0, 0), (1, 0,−1), (0, 1, 2)}. Compute [T : C,B] and then find matrices P
and Q such that P [T : C,B]Q = [T : B,C]. Express P and Q in the form [I :?, ?].



134 CHAPTER 3. LINEAR TRANSFORMATIONS AND MATRICES

10. Define T : R3 → R3 by T (x, y, z) = (x+ 2y, x− y, 2y − z). Let B = {(1, 0, 0), (1, 0, 1),
(2, 1,−2)} and C = {(1, 0, 0), (0, 0, 1), (0, 1, 0)}. Compute TB

C
and then find matrices

P and Q such that TB

C
Q = TC

B
. Express P and Q in the form I?? .

11. With T,B, and C as in Exercise 9, calculate A = TC

B
, XB, and T (X)C, where X =

(x, y, z) is an arbitrary vector in R3. Show that AXB = T (X)C.

12. Show that a nonsingular n× n matrix A is equivalent to In.

13. Show that if A is an n× n matrix and A is similar to In, then A = In.

3.6 Row and Column Operations and Change of Basis

In this section, we wish to investigate the relationship between operations on matrices for
linear transformations and certain changes in basis. We will relate each elementary row and
column operation to a corresponding change in one of the two bases.

In Section 1.3, we introduced elementary row operations. These operations arose natu-
rally as “legal” operations that could be performed on the augmented matrix of a system of
linear equations; that is, operations that would preserve the solution set. The three types of
elementary row operations are denoted by Rik, Ri(a), and Rik(a). Recall that Rik indicates
that rows i and k are interchanged, Ri(a) represents that row i is multiplied by a, and Rik(a)
stands for the operation of adding a times row i to row k (remember that when the operation
Rik(a) is performed, row i remains unchanged).

Associated with each elementary row operation there is an elementary matrix that is
obtained by performing the given elementary row operation on the identity matrix. We use
the same notation for the elementary row operation as the elementary matrix, so for n× n
matrices:

Rik is In with rows i and k switched
Ri(a) is In with row i multiplied by a
Rik(a) is In with a times row i added to row k.

Now by Theorem 1.4.3, performing an elementary row operation on a matrix A and left
multiplication of A by the corresponding elementary matrix E give the same result; that is,
the result of the product EA is the same as the matrix A with the elementary row operation
performed on it.

ROW OPERATIONS AND CHANGE OF BASIS

Let T : U → V be a linear transformation, let B = {X1, . . . , Xn} be a basis for U and let
C = {Y1, . . . , Ym} be a basis for V. The matrix A = [aij ] = TC

B
is determined by:

T (X1) = a11Y1 + . . . + am1Ym

T (X2) = a12Y1 + . . . + am2Ym
...

...
...

T (Xn) = a1nY1 + . . . + amnYm

(3.6.1)
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For changes in C we list the corresponding change in A = TC

B
:

Change in C Change in TC

B

(1) Interchange Yi and Yk Row i and row k are interchanged.

(2) Multiply Yi by 1/a, where Each element of row i is
a is a nonzero scalar. multiplied by a.

(3) Replace Yi by Yi − aYk, Each element akj of row k
where a is some scalar. replaced by akj + aaik; that is,

a times the i-th row vector is added
to the k-th row vector.

(1) and (2) are straightforward. To see that (3) holds, note that

T (Xj) = a1jY1 + . . .+ aijYi + . . .+ amjYm

= a1jY1 + . . .+ aij(Yi − aYj) + . . .+ (akj + aaij)Yk + . . .+ amjYm.

The reader should verify that each of the changes in C above yields a new basis C′.
Changing the basis C to the basis C′ has the following effect (by the results of Section 3.4)
on the matrix of T : TC′

B
= IC

′

C
TC

B
].

From Section 3.5 we know that to change TC

B
to TC

′

B
, we must multiply TC

B
on the left

by IC
′

C
. To compute IC

′

C
, we need only change the second basis C′. But we have already

determined how to do this for any transformation. It follows that IC
′

C
is just Im with the

corresponding operation performed on the rows of Im. We see that elementary row operations
and elementary matrices occur in the context of change of basis.

COLUMN OPERATIONS AND CHANGE OF BASIS

Let us now consider certain changes in the basis B using the relations 3.6.1. Because, in
effect, the elements of the basis B correspond to the columns of the matrix of the linear
transformation, changes in B correspond to changes in the columns of the matrix. Again we
list the changes in TC

B
corresponding to changes in B.

Change in B Change in TC

B

(1) Interchange Xk and Xj Columns k and j are interchanged.

(2) Multiply Xj by a Column j is multiplied by a

(3) Replace Xj by Xj + aXk a times column k is added to column j.

Now as before we can apply the results of Section 3.4 to obtain the relationship between
TC

B
and TC

B′ , where B′ is the new basis obtained from B by making the changes listed under
“change in B” above. We get:
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TC

B′ = TC

B
IB
B′. (3.6.2)

Just as before, the matrix IB
B′ can be obtained from the n × n identity matrix In by

performing the operations listed in the above table. This results in the elementary column
matrices:

1. Ckj is In with columns k and j interchanged.

2. Cj(a) is In with column j multiplied by a.

3. Ckj(a) is In with a times column k added to column j.

The operations listed in the table above “change in TC

B
” are called elementary column

operations, and as with elementary row operations, an elementary column operation can
be performed by multiplying by the corresponding elementary column matrix. There is
a dissimilarity, however: from Equation 3.6.2 we see that the column elementary matrix
appears on the right, not the left. We have proved the following:

Theorem 3.6.1. Let A be an m × n matrix. Then any one of the el-
ementary column operations can be performed on A by multiplying A
on the right by the corresponding n × n elementary column matrix.
(A column operation is performed by right multiplying by the column elementary matrix.)

Theorem 3.6.1 makes it easy to compute products of elementary column matrices. The
procedure is like that for the elementary row matrices, except that one works from the left
to right. Consider the following product of 2× 2 elementary column matrices:

C12C2(2)C12(−1)C21(2) =

ñ

0 1
1 0

ô

C2(2)C12(−1)C21(2)

=

ñ

0 2
1 0

ô

C12(−1)C21(2)

=

ñ

0 2
1 −1

ô

C21(2)

=

ñ

4 2
−1 −1

ô

.

ROW VS. COLUMN OPERATIONS

By considering the following “examples” of 3 × 3 and 4 × 4 matrices one can easily see the
relationship between the row and column elementary matrices.

Example 3.6.1.

R13 =







0 0 1
0 1 0
1 0 0





 = C13, R23 =











1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1











= C23, R2(a) =







1 0 0
0 a 0
0 0 1





 = C2(a),
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R13(a) =







1 0 0
0 1 0
a 0 1





 = C31(a), R23(a) =











1 0 0 0
0 1 0 0
0 a 1 0
0 0 0 1











= C32(a).

�

From this it is not hard to see the following theorem.

Theorem 3.6.2. Every elementary row matrix is also an elementary column matrix.
In fact:

1. Rij = Cij

2. Ri(a) = Ci(a)

3. Rij(a) = Cji(a).

(Row elementary matrices are also column elementary matrices.)

Every elementary matrix is a nonsingular matrix. To see this one need only calculate the
following products by considering the effect of multiplication by an elementary matrix:

RikRik = I CkjCkj = I
Ri(1/a)Ri(a) = I Ci(a)Ci(1/a) = I
Rik(−a)Rik(a) = I Ckj(a)Ckj(−a) = I

We see that the following theorem is true.

Theorem 3.6.3. Every elementary matrix is nonsingular. In fact,

1. R−1
ik = Rik, C

−1
kj = Ckj

2. Ri(a)
−1 = Ri(1/a), Ci(a)

−1 = Ci(1/a)

3. Rik(a)
−1 = Rik(−a), Ckj(a)

−1 = Ckj(−a)

(The inverse of an elementary matrix is an elementary matrix.)

We present now a sequence of results that show that every nonsingular matrix is a
product of elementary matrices, and then find a practical method for finding the inverse of
a nonsingular matrix.

Theorem 3.6.4. Let A1, . . . , Am be nonsingular n×n matrices and let P = A1 . . . Am

be their product. Then P is nonsingular and P−1 = A−1
m . . . A−1

1 .
(The inverse of a product is the product of the inverses in the reverse order.)
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Proof. A formal proof requires mathematical induction; we will use an informal approach.
For i = 1, . . . , m,AiA

−1
i = A−1

i Ai = I. Using this fact repeatedly, we see that

(A−1
m . . . A−1

1 )P = (A−1
m . . . A−1

1 )(A1 . . . Am)

= (A−1
m . . . A−1

2 )(A−1
1 A1)(A2 . . . Am)

= (A−1
m . . . A−1

2 )I(A2 . . . Am)

= (A−1
m . . . A−1

2 )(A2 . . . Am)

...

= A−1
m Am

= I.

Likewise, (A1 . . . Am)(A
−1
m . . . A−1

1 ) = I, and so P is nonsingular with P−1 = (A−1
m . . . A−1

1 ).

Combining Theorems 3.6.3 and 3.6.4, we get the following corollary.

Corollary 3.6.5. A product E1 . . . Em of elementary matrices E1, . . . , Em is a nonsingular
matrix. (A product of elementary matrices is nonsingular.)

We need two preliminary results for the next theorem. The proofs are left as exercises.

Lemma 3.6.6. A product P = E1 . . . Em of n× n elementary row matrices E1, . . . , Em is a
matrix of rank n. (A product of elementary matrices has rank n.)

Lemma 3.6.7. If B is an n × n matrix in reduced echelon form and B has rank n, then
B = In. (The only n× n matrix in reduced echelon form with rank n is the identity matrix.)

Note that the converse of the above Lemma is also true: If B = In, then B has rank n.
If B has rank less than n, then B must have a row of zeros (remember that B is an n × n
matrix in reduced echelon form). A nonsingular matrix cannot have a row of zeros. To see
this, assume that A is an n×n matrix with a row of zeros. Then any product AC has a row
of zeros and so AC 6= I for any matrix C. This means that A cannot have an inverse and so
A is singular. We will use this principle in Chapter 4.

Theorem 3.6.8. Let A be an n × n nonsingular matrix. Then A is a product of
elementary row matrices, and so also a product of elementary column matrices.
(A nonsingular matrix is a product of elementary matrices.)

Proof. Let B be the reduced echelon form of A. We will see that B is the the identity
matrix. Since B is obtained from A by elementary row operations, there is a product P of
elementary row matrices with PA = B. Now assume that B has rank r and r < n. Then it
follows, since B is n × n, that the last row of B is all zeros. Now multiplying PA = B by
A−1 we get (PA)A−1 = BA−1 or P (AA−1) = PI = P = BA−1. Now by Lemma 3.6.6, P
has rank n, but the product BA−1 has a row of zeros (since B does), and so its rank must



3.6. ROW AND COLUMN OPERATIONS AND CHANGE OF BASIS 139

be less than n. This is a contradiction, and so our assumption that the rank r of B was less
than n must be wrong. We conclude that the rank of B is n, and so using Lemma 3.6.7,
we see that B = I. From this we see that PA = I where P is a product of elementary row
matrices, say P = E1 . . . Em. Now solving E1 . . . EmA = I for A we get:

A = E−1
m . . . E−1

2 E−1
1 I = E−1

m . . . E−1
2 E−1

1 .

Since each Ei is an elementary row matrix, the inverse E−1
i is also an elementary row

matrix by Theorem 3.6.3.

We illustrate the proof of Theorem 3.6.8 with an example.

Example 3.6.2. Let A =







0 1 0
2 2 −1
−1 0 1





 . To express A as a product of elementary row

matrices, we begin by reducing A to its reduced echelon form, keeping track of the row
operations used:

R13 R1(−1)






0 1 0
2 2 −1
−1 0 1





 −→







−1 0 1
2 2 −1
0 1 0





 −→







1 0 −1
2 2 −1
0 1 0







R12(−2) R2(1/2) R23(−1)−→







1 0 −1
0 2 1
0 1 0





 −→







1 0 −1
0 1 1/2
0 1 0





 −→







1 0 −1
0 1 1/2
0 0 −1/2







R3(−2) R32(−1/2) R31(1)−→







1 0 −1
0 1 1/2
0 0 1





 −→







1 0 −1
0 1 0
0 0 1





 −→







1 0 0
0 1 0
0 0 1







= B.

Since the matrix A is nonsingular, the reduced echelon form B of A is I3 and so we get

R31(1)R2(1/2)R3(−2)R23(−1)R2(1/2)R12(−2)R1(−1)R13A = I. (3.6.3)

Multiplying both sides of the above identity successively by the inverses of the elementary
matrices, we solve for A and obtain

A = R−1
13 R1(−1)−1R12(−2)−1R2(1/2)

−1R23(−1)−1R3(−2)−1R2(1/2)
−1R31(1)

−1I

= R13R1(−1)R12(2)R2(2)R23(1)R3(−1/2)R2(2)R31(−1).

We see that we have expressed A as a product of elementary matrices.

�



140 CHAPTER 3. LINEAR TRANSFORMATIONS AND MATRICES

In the above example, the inverse of the matrix A appeared as the product of the elemen-
tary matrices in the identity 3.6.3. If A is an n × n matrix and E1, . . . , Em are elementary
matrices with E1 . . . EmA = In, then it appears that the product P = E1 . . . Em is the inverse
of A. One must check, however, that AP = I. To see this, move the E’s to the right side of
the identity by successively multiplying on the left by inverses. We get

A = E−1
m . . . E−1

1 I = IE−1
m . . . E−1

1

Now move the E’s to the left side by successively multiplying on the right to obtain:

AE1 . . . Em = I.

From this we can see that PA = AP = I, and so A is nonsingular and P = A−1.
There is an easy method for obtaining the inverse of a nonsingular matrix, especially

for those with a computer program for obtaining the reduced echelon form of a matrix. As
above, assume that A is an n × n matrix with E1, . . . , Em elementary matrices with the
product:

E1 . . . EmA = I.

Adjoin the n × n identity matrix to obtain the “partitioned” matrix [A|In]. Now using
block multiplication we see that E1 . . . Em[A|In] = [E1 . . . EmA|E1 . . . EmIn] = [In|E1 . . . Em],
and E1 . . . Em is the inverse of A. We have shown:

Theorem 3.6.9. If A is an n × n matrix and [In|P ] is the reduced echelon form of
[A|In], then P = A−1. (If [A|I] is reduced to reduced echelon form, the inverse of A appears on the right.)

Section 3.6 Exercises

1. Using row operations compute the following product of 2×2 elementary row matrices:
R12R2(−1)R12(2)R21(−3).

2. Using row operations compute the following product of 3×3 elementary row matrices:
R23R1(−3)R13(2)R12(−2).

3. Using column operations, compute the following product of 2 × 2 elementary column
matrices: C21C21(3)C2(−2)C12(−2).

4. Using column operations, compute the following product of 3 × 3 elementary column
matrices: C31C32(2)C3(−1)C13(−3)C23.

5. Using the “C-notation,” express each of the following 2 × 2 elementary row matrices
as column elementary matrices:

(a) R12
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(b) R2(1/2)

(c) R21(−1)

(d) R12(2)

6. Using the “R-notation,” express each of the 2 × 2 elementary column matrices as
elementary row matrices:

(a) C12

(b) C2(−1)

(c) C12(2)

(d) C21(−2)

7. Using the “R-notation,” express each of the following 3×3 elementary column matrices
as elementary row matrices:

(a) C13

(b) C1(−3)

(c) C23(−2)

(d) C12(3)

8. Express the inverses of the 2× 2 elementary row matrices in Exercise 5 as elementary
row matrices.

9. Express the inverses of the 2×2 elementary column matrices in Exercise 6 as elementary
column matrices.

10. Express the inverses of the 3×3 elementary column matrices in Exercise 7 as elementary
column matrices.

11. Prove Lemma 3.6.6.

12. Prove Lemma 3.6.7.

13. Find the inverse of

ñ

1 2
−1 3

ô

by using the method of Theorem 3.6.9.

14. Express the matrix in Exercise 13 as a product of row elementary matrices.

15. Express the matrix







0 0 2
1 0 1
2 −1 3





 as a product of elementary matrices and find its

inverse.

16. Let A be a nonsingular n×n matrix. Show that A−1 is nonsingular and that (A−1)−1 =
A.
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Chapter 4

DETERMINANTS

4.1 Definitions and Elementary Properties

Associated with every square (that is, n × n for some n) matrix there is a scalar quantity
called the determinant of the matrix. The determinant of a matrix is rich in interesting
properties and we will see that using the determinant, the inverse of a nonsingular matrix
can be calculated and certain systems of linear equations can be solved. On the surface, it
appears that the determinant is of importance as a computational tool, but we will see that
it is of more importance as a theoretical tool and that computationally it is not worthwhile
for work on large matrices. Systems of linear equations can be solved and inverses can be
calculated more efficiently using row operations and the technique of reduction to echelon
form. The determinant will be essential in calculating eigenvalues in Chapter 5.

From the complicated definition of the determinant given below it is unclear how anyone
could have ever thought to study this quantity. Consider a general system of two linear
equations in the unknowns x and y:

ax+ by = h
cx+ dy = k

(4.1.1)

Solving for x and y (if possible), we get:

x =
dh− bk

ad− bc

y =
ak − ch

ad− bc

The quantity ad − bc in the denominator is, according to the definition below, the de-
terminant of the coefficient matrix of the system 4.1.1.

4.1.1 THE DEFINITION

We define the determinant, |A|, of an n× n matrix A = [aij ] inductively as follows:
If A = [aij ] is 1× 1, we define |A| = a11. Assume that the determinant of any (n− 1)×

(n−1) or smaller matrix has been defined and let A = [aij ] be n×n. For any i, j, 1 ≤ i, j ≤ n,

143
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let Mij be the matrix obtained by omitting row i and column j from the matrix A; Mij is
called the minor of aij . Then Mij is (n − 1) × (n − 1), so |Mij| is defined. The cofactor
of aij is defined to be (−1)i+j |Mij|. The determinant of the n × n matrix A = [aij ] is now
defined by:

|A| =
n
∑

j=1

a1jA1j ,

where A1j is the cofactor of a1j .
To illustrate the definition we compute the determinants of general 2 × 2 and 3 × 3

matrices:

∣

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

∣

= a11(−1)1+1|[a22]|+ a12(−1)1+2|[a21]| = a11a22 − a12a21

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

∣

− a12

∣

∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

∣

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Note that in these two cases the determinants are the sum, with the appropriate sign + or
−, of all possible products of entries of the matrix, where exactly one entry in each product
comes from each row and each column. This rule holds in general; that is, |[aij]| is the sum of
all products ±a1j1 . . . anjn , where j1, j2, . . . , jn is a listing of the integers 1, 2, . . . , n in some
particular order. Knowing this, the following two theorems are believable, but the proofs
are complicated and we postpone them until Appendix 6.

PROPERTIES OF THE DETERMINANT

The following three theorems give properties of the determinant. The definition of the
determinants states that the determinant of a matrix is the sum of the products of each
entry in row one times their cofactors. The first theorem states that any row or column can
be used instead of row one and that the resulting sum of the products will be the same.

Theorem 4.1.1. Let A = [aij ] be an n× n matrix. Then

|A| =
n
∑

j=1

aijAij (expansion along row i), and

|A| =
n
∑

i=1

aijAij (expansion down column j).

(Expansion along any row or column gives the determinant.)

For example, expanding the determinant of a general 3× 3 matrix first along row 2 and
then along column 1, we get:
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∣

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= a21(−1)3
∣

∣

∣

∣

∣

a12 a13
a32 a33

∣

∣

∣

∣

∣

+ a22(−1)4
∣

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

∣

+ a23(−1)5
∣

∣

∣

∣

∣

a11 a12
a31 a32

∣

∣

∣

∣

∣

= a11(−1)2
∣

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

∣

+ a21(−1)3
∣

∣

∣

∣

∣

a12 a13
a32 a33

∣

∣

∣

∣

∣

+ a31(−1)4
∣

∣

∣

∣

∣

a12 a13
a22 a23

∣

∣

∣

∣

∣

.

You should verify that the two expansions above are in fact equal.
The above theorem allows one to take advantage of a row or column containing several

zeros to simplify the computation of the determinant of a matrix.

Example 4.1.1.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 −1 0
4 3 1 2
−1 0 1 0
3 0 2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2(−1)6

∣

∣

∣

∣

∣

∣

∣

1 2 −1
−1 0 1
3 0 2

∣

∣

∣

∣

∣

∣

∣

= 2(2(−1)3)

∣

∣

∣

∣

∣

−1 1
3 2

∣

∣

∣

∣

∣

= −4(−2 − 3)

= 20,

where the first expression used column four and the second expression used column two
of the 3× 3 determinant.

�

Theorem 4.1.2. Let A be an n× n matrix and let B be the matrix obtained from A
by interchanging two of the rows (or columns) of A. Then |B| = −|A|.
(Switching rows or columns changes the sign of the determinant.)

Using elementary row and column matrices, the above result can be stated as:

|RikA| = −|A| and |ACkj| = −|A|.
The theorem is seen to be true for 2× 2 matrices since

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

= ad− bc,

but

∣

∣

∣

∣

∣

c d
a b

∣

∣

∣

∣

∣

= cb− ad = −(ad− bc) and

∣

∣

∣

∣

∣

b a
d c

∣

∣

∣

∣

∣

= bc− ad = −(ad− bc).

Knowing the theorems above, it is easy to establish many properties of determinants.
We must recall a definition that we made in Section 1.2: for an m× n matrix A = [aij ], the
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transpose of A is the n × m matrix At = [bij ], where bij = aji for all i, j. In effect, the
transpose of a matrix is simply the matrix obtained by switching the rows and columns of
the original matrix.

Example 4.1.2. If

A =

ñ

1 2 1
3 1 2

ô

,

then

At =







1 3
2 1
1 2





 .

�

Theorem 4.1.3. Let A = [aij ] be an n× n matrix. Then

(a) |A| = |At|, where At is the transpose of A.
(A matrix and its transpose have the same determinant.)

(b) If all the entries in one row or column of A are zero, then |A| = 0.
(A row of zeros makes the determinant zero.)

(c) If B is obtained from A by multiplying each entry of one row or one column by
a scalar c, then |B| = c|A|; that is, |Ri(c)A| = |ACj(c)| = c|A|.
(If a row is multiplied by a scalar, the determinant is multiplied by that scalar.)

(d) |cA| = cn|A|.

(e) If A is partitioned into column vectors A = [X1 . . .Xn] and B is an n×n matrix
that differs from A only in column k, say B = [X1 . . . Yk . . .Xn], then |A|+ |B| =
|[X1 . . .Xk . . .Xn]| + |[X1 . . . Yk . . .Xn]| = |[X1 . . .Xk + Yk . . .Xn]|. The corre-
sponding result is true for rows. (The determinant preserves addition in rows or columns.)

(f) If A has two rows that are the same, then |A| = 0. If one row of A is a multiple
of another row of A, then |A| = 0. A similar result holds true for columns.
(If two rows are the same, the determinant is 0.)

(g) If a multiple of one row of A is added to another row of A, then the determinant
of A is unchanged; that is, |Rik(a)A| = |A|. The corresponding result is true for
columns. (Adding a multiple of a row or a column to another doesn’t change the determinant.)

Proof. (a) The expansion of |A| by row 1 is identical to the expansion of |At| by column 1,
except that the minors of one expression are the transposes of the minors in the other
expression. This allows an easy induction proof. See Exercise 6.

(b) Expand along the row or column of zeros.
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(c) Expand along the row or column in question and factor out the scalar c.

(d) Apply (c) to each row of cA.

(e) Expand along column k and apply the distributive law.

(f) Interchanging the identical rows we see that |A| = −|A|, so |A| = 0. For the second
part, apply (c) and then the first part.

(g) This is a little harder. Assume k < j.

|Rij(a)A| = |[X1 . . .Xk + cXj . . .Xn]|
= |[X1 . . .Xk . . .Xn]|+ |[X1 . . . cXj . . .Xj . . . Xn]|
= |[X1 . . .Xk . . .Xn]|+ c|[X1 . . .Xj . . .Xj . . . Xn]|
= |[X1 . . .Xk . . .Xn]|

since |[X1 . . .Xj . . .Xj . . .Xn]| = 0 (because two columns are the same).

Similar proofs work for either rows or columns.

Parts (c) and (e) of the theorem above state that the determinant, when considered as a
function of a single row or column, has the properties of a linear transformation.

Example 4.1.3. We can use row and column operations to simplify the computation of a
determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 0 1
1 −1 2 0
0 3 1 2
0 1 4 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 3 −4 1
1 −1 2 0
0 3 1 2
0 1 4 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

performing R21[−2]

= −1

∣

∣

∣

∣

∣

∣

∣

3 −4 1
3 1 2
1 4 0

∣

∣

∣

∣

∣

∣

∣

expanding along column 1

= −

∣

∣

∣

∣

∣

∣

∣

3 −4 1
0 5 1
1 4 0

∣

∣

∣

∣

∣

∣

∣

performing R12[−1]

= −
Ç

3

∣

∣

∣

∣

∣

5 1
4 0

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

−4 1
5 1

∣

∣

∣

∣

∣

å

expanding down column 1

= −(−12− 9)

= 21.

�
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Section 4.1 Exercises

In Exercises 1 - 6 evaluate the determinant.

1.

∣

∣

∣

∣

∣

1 −3
2 1

∣

∣

∣

∣

∣

2.

∣

∣

∣

∣

∣

−1 5
−2 3

∣

∣

∣

∣

∣

3.

∣

∣

∣

∣

∣

∣

∣

2 3 −1
1 −3 2
4 2 6

∣

∣

∣

∣

∣

∣

∣

4.

∣

∣

∣

∣

∣

∣

∣

2 −3 2
1 3 2
−4 8 6

∣

∣

∣

∣

∣

∣

∣

5.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 1 2
0 2 −1 0
−2 4 −2 1
2 6 −5 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 4
−1 0 2 3
−2 0 3 −3
1 0 −3 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

7. Calculate the following determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 3 4 2
1 2 6 4 5
1 2 1 2 3
1 2 1 2 4
3 4 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

8. Expand the following determinant along row 1. Then expand along row 3, and finally
down column 3.

∣

∣

∣

∣

∣

∣

∣

1 −1 0
2 1 −1
4 3 1

∣

∣

∣

∣

∣

∣

∣

9. Compute the following determinant and evaluate the cofactor of the entry 6 in row 4
column 3.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 0
0 0 2 0
1 −1 1 2
0 4 6 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

10. Let A =

ñ

1 2
−1 3

ô

. Compute |A| and compute all of the cofactors A11, A21, A12, A22.

Now let B =

ñ

A11 A21

A12 A22

ô

. Compute AB and BA.

11. Prove Theorems 4.1.1 and 4.1.2 for 2× 2 matrices.

12. Let A =

ñ

1 2
2 1

ô

and B =

ñ

2 2
1 −1

ô

. Compute |A|, |B|, |AB|, and |BA|.

13. Complete the proof of Theorem 4.1.3 part (a) by using induction on the order n of the
matrix A.
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14. Prove: If D = diag(a1, . . . , an) is an n × n diagonal matrix, then |D| = a1a2 . . . an.
[Hint: Use mathematical induction.]

15. Let A and B be m× n matrices. Prove: (A+B)t = At +Bt

16. Let A be an m× n matrix and B be an n× r matrix. Prove: (AB)t = BtAt.

4.2 Determinant of a Product, Adjoints, etc.

In this section, we show that the determinant of a product of two matrices is the product of
the determinants, and then find a method, using determinants, for calculating the inverse of
a matrix.

The first theorem lists the determinants of the identity matrix and the elementary ma-
trices.

Theorem 4.2.1. 1. |In| = 1

2. |Rij| = −1 = |Cij|

3. |Ri(c)| = c = |Ci(c)|

4. |Rik(c)| = 1 = |Cik(c)|
(The determinants of the elementary matrices can be calculated using the properties of determinants.)

Proof. 1. The proof uses mathematical induction. For 1×1 matrices, we see that |I1| = 1.
Assume inductively that |In−1| = 1. Expand |In| along the first row. Then |In| =
(1)(|In−1|) = 1, and so by induction, |In| = 1 for all n.

2. Apply Theorem 4.1.2 to I.

3. Apply Theorem 4.1.3, part (c), to I.

4. Apply Theorem 4.1.3, part (g), to I.

Since the determinants of the elementary matrices follow from properties of the deter-
minant and since multiplication by an elementary matrix performs the corresponding row
operation of the given matrix, it is not hard to see that the determinant function preserves
products, that is, the determinant of a product of two matrices is the product of the de-
terminants of the matrices in the product. As a first step we consider the product of an
elementary matrix times an arbitrary matrix.
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THE DETERMINANT OF A PRODUCT

Theorem 4.2.2. If E is an elementary row matrix and A is any matrix, then |EA| =
|E||A|.

Proof. Multiplying A on the left by an elementary matrix performs the corresponding row
operation on A. Knowing this, apply Theorem 4.1.2 and the appropriate parts of Theorem
4.1.3 to each of the three cases of elementary matrices to finish the proof.

Theorem 4.2.3. If A is an n×n matrix, then A is nonsingular if and only if |A| 6= 0.
(A matrix is nonsingular iff it has nonzero determinant.)

Proof. If A is nonsingular, then A can be written as a product of elementary matrices
by Theorem 3.6.8, say A = E1 . . . Ek. Then |A| = |E1 . . . Ek| = |E1||E2 . . . Ek| = . . . =
|E1||E2| . . . |Ek|. Since the determinant of every elementary matrix is nonzero, |A| 6= 0.

Assume that A is singular, and let B be the row reduced echelon form for A; say PA = B,
where P is nonsingular. Then A = P−1B = E1 . . . EkB, where each Ei is an elementary
matrix. By Theorem 4.2.2, |A| = |E1| . . . |Ek||B|. Since A is singular, B is not the identity
matrix and must have at least one row of zeros (the bottom row) . It follows that |B| = 0,
and so |A| = 0.

Theorem 4.2.4. Let A and B be n× n matrices. Then |AB| = |A||B|.
(The determinant of a product is the product of the determinants.)

Proof. Assume first that A is nonsingular. Then A = E1 . . . En, so |AB| = |E1 . . . EkB| =
|E1| . . . |Ek||B| = |E1 . . . Ek||B| = |A||B|.

Conversely, assume that A is singular. Then AB is singular (See Exercise 10), so |AB| = 0
and |A| = 0. Again, we see that, |AB| = |A||B|.

We already know that

|A| =
n
∑

i=1

aijAij.

The following lemma completes this investigation and is essential in what follows.

Lemma 4.2.5. Let A = [aij ] be an n× n matrix. Then:

n
∑

i=1

aijAik =

® |A| if j = k
0 if j 6= k
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Proof. The j = k part is clear from Theorem 4.1.1. Assume j 6= k. Let B = [bij ] be the
matrix obtained from A by replacing the k-th column of A by the j-th column of A. Then
B has two columns that are the same, so |B| = 0. Expanding |B| down its k-th column we
get

|B| =
n
∑

i=1

bikBik.

But the k-th column of B is the same as the j-th column of A, so bik = aij . Also B
differs from A only in column k and so Bik = Aik for i = 1, . . . , n. We get

0 = |B| =
n
∑

i=1

bikBik =
n
∑

i=1

aijAik.

4.2.1 THE ADJOINT AND THE INVERSE OF A MATRIX

The theorem above makes it possible to calculate the product of a matrix and its transposed
matrix of cofactors. This transposed matrix of cofactors is called the adjoint of the matrix.

Definition 4.2.1. Let A = [aij ] be an n×nmatrix, and let Aij be the cofactor of aij. The ad-
joint of A is the matrix [Aij ]

t and is denoted by AdjA. (The adjoint is the transposed matrix of cofactors.)

It is a bit of a chore calculating the adjoint of a matrix. It is usually safest to calculate
the matrix of cofactors, and then in a separate step, take the transpose.

Example 4.2.1. Let

A =







1 2 −1
0 1 1
1 3 −2





 .

Then

AdjA = [Aij]
t =







−5 1 −1
1 −1 −1
3 −1 1







t

=







−5 1 3
1 −1 −1
−1 −1 1





 .

�

Theorem 4.2.6. Let A = [aij ] be an n × n matrix. Then (AdjA)(A) = (|A|)(In). If

|A| 6= 0, A is nonsingular and A−1 =
1

|A|(AdjA).
(The inverse of a nonsingular matrix is the adjoint divided by the determinant.)

Proof. Just compute it. Multiplying row k of AdjA and column j of A we get

n
∑

i=1

Aikaij = δjk|A|,
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and so
(AdjA)A = |A|In.

If we multiply both sides by A−1 and divide both sides by the scalar |A|, then we get

1

|A|(AdjA)AA
−1 =

|A|
|A|InA

−1

and so

A−1 =
1

|A|(AdjA).

Example 4.2.2. For an easy illustration, let

A =

ñ

1 2
−1 0

ô

.

Then |A| = 2, A11 = 0, A12 = 1, A21 = −2, and A22 = 1, and so

AdjA =

ñ

A11 A12

A21 A22

ôt

=

ñ

A11 A21

A12 A22

ô

=

ñ

0 −2
1 1

ô

and

A−1 =
1

|A|(AdjA) =
1

2

ñ

0 −2
1 1

ô

=

ñ

0 −1
1/2 1/2

ô

.

Computing, we get
ñ

1 2
−1 0

ô ñ

0 −1
1/2 1/2

ô

=

ñ

1 0
0 1

ô

.

�

Section 4.2 Exercises

1. Let A =

ñ

2 1
−1 3

ô

. Compute AdjA,AAdj(A), and A−1.

2. Let A =

ñ

3 2
−2 1

ô

. Compute AdjA,AAdj(A), and A−1.

3. Let A =







−1 0 2
2 1 −1
1 0 3





. Compute AdjA and A−1.

4. Let A =







1 0 −2
2 1 −1
1 0 3





. Compute AdjA and AAdj(A).
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5. Let A =







1 0 −2
0 1 0
1 1 3





 . Compute AdjA and AAdj(A).

6. Let A and B be n× n matrices with |A| = 2 and |B| = 3. Find |AB|.

7. Prove that if A is n× n and nonsingular, |AdjA| = |A|n−1. singular?

8. Let P be a matrix in which each row and each column contains exactly one 1, and all
other entries are zero. Prove that |P | = ±1. (Such a matrix is called a permutation
matrix.)

9. Let A and B be nonsingular n× n matrices. Discover and prove a nontrivial theorem
concerning Adj(AB).

10. Complete the proof of Theorem 4.2.4 by proving the following: If A and B are n× n
matrices and A is singular, then AB is singular. (Do not, of course, use Theorem 4.2.4
in your proof.) [Hint: Let PA be the reduced echelon form of A with P nonsingular.
Then PA has a row of zeros - Why?]

11. Prove: If A and B are n× n matrices, then |AB| = |BA|.

12. Let B be an n× n matrix that is in echelon form. Prove the following:

(a) If rank(B) = n, then |B| = 1.

(b) If rank(B) < n, then |B| = 0.

13. Theorems 4.2.1 and 4.2.4 can be used to find a method of calculating the determinant
of a matrix using the reduction of a matrix to echelon form. Use the following principle.
Let B be a matrix in echelon form that is row equivalent to the n×n matrix A, say with
B = E1 . . . EnA where E1, . . . , En are elementary matrices. Then |B| = |E1| . . . |En||A|.
Now |E1|, . . . , |En| are given by Theorem 4.2.1 and |B| can be found using Exercise 12
Describe the method.

4.3 Cramer’s Rule

In the previous section we saw that determinants can be used to calculate the inverse of a
matrix when one exists. This technique can be of use in solving systems of linear equations
when the coefficient matrix is nonsingular. In this section, we consider n × n systems of
equations AX = H where A is a nonsingular matrix. We have discussed nonsingular matrices
is several different places: Section 1.3 contained the definition; in Section 3.4 we saw that
the inverse of a matrix is unique, and that the identity transformation has a nonsingular
matrix; in Section 3.6 we proved that a nonsingular matrix is the product of elementary
matrices. It is time to collect these results together. The first theorem summarizes equivalent
characterizations of nonsingular matrices.
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Theorem 4.3.1. Let A be an n× n matrix. Then the following statements are equiv-
alent:

1. A is nonsingular (that is, A has an inverse)

2. |A| 6= 0

3. A is a product of elementary matrices

4. A has rank n (that is, the rows of A are linearly independent)

(Rank n, nonzero determinant, equal to a product of elementary matrices, and nonsingularity are equivalent.)

Proof. The equivalence of (a) and (b) is proved in Theorem 4.2.3; that is, (a) ⇔ b).

Assume that A is nonsingular. Then by Theorem 3.6.8, A = E1 . . . Em for some ele-
mentary matrices E1, . . . , Em, and so we see that (a) =⇒ (c). Since A is a product of
elementary matrices, A can be obtained from the identity matrix In by a sequence of row
operations. This means that A is row equivalent to In. By Theorem 2.8.1, row equivalent
matrices have the same rank, and since In has rank n, A must have rank n. We see that (c)
=⇒ (d).

Next, assume that A has rank n. If B is the reduced echelon form of A, then B has
rank n and since B is n × n, it follows that B = In. But the reduced echelon form of A is
obtained by a sequence of elementary row operations, and so B = E1 . . . EmA = In for some
elementary matrices E1, . . . , Em. Since each Ei is nonsingular by Theorem 3.6.3, we may
solve for A and obtain A = E−1

m . . . E−1
1 . It follows from Theorems 3.6.3 and 3.6.4 that A is

nonsingular. This proves that (d) =⇒ (a), and so the theorem is proved.

In beginning algebra we learn that to solve the equation ax = b, with a 6= 0, we can
divide both sides by a. If the coefficient matrix A is nonsingular, the same trick works for
the matrix equation AX = H.

Theorem 4.3.2. If A is nonsingular, then AX = H has the unique solution X =
A−1H. (To solve a matrix equation, divide by the coefficient matrix, if possible.)

Proof. To see that X = A−1H is a solution, we just calculate:

A(A−1H) = (AA−1)H = IH = H.

So we see that X = A−1H is a solution.

If X1 and X2 are both solutions, then AX1 = H = AX2. Multiplying both sides on the
left by A−1, we obtain
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A−1(AX1) = A−1(AX2)

(A−1A)X1 = (A−1A)X2

IX1 = IX2

X1 = X2.

It follows that the solution is unique.

A homogeneous system of equations AX = 0 always has the solution X = 0. Applying
the above theorem to this situation, we see that if A is n × n and nonsingular, then the
solution X = 0 is unique. From this it follows that if AX = 0 has a nonzero solution, then
A must be singular.

Now consider a system of equations AX = H , where

A =













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn













, X =









x1
...
xn









, and H =









h1
...
hn









.

We can apply the above theorem and the adjoint method of calculating the inverse
of a matrix to obtain the solution of a system of linear equations. By Theorem 4.2.6,
A−1 = (1/|A|)AdjA = (1/|A|)[Aij]

t, where Aij is the cofactor of aij , and so

X =









x1
...
xn









=
1

|A|













A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn





















h1
...
hn









.

To compute xi, multiply row i of AdjA by H and divide by |A|. We get

xi = (1/|A|)(h1A1i + h2A2i + . . .+ hnAni).

This sum looks like the determinant of a matrix expanded down the i-th column! In fact,
let Ai be the matrix obtained from A by replacing column i of A by the column vector H .
Then Ai is given by

Ai =













a11 . . . h1 . . . a1n
a21 . . . h2 . . . a2n
... . . .

... . . .
...

an1 . . . hn . . . ann













,

where the h’s appear in column i. It is easy to see that the expansion of |Ai| down column
i gives

|Ai| = h1A1i + h2A2i + . . .+ hnAni.

This proves Cramer’s Rule.1

1Named for Swiss mathematician Gabriel Cramer (1704-1752)
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Theorem 4.3.3 (Cramer’s Rule). If A is a nonsingular n× n matrix, the system of
equations AX = H has the unique solution

x1 = |A1|/|A|, x2 = |A2|/|A|, . . . , xn = |An|/|A|,

where Ai is the matrix obtained from A by re-
placing column i of A by the column vector H.
(The variables in a system of linear equations with a nonsingular coefficient matrix can be expressed as a quotient of

two determinants.)

Example 4.3.1. 1. Let us apply Cramer’s Rule to a general 2× 2 system of equations:

ax+ by = h

cx+ dy = k

By Cramer’s Rule, we obtain the solution for the variables x and y by forming quotients
of two determinants. The denominator of each quotient is the determinant of the
coefficient matrix. The numerator of the solution for x is the matrix obtained by
replacing the first column of the coefficient matrix with the constants h and k, and,
similarly, y has the determinant of the coefficient matrix with the second column
replaced by h and k on top. So, by Cramer’s Rule, we see that the solution for x and
y is given by

x =

∣

∣

∣

∣

∣

h b
k d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

y =

∣

∣

∣

∣

∣

a h
c k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

2. Consider the following system of equations:

x1 − 2x2 = 2

3x1 − 4x2 = 1.

By Cramer’s Rule, the solution is

x1 =

∣

∣

∣

∣

∣

2 −2
1 −4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −2
3 −4

∣

∣

∣

∣

∣

=
−6

2
= −3
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x2 =

∣

∣

∣

∣

∣

1 2
3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −2
3 −4

∣

∣

∣

∣

∣

=
−5

2

3. Consider the system of equations

2x− 3y = 4

−4x+ 6y = 5.

The coefficient matrix is

ñ

2 −3
−4 6

ô

, and calculating the determinant, we see that
∣

∣

∣

∣

∣

2 −3
−4 6

∣

∣

∣

∣

∣

= 12 − 12 = 0. In this case, Cramer’s Rule does not apply since the

coefficient matrix is singular.

4. Let us solve the following system of equations:

2x + 3y − z = 2
x − y + 2z = 6
3x + y − z = −2

for the value of z. Using Cramer’s Rule and applying row operations to simplify the
computations, we get

z =

∣

∣

∣

∣

∣

∣

∣

2 3 2
1 −1 6
3 1 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 3 −1
1 −1 2
3 1 −1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

2 3 2
1 −1 6
4 0 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 3 −1
1 −1 2
4 0 1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

5 0 20
1 −1 6
4 0 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5 0 5
1 −1 2
4 0 1

∣

∣

∣

∣

∣

∣

∣

=
−(20− 80)

−(5− 20)
=

60

15
= 4.

�

We will see in Section 4.5 that Cramer’s Rule is neither effective nor efficient as a com-
putational tool. The problem lies in the computation of the determinant. If the definition
of the determinant is used for the computation of a determinant of a 10 × 10 matrix, then
it is necessary to calculate 10! products. The problem is that 10! = 3, 628, 800, and 10 is
not a very large number. The true value of the determinant and of Cramer’s Rule lies in
theoretical considerations.

SYSTEMS OF EQUATIONS - A SUMMARY

Let us collect a list of all of the basic results that we have established regarding solution of
systems of linear equations. We will suppose that we have a system of equations expressed
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in the form of a matrix equation AX = H, where A is an m × n matrix and X and H are
n × 1 and m × 1 column vectors, respectively. The matrix A is the coefficient matrix and
[A|H ] is the augmented matrix.

1. The system AX = H may have no solutions (inconsistent), a unique solution, or many
solutions. If A and [A|H ] have the same rank, (this can be easily determined from the
reduced echelon form of [A|H ]), the system is consistent.

2. To find the general solution in a consistent system, reduce the augmented matrix
[A|H ] to reduced echelon form. If the constants in the reduced echelon form are r and
j1, . . . , jr, then the variables corresponding to j1, . . . , jr are called the basic variables.
The other variables are called the free variables: these variables may be arbitrarily
chosen and their values determine the value of the basic variables. The number of free
variables is n− r.

3. The system AX = 0 is said to be homogeneous and is called the associated homo-
geneous equation of the system AX = H . The zero vector is always a solution of
AX = 0, and the set of all solutions forms a subspace (of the space of all n× 1 column
vectors) of dimension n− r. To find a basis, take solutions in which the free variables
take on the values in the standard basis vectors: (1, 0, 0, . . . , 0); (0, 1, 0, . . . , 0); etc.

4. If Xp is any particular solution of AX = H and Xh is a solution of AX = 0, then
X = Xp +Xh is also a solution of AX = H . We see that the solution set of AX = H
is the set {Xp +Xh|Xh is a solution of AX = 0}.

5. If A is a square matrix (m = n) then the system AX = H has a unique solution if
and only if A is nonsingular. In this case, the solution may be expressed in the form
X = A−1H or, using Cramer’s Rule, as above.

6. We have not listed here all that there is to know about solving systems of equations.
Section 1.7 contains an outline of methods which are useful in solving large systems
using computers, and in Section 4.5 further issues involving systems and their solutions
using computers are investigated. A topic of great importance that we have not covered
is roundoff error. We will illustrate with an example.

Some matrices are “ill-conditioned” in that a small change in a entry in the matrix
can produce a large change in the solution of an associated system of equations. Let
us consider the following system:

x + 0.999y = 1
x + y = 2.

We can solve: pivot on x in the first equation and get

x + 0.999y = 1
0.001y = 1.

We see that y = 1000 and x = −998.
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Now suppose that an error of 0.001 was somehow introduced in the coefficient of y in
the first equation giving the system of equations:

x + 0.998y = 1
x + y = 2.

Pivoting on x in the first equation, we get

x + 0.998y = 1
0.002y = 1.

We see that y = 500 and x = −498. A change of 500 in the values of x and y is
produced by a change of 0.001 in one of the coefficients. Why does this happen?
Notice that the two lines given by the equations in the original system are very nearly
parallel. Because of this, their point of intersection lies relatively far from the origin
and a small change in the slope of one of the lines moves the point of intersection a
great distance. Notice also that the determinant of the coefficient matrix is 0.001 -
close to zero.

Section 4.3 Exercises

Solve the systems of equations in Exercises 1 - 4 using Cramer’s Rule.

1.
x1 + x2 = −1
2x1 + 3x2 = −2

2.
2x1 + 3x2 + x3 = 1
x1 + 2x2 + 3x3 = 2
3x1 + x2 + 2x3 = 2

3.
2x1 + 5x2 = −3
3x1 + 2x2 = −1

4.
3x1 + 2x2 + x3 = 2
x1 + x2 + 5x3 = 3
2x1 + 2x2 + 2x3 = 2

5. Solve the systems of equations in Exercise 1 using the method of Theorem 4.3.2.

6. Solve the systems of equations in Exercise 2 using the method of Theorem 4.3.2.

7. Solve the systems of equations in Exercise 3 using the method of Theorem 4.3.2.

8. Solve the systems of equations in Exercise 4 using the method of Theorem 4.3.2.

9. Consider the system of equations

x + y − z = 1
2x − y + 3z = 2.

Cramer’s Rule does not apply since the system has three unknowns but only two
equations. Cramer’s Rule can be applied if one chooses a value for one of the variables.
Find solutions of the above system that satisfy each of the following conditions.
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(a) z = 1

(b) y = 2

(c) x = 0

10. Let N be an n×n matrix over R and assume N2 = 0. Prove that In+N is nonsingular.

11. Prove: If A is a real n× n matrix with n odd and At = −A, then A is singular.

12. Prove: If A and B are n × n matrices and AX = 0 has a nonzero solution, then
ABX = 0 has a nonzero solution.

4.4 Some Geometrical Aspects of Three-dimensional

Vectors (optional)

In this section, we present some of the elementary properties of vectors in the 3-dimensional
vector space over the real numbers. Some of these topics are included in calculus courses.
The determinant is used to define the triple scalar product of three vectors and we will see
that this determinant is related to the volume of a solid figure generated by the three vectors.
The cross product and the dot product are defined and these are related to the triple scalar
product. Vector operations are used to find equations of planes and lines in 3-dimensional
space. The applications found at the end of the section are often covered in a beginning
physics course.

All vectors in this section are in R3 and for this section only, we adopt the following
somewhat inconsistent but more traditional notation: i, j, and k are used to denote the
standard basis for R3:

i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

In this section, if A is a vector in R3, we use Ax, Ay, and Az for the coordinates of the
vector A relative to the basis i, j, and k, respectively, so that A = Axi+Ayj+Azk. Suppose
that we wish to find an equation of the line through some point and in the direction of a
given vector.

EQUATION OF A LINE

Let V = ai + bj + ck and R0 = x0i + y0j + z0k. We want to find an equation of the line L
that is parallel to the vector V and passes through the endpoint of R0, as in Figure 4.1.

Let R = xi+ yj+ zk be the vector whose endpoint lies on an arbitrary point (x, y, z) of
the line. The vector R−R0 is in the direction of the line – consequently, in the direction of
V – so we get the vector equation R − R0 = tV, where t is some scalar. Equating x, y, and
z components of the above vector equation, we get the following “parametric equations” for
the line:
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Figure 4.1: The line determined by two vectors

x = x0 + ta

y = y0 + tb

z = z0 + tc.

THE DOT PRODUCT

A useful quantity associated with a pair of vectors is the dot product (or inner product) of
the two vectors. A more thorough treatment of the inner product is found in Section 5.1.
Here we discuss only 3-dimensional vectors over the real field.

Let A and B be two 3-dimensional vectors with A = Axi + Ayj + Azk and B = Bxi +
Byj+Bzk. The dot product of A and B is the scalar A · B defined by

A · B = AxBx + AyBy + AzBz.

The dot product of two vectors has many interesting properties and is related to the
length of a vector and to the angle between vectors. The length of a vector A given by
Axi + Ayj + Azk is the distance from the origin (0, 0, 0) to the endpoint of A, (Ax, Ay, Az),
and is denoted by ||A||. By the distance formula,

||A||2 = A2
x + A2

y + A2
z = A · A.

A vector of length 1 is called a unit vector.

Two vectors A and B in R3 determine a triangle with sides of lengths ||A||, ||B||, and
||A−B||. Applying the law of cosines to this triangle, we can obtain the following result:
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Need to draw this figure

Figure 4.2: A triangle formed by two vectors
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Figure 4.3: Vector Plane

Theorem 4.4.1. Let A and B be vectors in R3. Then:

A · B = ||A||||B|| cos θ,
where θ is the smallest angle between A and B.
(The dot product is the product of the magnitudes times the cosine of the angle between the vectors.)

Proof. See Exercise 1 and Figure 4.2.

EQUATION OF A PLANE

If A and B are nonzero vectors in R3, then ||A|| 6= 0 6= ||B|| and so by the preceding theorem
we get

cos θ =
A · B

||A||||B|| .

For 0 < θ < 180◦, cos θ = 0 if and only if θ = 90◦, and so A is perpendicular to B if and
only if A ·B = 0. We can use this fact to find an equation for a plane P perpendicular to a
vector N = ai + bj + ck and passing through a point (x0, y0, z0). See Figure 4.3.

As before, let R0 = x0i+ y0j+ z0k and let R = xi+ yj+ zk be an arbitrary point on the
plane. Then R − R0 is a vector parallel to the plane P , so R − R0 is perpendicular to N ;
that is, (R−R0) ·N = 0. From this we get an equation of the plane:

(x− x0, y − y0, z − z0) · (a, b, c) = a(x− x0) + b(y − y0) + c(z − z0) = 0.

Example 4.4.1. The plane through (1, 2,−1) perpendicular to the vector 2i+3j−2k is given
by the equation 2(x− 1) + 3(y − 2)− 2(z + 1) = 0 or 2x+ 3y − 2z = 10.
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||A|| cos θ

||A||

θ

Figure 4.4: Projection of a vector
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PROJECTION OF A VECTOR

Theorem 4.4.1 can be used to find the length of the projection of one vector in the direction
of another. If U is a unit vector and A any vector, then the length of the projection of the
vector A on the line through U is given by ||A|| cos θ where θ is the angle between A and U .
See Figure 4.4.

But note that ||A|| cos θ = ||A||||U || cos θ = A ·U , and so the magnitude of the projection
is A · U.

In Exercise 10, it is shown that if U, V,W are mutually perpendicular unit vectors, then
U, V,W form a basis for R3. If A ∈ R3, then the projections of A onto U, V , and W determine
the expression of A as a linear combination of U, V , and W :

A = (A · U)U + (A · V )V + (A ·W )W.

THE CROSS PRODUCT AND THE TRIPLE SCALAR PROD-

UCT

The cross product and the triple scalar product provide useful combinations of 3-dimensional
vectors, and we will see in Theorem 4.4.3 that the two are related. The cross product of
two vectors A and B is defined by

A× B = (AyBz −AzBy)i+ (AzBx − AxBz)j+ (AxBy −AyBx)k.

This definition is almost impossible to remember as stated, but notice that if one formally
expands the following determinant along the first row, one has exactly A× B:

A× B =

∣

∣

∣

∣

∣

∣

∣

i j k
Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

∣

.
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Note that this is not the determinant of a 3 × 3 matrix since i, j, and k are vectors.
Because of this, the properties of determinants that were proved in Section 4.1 do not
necessarily apply to this sort of “determinant” and must not be used in proving properties
of A × B. While different methods must be used in proving them, many of the expected
properties of A×B do hold.

Theorem 4.4.2. If A,B, and C are any three vectors and r is a scalar, then

1. A× B = −(B ×A) (Anti-commutativity)

2. (A+B)× C = (A× C) + (B × C) (Distributive Property.)

3. A× (B + C) = (A× B) + (A× C) (Distributive Property.)

4. A× (rB) = r(A×B) = (rA)× B. (Associative Property.)

Proof. See Exercise 2.

The triple scalar product of three vectors is useful in both studying and applying the
cross product of vectors. Let A,B, and C be vectors. The triple scalar product of A,B,
and C is the scalar [A,B,C] defined by

[A,B,C] =

∣

∣

∣

∣

∣

∣

∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣

∣

∣

∣

∣

∣

∣

.

We have now two “products” that have no apparent property other than being hard to
compute. We will see that the cross product of two vectors that do not lie in the same
direction is a vector that is perpendicular to the plane of the two. This, for example, gives
us a method of constructing a normal to the plane containing two vectors. The triple scalar
product will be of use in understanding the orientation of two vectors and their cross product.

Theorem 4.4.3. For any three three-dimensional vectors A,B, and C, (A×B) ·C =
[A,B,C]. (Cross, dot, and triple scalar products property)

Proof. By definition,

A×B · C = (AyBz − AzBy)Cx + (AzBx −AxBz)Cy + (AxBy − AyBx)Cz

=

∣

∣

∣

∣

∣

∣

∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣

∣

∣

∣

∣

∣

∣

(expanding along the third row).

Corollary 4.4.4. A×B is perpendicular to both A and B.
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Proof. (A × B) · A = [A,B,A] = 0 since [A,B,A] is the determinant of a matrix with two
rows the same. It follows that A× B is perpendicular to B.

This corollary tells us that if A×B 6= 0 then it is a vector in the direction of one of the
two unit vectors that are perpendicular to the plane containing the vectors A and B. We
also have the following corollary.

Corollary 4.4.5. If A× B 6= 0, then [A,B,A× B] > 0.

Proof. [A,B,A× B] = (A×B) · (A×B) = ||A× B||2 > 0.

We next determine the length of A× B.

Theorem 4.4.6. If A and B are any two vectors, then ||A × B|| = ||A||||B|| sin θ,
where θ is the angle between A and B.
(The magnitude of the cross product is the product of the magnitudes times the sine of the angle.)

Proof. If either A or B is the zero vector, the result is trivial, so we will assume A and B
are nonzero vectors. First assume that A and B are unit vectors. We will prove ||A×B||2 =
sin2 θ. Compute:

||A× B||2 = (AyBz − AzBy)
2 + (AzBx − AxBz)

2 + (AxBy −AyBx)
2

= (AyBz)
2 + (AzBy)

2 + (AzBx)
2 + (AxBz)

2 + (AxBy)
2 + (AyBx)

2

− 2(AyBzAzBy + AxBzAzBx + AxByAyBx)

= A2
x(B

2
x +B2

y +B2
z ) + A2

y(B
2
x +B2

y +B2
z) + A2

z(B
2
x +B2

y +B2
z)

− [(AxBx)
2 + (AyBy)

2 + (AzBz)
2 + 2(AyBzAzBy + AxBzAzBx + AxByAyBx)]

= A2
x + A2

y + A2
z − [(AxBx + AyBy + AzBz)

2]

= 1− cos2 θ

= sin2 θ

(since ||B||2 = 1 = B2
x +B2

y +B2
z and ||A||2 = 1 = A2

x + A2
y + A2

z).
Thus, the theorem is proved in the case where A and B are unit vectors.
Now let A and B be any two vectors with ||A|| = a and ||B|| = b. Let U = (1/a)A and

V = (1/b)B. Then U and V are unit vectors and we have

||A×B|| = ||(aU)× (bV )||
= ||ab(U × V )||
= ab||U × V ||
= ab sin θ

= ||A||||B|| sin θ.
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Figure 4.5: A parallelepiped determined by A,B, and C

Theorem 4.4.7. Let A,B, and C be three vectors in R3. Then the absolute value of
[A,B,C] is the volume of the parallelepiped determined by A,B, and C.
(The triple scalar product is + or − the volume of the solid determined by the vectors.)

Proof. The area a of the parallelogram determined by A and B is h1||A|| (See Figure 4.5);
that is, a = ||A||||B|| sin θ. The volume v of the parallelepiped is therefore v = h2a. Now
h2 = |U · C|, where U = (A× B)/||A× B||, since A× B is perpendicular to the plane of A
and B. It follows that

v = ah2

= ||A||B||(sin θ)|U · C|

= ||A× B||
∣

∣

∣

∣

∣

A× B

||A× B|| · C
∣

∣

∣

∣

∣

= (A× B) · C
= [A,B,C].

Because of the previous theorem, it is easy to see that the following theorem is true.

Theorem 4.4.8. Three vectors A,B, and C lie in a plane if and only if [A,B,C] = 0.
(Three vectors are dependent iff their triple scalar product is 0.)

ORIENTATION

Because of the previous results, we know almost everything about A × B. The length of
A×B is ||A||||B|| sin θ, where θ is the angle between A and B, and A×B is perpendicular
to both A and B. We have thus eliminated all but two possibilities for A×B. (See Figures
4.6 and 4.7.)

There are two possible ways for a vector to be perpendicular to the plane of two other
vectors. One configuration is called a “right-handed system,” the other is a “left-handed
system.” The term “right-handed” comes from the fact that a screw with a right-hand
thread advances in the direction of A × B (in the right-hand system) when rotated in the
direction that carries A into B. This comment is not very useful since almost no one knows
which direction a right-hand screw travels. There is an easier rule. If the fingers of your right
hand point in the direction of rotation that carries A into B and your thumb is stretched
out, then the thumb points in the direction of A×B in the right hand system. (See Figure
4.8.) The left hand works in a similar manner for a left-hand system.
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Figure 4.6: Right-handed system Figure 4.7: Left-handed system

 

Figure 4.8: Right-hand rule
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Figure 4.9: Vectors forming a right-handed
system
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k

j

i

Figure 4.10: i, j,k

The standard basis vectors i, j,k, as usually pictured (see Figure 4.10), form a right-
handed system and the triple scalar product [i, j,k] = 1 > 0. Since i × j = k, one would
guess that in general for two vectors A and B, the vector A,B and A×B form a right-handed
system. We will argue this as follows:

If for two nonzero vectors A and B we have that A,B,A×B form a left-handed system,
then through a sequence of rotations and stretchings or shrinkings of these vectors, the system
could be transformed into the system i, j,−k. This could be done without ever making the
three vectors lie in a plane. Now the triple scalar product is a continuous function of its
three vectors (or their nine components) and [i, j,−k] = −1 < 0, so by the intermediate
value theorem, it must have been the case that [A,B,A× B] < 0, which is a contradiction.
While we have not given a formal proof, the following theorem seems plausible:

Theorem 4.4.9. If A and B are nonzero, nonparallel vectors, then A,B, and A×B
form a right-handed system. (The cross product is perpendicular in the right-handed direction.)

In physics, much use is made of the vector algebra that has been presented in this section.
In particular, both the cross product and the dot product arise in the area of mechanics.
The following examples give an indication of these elementary applications.

SOME APPLICATIONS FROM PHYSICS

1. Consider a body rotating about a line through the origin with angular speed (in radians
per unit of time) ω. The angular velocity is defined to be the vector Ω of length ω
and direction perpendicular to the plane of rotation in the right-handed sense. That
is, if the fingers of the right hand point in the direction of rotation, then the thumb
points in the direction of Ω as in Figure 4.11.

Let R be the position vector of a point on the rotating body. Notice that the radius of
the path followed by the point is ||R|| sin θ. Its speed will then be ω||R|| sin θ = ||Ω×R||
(where as before, θ is the angle between R and the axis of rotation, or, equivalently,
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Figure 4.11: Angular velocity

θ is the angle between R and Ω.) Considering the direction of Ω × R, we see that
V = Ω× R is exactly the velocity vector of the point with position vector R.

2. A body is rotating about the line through (0, 0, 0) and (1, 1, 1) with an angular speed
of 2 revolutions per second. The problem is to find the velocity of a point on the body
that is passing through the point (2, 1,−1).

The angular speed of the body is 4π rad/sec and a unit vector along the axis of rotation

is
1√
3
(1, 1, 1) =

1√
3
(i + j + k). From this we see that the angular velocity is given by

4π√
3
(i+j+k) (assuming that the body, as seen from the origin, is rotating in a clockwise

direction), and the position vector R of the point is given by R = 2i+ j−k. From this
we find that the velocity of the point is given by

V = Ω×R =
4π√
3
(−2i + 3j− k)

and the speed of the point is s = ||Ω× R|| ≈ 27.1464 units/sec.

3. In physics, work is defined as the product of the displacement caused by a certain force
and the component of that force in the direction of the displacement. Using the dot
product, this is very easily expressed. Let F be the force vector andD the displacement
vector. Then the work is given by W = F ·D.

For example, if a force of 4 pounds is exerted on an object at an angle of 30◦ to the
path of motion (see Figure 4.12) and because of this force, the object moves 6 feet,
then the work done by the force is given by

W = F ·D
= 4(cos 30◦i + sin 30◦j) · 6i
= 24 cos 30◦

= 12
√
3 foot-pounds.
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Figure 4.12: Work done on an object

Section 4.4 Exercises

1. Prove Theorem 4.4.1.

2. Prove Theorem 4.4.2.

3. Write an equation of the line through the point (1, 2, 1) and parallel to the line given
by the parametric equations x = t, y = 2t+ 1, z = −t− 1.

4. Write an equation of the plane that contains the line segments from (0, 0, 0) to (1, 1, 0)
and (1, 1, 0) to (1,−1, 1).

5. Write an equation of the plane passing through (1, 2,−1), (0, 1, 1), and (−1, 1, 2).

6. Find an equation of a line that passes through the point (1,−2, 3) that is parallel to
(does not intersect) the plane that has equation 2x+ 3y − z = 6.

7. A is body rotating at 6 rev/min about the line joining (1, 2, 1) and (−1, 3, 2). What is
the velocity and speed of the point on the body that is passing through (0, 0, 0)? As-
sume that the angular velocity vector points in the direction from (1, 2, 1) to (−1, 3, 2).

8. A body moves 2 feet along a line from (0, 0, 0) to (1, 1, 1) because of a force of 4 pounds
in the direction of the vector k; that is, along the z-axis. What force in the direction
of motion would accomplish this displacement?

9. Let A,B,C ∈ R3 and let r be some scalar. Prove the following:

(a) A · B = B · A
(b) (rA) · B = r(A · B)

(c) A · (rB) = r(A · B)

(d) A · (B + C) = A · B + A · C
(e) (B + C) · A = B · A+ C · A
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10. Let U, V, and W be mutually perpendicular nonzero vectors in R3. Show that U, V,
and W are linearly independent. (Note: U, V, and W mutually perpendicular implies
that U · V = U ·W = V ·W = 0.)

11. Let U, V , and W be mutually perpendicular unit vectors in R3 and let A ∈ R3 be
arbitrary. Use Exercises 9 and 10 to show that A = (A · U)U + (A · V )V + (A ·W )W.

12. Let A ∈ R3 be a nonzero vector. Show that U = A/||A|| is a unit vector.

13. For A,B,C ∈ R3, prove the following identities:

(a) A · (B × C) = (A×B) · C
(b) A× (B × C) = B(A · C)− C(A · B)

(c) (A×B)× C = B(A · C)− A(B · C)

4.5 Computational Complexity (optional)

Computer scientists study the efficiency of various methods of solving problems. This general
area of study is referred to as the “analysis of algorithms,” and one attempts to determine
the “computational complexity” of the algorithm or method. A major part of the idea is to
try to understand how long it will take for a computer to arrive at the solution of a given
problem. Of course, the time needed to solve a problem must depend on some notion of
the “size” of the problem. In general, the size of a problem is measured by the amount of
data that the problem involves. Now it might be said that computers are simple, albeit very
fast, devices. Basically, computers perform arithmetic operations (add, subtract, multiply,
and divide) and certain other simple operations such as comparing numbers to determine
the largest. The speed of a computer is a measure of how fast these simple operations can
be performed and the length of time it takes a computer to solve a problem depends on how
many of the operations it must perform.

We will consider the relative efficiency of solving a system of equations by Cramer’s
Rule and by the Gauss-Jordan reduction method. For a large system (say 30 equations
in 30 unknowns), it would no doubt be necessary to use a computer, and so, in order to
investigate the efficiency of the various methods, we must consider the speed with which the
computer performs the various operations. Of course, the speed and efficiency of computers
has increased dramatically over the last twenty or thirty years and these advances promise
to continue.

While computers have become much faster in recent years, there has also been a change in
the relationship among the times required for the various operations. In order to understand
the historical development of this area, we begin by discussing the addition and multiplication
times for an outdated computer, the IBM 1620, which dates back to about 1955.

Let p be a number with Dp digits and q a number with Dq digits. The IBM 1620 had
formulas for the time required for the operations it could perform. To add the numbers p
and q it took 160 + 80Dp microseconds. To multiply p and q it took 560 + 40Dq + 168DqDp

microseconds. Thus, if p and q each had 8 digits, a sum would take 800 microseconds and
a product would take 11,632 microseconds, (recall that a microsecond is one-millionth of a
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second or 10−6 seconds). Because a product took so much more time to perform on the
computer than a sum, it was by far more important to count the number of multiplications
in a program than the number of sums.

In the years since the development of the IBM 1620, computers have changed dramat-
ically. New computers are smaller and faster, have bigger memories, and cost much less.
The development of better algorithms for computing products and the development of bet-
ter hardware have resulted in a dramatic decrease in the difference between addition and
multiplication times. The speeds of various types of computers that were in production in
about 1980, are listed in the following table. The times listed are in microseconds.

Addition Multiplication
Computer/Type Time Time

North Star/Microcomputer 3830.00 6210.00
HP 3000/30/Minicomputer 43.90 61.00
PDP 11/70/MainFrame 0.90 3.30
Cyber 205/Supercomputer 0.005 0.005

We see that the IBM 1620 could perform about 86 multiplications per second while the
Cyber 205 could perform 200,000,000 multiplications in a second - an increase of 2.3 million
times.

Today, with the reduction of the difference between addition and multiplication times,
efficiency of computers is measured in FLOPS - Floating-point Operations Per Second -
and the standard unit is the megaflop (MFLOP) which represents one million floating point
operations per second. By 1989, the following speeds were reported for various types of
computers:

Computer MFLOPS

Cray Y-MP 195.
IBM 3090 16.
Sun 4/260 1.1
DEC VAX 8550 0.99
IBM PC 0.012
Apple Macintosh 0.0038

The development of ever more powerful computers continues: In November of 1990 Intel
announced a machine rated at 32 gigaflops (32 billion flops or 32,000 megaflops) and in
July of 1991, an article quoted a projection made by Cray Research that a teraflop machine
(one trillion floating point operations per second) would be available by 1997. In a talk
in early 1993, an Intel executive talked about a teraflop machine which they had under
development and hoped to have available in 1996. In December of 1996, a computer at
Sandia National Laboratories, using 9,072 Intel Pentium Pro processors, reportedly achieved
1.8 trillion floating point operations per second. And in 2013, the Tinahe-2 topped 30
petaflops: over 30 quadrillion flops, or 30,000 teraflops.

Let us now return to our problem, analyzing the methods of Gauss-Jordan Reduction and
Cramer’s Rule. We will need to count or estimate the numbers of operations required. Since
Cramer’s Rule requires the computation of determinants, the following theorem is crucial.
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Theorem 4.5.1. The calculation of an n× n determinant entails the computation of
n! products of n numbers each, assuming that the definition of determinant is used.

Proof. Since

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

= ad− bc, the result is seen to be true for n = 2.

Assume the theorem is true for n = k − 1 and let A = [aij ] be k × k. Then |A| =
a11A11 + . . .+ a1kA1k, where each of the cofactors A1i is a (k− 1)× (k− 1) determinant and
consequently involves (k− 1)! products of k− 1 numbers. Now, distributing the a1i over the
products in A1i we see that a1iA1i involves the computation of (k − 1)! products of k terms
each. The computation of |A| therefore involves the computation of k(k − 1)! = k! such
products. It follows that the proposition is true for n = k and so by mathematical induction
the theorem is true for all positive integers n.

We now estimate the computing time necessary to solve a system of 30 linear equations
in 30 unknowns using (a) Cramer’s Rule and (b) the Gauss-Jordan reduction. Actually, we
will only approximate the time required to do the multiplication.

(a) Cramer’s Rule: To solve a system of 30 equations in 30 unknowns using Cramer’s
Rule, we must evaluate the 31 determinants each of which is 30 × 30. Each 30 × 30
determinant involves 30! products of 30 factors each (and so 29 multiplications each)
and since there are 31 of them, 31·29·30! products are necessary. Now 31! ≈ 8.22×1033

so the number of required multiplications is 29 · 31 · 30! = 29 · 31! ≈ 29(8.22× 1033) ≈
2.3838× 1035. So for the IBM 1620, the multiplication time is

(2.3838× 1035)(11, 632× 10−6) ≈ 27728.362× 1029

≈ 2.77× 1033 seconds

≈ 8.78× 1025 years.

This is clearly too long!

Let us consider the solution with a modern machine operating at 200 megaflops. Here
the multiplication time would be .005 microseconds. For this machine the time required
is:

(2.3838× 1035)(0.005× 10−6)sec ≈ 1.1919× 1027 sec

≈ 3.78× 1019 years.

This is still a long time to wait! For a teraflop machine, the time would be reduced
by a factor of 0.0002(= 200× 106/1012). It would then require “only” about 8 × 1015

years.

Finally, on the Tianhe-2, we have 33.86 petaflops, which corresponds to 2.9533×10−17

seconds per operation, giving us
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(2.3838× 1035)(2.9533× 10−17) ≈ 7.040× 1018 seconds

≈ 2.232× 1011 years.

That’s 223 billion years.

(b) Gauss-Jordan Reduction: Let us count the approximate number of multiplications
required to solve a 30×30 system of linear equations using the method of Gauss-Jordan
Reduction. This will entail the reduction of a 30× 31 matrix to reduced echelon form,
and so we estimate how many multiplications are necessary to accomplish this. It will
be necessary to perform one pivot operation for each of the 30 rows. For each row i,
we must multiply each entry in the row by the reciprocal of the first nonzero entry (in
order to make the first nonzero entry a one) - so 31 multiplications are required. Now
a multiple of row i must be added to each of the other rows, so 29 · 31 multiplications
are necessary, bringing the total for row i to 31+29 · 31 = 30 · 31 multiplications. This
process must be done for each row and so a total of 30 ·30 ·31 = 27, 900 multiplications
must be performed. The time required for these multiplications on the IBM 1620 is
therefore

27, 900 · 1.1632× 10−2 seconds ≈ 324.5328 seconds.

For a machine operating at 200 megaflops, the time required to perform the multipli-
cations is just

27, 900 · (0.005× 10−6) ≈ 1.395× 10−4 seconds = 0.0001395 seconds.

From this we see that for practical purposes, the time required for Cramer’s Rule is
infinite, while the time required for Gauss-Jordan reduction is zero!

The same reasoning applies to systems of n linear equations in n unknowns where n is
an arbitrary positive integer. We see that for Cramer’s Rule, the multiplication time
is proportional to (n + 1)! and for Gauss-Jordan Reduction, time is proportional to
n × n × (n + 1) = n3 + n2. By Stirling’s formula, n! > en for large n. In the jargon
of computational complexity, one says that Cramer’s Rule “runs in exponential time”
while the method of Gauss-Jordan Reduction “runs in polynomial time.”2

The above analysis of Cramer’s Rule versus Gauss-Jordan Reduction is a little naive.
Additions are not counted and furthermore no one would consider solving a system
of equations using Cramer’s Rule. A better study might be the comparison of Gaus-
sian Elimination and the method of Gauss-Jordan Reduction. What is the difference
between these methods?

2For further information on the analysis of algorithms, see Robert Sedgewick, Algorithms, Addison-
Wesley, Reading, MA, 1983 or A.V. Aho, J.E. Hopcraft, and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
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Both methods call for the reduction of the augmented matrix of the system of equations
to a matrix in echelon form. Under Gauss-Jordan, the matrix is reduced to reduced row
echelon form, while Gaussian Elimination as it is usually explained, calls for “forward
elimination” followed by “back substitution.” Forward elimination begins at the upper
left of the matrix and, at each step, is the process of making the first entry in a row a 1,
and then making 0s below it. The result of forward elimination is a matrix in echelon
(not reduced echelon) form. Most authors describe back substitution as follows: After
reducing to echelon form, write the system of equations that results. Solve the last
equation for the variable corresponding to the column with the first nonzero entry (a
1), and then substitute the result into the equation above. Continue until all of the
equations have been solved.

There is no reason to forsake the augmented matrix in the back substitution process.
We need some teriminology to help us explain. Pivoting is the process by which one
divides a row by a certain entry in order to make a 1 in a certain row and column,
and then performing the necessary row operations to make zeros above and below that
1. The process of making zeros below the 1 will be called “downward elimination”
while the process of making zeros above the entry will be called “upward elimination.”
Gaussian Elimination might then be described as follows: Proceed down the rows
making 1s as the first entry in each row and then performing downward elimination
on the 1. When the last row is reached, proceed upward through the rows performing
upward elimination on each of the 1s.

As observed in Section 1.5, Gaussian Elimination is more efficient since the row oper-
ations are performed on shorter rows. We will count the additions and multiplications
needed under both the Gauss and Gauss-Jordan methods as applied to a system of n
equations in n unknowns, but a preliminary observation will be helpful. In an m × n
matrix, an operation applied to the entries in columns j through n requires n− j + 1
operations. If we are dividing the entries by the entry in column j, only n − j opera-
tions will be required for we know that a 1 will appear in column j so there is no need
to calculate it. A similar statement holds for making a zero in some row below a 1.

Let us now count the operations needed in both the Gaussian Elimination and Gauss-
Jordan Reduction methods. We will need to make heavy use to the summation formulas
below.

n
∑

i=1

i =
n(n + 1)

2

n
∑

i=1

i2 =
n(n + 1)(2n+ 1)

6
.

We will assume that the matrix is n × (n + 1) and that there is a unique solution so
that operations must be performed on each of the rows.

(c) Gauss-Jordan Reduction: For row i, we will need n+1− i multiplications to make
a 1 in column i and (n−1)(n+1− i) multiplications to make 0s. Thus, the number of
multiplications for row i is n(n+1−i). The number of additions required to make 0s is
the same as the number of multiplications needed to make 0s, that is, (n−1)(n+1−i).
Adding for rows 1 to n we get
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n
∑

i=1

n(n + 1− i) = n
n
∑

i=1

(n+ 1− i) = n
n(n + 1)

2
=

n3 + n2

2

multiplications and

n
∑

i=1

(n− 1)(n+ 1− i) = (n− 1)
n
∑

i=1

(n + 1− i) = (n− 1)
n(n+ 1)

2
=

n3 − n

2

additions. The total number of operations required for Gauss-Jordan Reduction is
2n3 + n2 − n

2
.

(d) Gaussian Elimination: First consider downward elimination. For row i, we will
need n + 1 − i multiplications to make a 1 and (n − i)(n + 1 − i) multiplications to
make 0s below. The total number of multiplications for row i is (n+ 1− i)(n+ 1− i).
The number of additions is, as before, related to the multiplications needed to make
0s: (n− i)(n+ 1− i). Summarizing and summing we get:

n
∑

i=1

(n+ 1− i)2 =
n
∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
=

2n3 + 3n2 + n

6

multiplications in downward elimination, and, letting M represent the number of mul-
tiplications,

n
∑

i=1

(n− i)(n+ 1− i) = M −
n
∑

i=1

(n+ 1− i)

= M −
n
∑

i=1

i

=
n(n + 1)(2n+ 1)

6
− n(n+ 1)

2

=
n3

3
+

n2

2
− 5n

6

additions in downward elimination.

For upward elimination, we start in row n and make zeros above the entry in column
n (remember that we are assuming that the system has a unique solution, that is, the
coefficient matrix has rank n). Proceeding upward, for row i we need only make zeros
above the entry in column i, so i−1 multiplications and additions are required to place
the correct values in column n+ 1. Summing we get:

2
∑

i=n

(i− 1) =
n−1
∑

i=1

i =
n(n− 1)

2

multiplications and additions in upward elimination.

Adding all four of these terms and simplifying we find that the total number of oper-

ations required for Gaussian Elimination is
2n3

3
+

3n2

2
− 7n

6
.
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In comparing the expressions for the number of operations required by the above two
methods, it is appropriate to consider only the dominant term – in this case the term
involving n3 – as an approximation of the total value. Making this estimate we see
that Gauss-Jordan Reduction requires approximately n3 operations while Gaussian

Elimination needs only
2n3

3
. It appears that Gauss-Jordan Reduction requires 50%

more effort than Gaussian Elimination.

Section 4.5 Exercises

1. As above, estimate multiplication times for a 30×30 system using both Cramer’s Rule
and Gauss-Jordan Reduction for machines with the following speeds:

(a) a machine with a multiplication time of 3 microseconds.

(b) a machine which can perform 2 megaflops

(c) a machine which can perform 10 gigaflops

2. Proceeding as above, estimate multiplication time for both methods for a system of 10
linear equations and 10 unknowns using a machine which can perform 1.8 megaflops.

3. Estimate both the number of additions and the number of multiplications required
to reduce an m× n matrix to echelon form (as required in Gauss-Jordan Reduction).
Calculate the time required to solve a system of 50 equations and 50 unknowns using
a machine which can perform 2 megaflops.

4. Estimate the number of multiplications required to calculate the inverse of a nonsin-
gular n× n matrix using each of the following methods:

(a) The adjoint method of Section 4.2 and Theorem 4.2.6.

(b) The method of Theorem 3.6.9.

5. Find an algorithm for computing the determinant of a matrix that runs in polynomial
time and make an estimate of the time required. (HINT: Reduce the matrix to echelon
form and keep track of what happens to the determinant. - See Exercise 13.)

6. Let A and B be n × n matrices. Assume that B is an arbitrary matrix. We want
to count the number of multiplications needed to calculate the product AB under the
various assumptions. (Note that A is upper-triangular when the entries below the
diagonal are 0; that is, aij = 0 if i > j.)

(a) A is arbitrary

(b) A is diagonal

(c) A is upper-triangular
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Chapter 5

SIMILARITY, EIGENVALUES and
DIAGONALIZATION

5.1 Inner Product, Orthogonality, and the

Gram-Schmidt Process

In Chapters 1-4, we developed a lot of machinery: In Chapter 1, we investigated systems
of linear equations and we studied the reduced echelon form of a matrix. In Chapter 2, we
presented the idea of a vector space, and we used linear independence, basis and dimension to
characterize certain vector spaces. We found that solution spaces of homogeneous systems of
linear equations could be described in terms of a basis. In Chapter 3 we introduced the idea
of a linear transformation and we saw that certain linear transformations are represented by
matrices. In Chapter 4, we saw how the determinant can be used to determine nonsingularity
of matrices and to find inverses of matrices. Why have we expended all of this effort?

Linear transformations and their associated matrices arise in many different endeavors.
Mathematicians encounter quadratic forms (see Section 5.7), physicists make use of the iner-
tia tensor (see Section 5.8), and biologists, statisticians, and economists find matrices useful
in applications involving probabilities (Section 1.9). In many of these situations the reduc-
tion of a matrix to “diagonal form” is not only useful, but essential. Often in applications,
the matrix that arises is relative to a given coordinate system. Different coordinate systems
produce different matrices. Perhaps some coordinate system will produce a diagonal matrix.

This chapter brings some reward for all of our hard work. We will study similarity and
we will discover that certain matrices are similar to diagonal matrices. The methods used
will make use of the theory that we have developed. We will have occasion to solve systems
of equations (using the methods of Chapter 1), determinants (Chapter 4) will be used, an
understanding of linear independence (Chapter 2) will be essential, and knowledge of linear
transformations and their associated matrices (Chapter 3) will provide motivation for our
work. In other words, Chapter 5 will provide an excellent review of the first four chapters.

If T is a linear transformation from a finite-dimensional vector space into itself and B
is a basis for the vector space, then there is an associated matrix [T : B,B]. If the basis
B is changed, then the matrix changes and the new matrix is, by definition, similar to the
previous one. One wonders whether the basis might be changed in some way so that the new

179
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matrix is somehow “nice” or easy to understand. We will investigate this question and arrive
at a satisfying conclusion. We will see that the theory that we develop has applications in
other areas of mathematics as well as other areas of science.

Throughout the first four chapters of this text, we used the assumption that scalars were
always elements of some field, but we did not need to make further assumptions regarding
the properties of the collection of scalars. In Chapters Five and Six, we will be more restric-
tive and make the assumption that the scalar field in question is either R, the field of real
numbers, or C, the field of complex numbers. This additional assumption is made in order
to take advantage of some of the geometrical aspects of real and complex vectors such as
length, direction, etc. In addition, we will want to have available some of the special prop-
erties of polynomials over the real and complex numbers. Appendix C contains information
concerning fields. Appendix D reviews facts about polynomials.

Recall that the field C of complex numbers consists of all numbers of the form a + bi
where a and b are real numbers and i is the so-called imaginary unit satisfying i2 = −1. We
identify a and a + 0i so that we can assume R ⊆ C. For a complex number z = a + bi, the
conjugate of z is denoted by z and is defined by z = a− bi. Several useful properties of the
conjugate of a complex number are listed in the following theorem.

Theorem 5.1.1. Let z = a + bi and w = c+ di be complex numbers. Then

(a) The magnitude or absolute value of z is given by |z| = (zz)1/2 = (a2 + b2)1/2.

(b) z + w = z + w (The conjugate of a sum is the sum of the conjugates.)

(c) zw = z w (The conjugate of a product is the product of the conjugates.)

(d) z is a real number (that is, b = 0) if and only if z = z.
(Real numbers equal their conjugates.)

Proof. See Exercise 13.

We will make use of the conjugate in defining a generalization of the notion of the dot
product encountered earlier.

THE INNER PRODUCT

In Section 4.4 we defined the dot product of two vectors in R3 and we saw how the dot
product was related to the idea of the length of a vector and to the angle between two
vectors. We now extend this notion to arbitrary vectors in Rn or Cn. Let X = (x1, . . . , xn)
and Y = (y1, . . . , yn) be vectors in either Rn or Cn. The inner product (also called the
dot product) of X and Y is the scalar X · Y given by

X · Y = x1y1 + x2y2 + . . .+ xnyn.

If X, Y ∈ Rn, then xi is a real number for i = 1, . . . , n and so xi = xi. Thus, for real
vectors X and Y ,
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X · Y = x1y1 + . . .+ xnyn

and so this definition of inner product coincides with the definition of inner product or dot
product that the reader may have encountered in an introductory physics or calculus course.
There is nothing special in our assumption that X and Y were, in effect, row vectors; we
could make the same definition for column vectors, that is, n × 1 matrices. Later in this
chapter we will find it more convenient to use column vectors and we will use this definition
and the following theory in that environment.

Example 5.1.1. (2,−1, 3)·(4, 1,−2) = 4·2+(−1)·1+3·(−2) = 1 and (−i, 1−i)·(1+i, 2+i) =
i · (1 + i) + (1 + i)(2 + i) = 4i.

�

The length of X is the quantity ||X|| given by ||X|| =
√
X ·X. Notice that for any

complex number z, zz is a real number, so for any real or complex vector X, ||X|| is a real
number. For vectors in R2 and R3, this definition of length agrees with the usual definition.
If ||X|| = 1, we say that X is a unit vector or of unit length.

Theorem 5.1.2. Let X, Y and Z be real or complex n-dimensional vectors and let c
be a real or complex scalar. Then:

(a) X · Y = Y ·X so X · Y = Y ·X if X, Y ∈ Rn. (Commutative Property)

(b) (cX) · Y = c(X · Y ) (Associative property)

(c) X · (cY ) = c(X · Y ) (Associative property)

(d) X · (Y +Z) = X · Y +X ·Z and (X + Y ) ·Z = X ·Z + Y ·Z. (Distributive Property)

(e) ||X + Y || ≤ ||X||+ ||Y || (Triangle Inequality)

(f) |X · Y | ≤ ||X||||Y || (Schwarz Inequality)

Proof. We omit the proofs of parts (e) and (f) (although we will revisit them in Section
5.1.1. Proofs of parts (a), (b), and (c) are left as Exercise 14. We will prove part (d).

Let X = (x1, . . . , xn), Y = (y1, . . . , yn), Z = (z1, . . . , zn). Then

X · (Y + Z) = (x1, . . . , xn) · (y1 + z1, . . . , yn + zn)

= x1(y1 + z1) + . . .+ xn(yn + zn)

= (x1y1 + . . .+ xnyn) + (x1z1 + . . .+ xnzn)

= X · Y +X · Z.
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Notice that the inner product of two vectors is a “sum of products” much like one
computes in taking the product of two matrices. With some terminology and conventions,
one can make the inner product a product of two matrices. Recall that in Section 3.3, we
adopted the convention of identifying a 1× 1 matrix [a] with its single scalar entry a, and in
Section 4.1, the transpose At of a matrix A was defined. A further definition is needed: If
A = [aij ] is a matrix over the complex numbers, the conjugate A of A is defined by A = [aij ].
Now let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be vectors over the complex numbers. We
may regard X and Y as 1× n matrices and apply the above terminology:

XY t = [x1, . . . , xn] = x1y1 + . . .+ xnyn = X · Y.
We see that the inner product X · Y may be regarded as a matrix product XY t. If

the vectors X and Y are n × 1 column vectors, the inner product may be obtained as the
matrix product X

t
Y. We make use of the inner product in defining what is meant for two

n-dimensional vectors to be “orthogonal.”

ORTHOGONALITY

In Exercise 15, it is shown that for X, Y ∈ R3, X · Y = ||X||||Y || cos θ, where θ is the angle
between X and Y . It follows that X and Y are orthogonal (perpendicular) if and only if
X · Y = 0 (for X, Y 6= 0). How might these ideas be generalized to vector spaces of higher
dimension? Our problem lies in the fact that in other vector spaces, the angle between
vectors has no clear meaning1 We take an opposite approach. By the Schwartz Inequality,

Theorem 5.1.2 (f), |X ·Y | ≤ ||X||||Y ||, so that
|X · Y |
||X||||Y || ≤ 1. From this we see that we may

define the angle between X and Y to be the angle θ where cos θ =
|X · Y |
||X||||Y || . We therefore

make the following definition.

Definition 5.1.1. Vectors X and Y (in Rn or Cn) are orthogonal if and only if X · Y = 0.
A set of vectors {X1, . . . , Xk} is orthogonal if and only if Xi · Xj = 0 for i 6= j. The set
of vectors {X1, . . . , Xk} is orthonormal if and only if {X1, . . . , Xk} is orthogonal and each
Xi is a unit vector.

The standard basis vectors, E1, . . . , En, in Rn form an orthonormal set since one can
easily see that ||Ei|| = 1 and Ei · Ej = 0 for i 6= j. There are other orthonormal sets: In
R2 consider the vectors X1 = (1, 1) and X2 = (1,−1). Clearly, X1 ·X2 = 1 − 1 = 0 so that
X1 and X2 are orthogonal, but X1 and X2 are not unit vectors. Dividing each vector by its
length produces unit vectors that remain orthogonal. We get:

1

||X1||
X1 =

1√
2
(1, 1) = (1/

√
2, 1/

√
2)

1

||X2||
X2 =

1√
2
(1,−1) = (1/

√
2,−1/

√
2)

1Two noncollinear vectors with their tails in the same place determine a unique plane, so we can define
the angle between them as the angle in that plane. However, for other vector spaces, there may be no
geometric intuition underlying the notion of “angle.”
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X 1

 

Figure 5.1: Two linearly independent vectors

In Exercise 18, it is shown that if X is a nonzero vector, then (1/||X||)X is a unit vector.
We call this process of dividing a vector by its length normalizing. If we normalize each
vector in an orthogonal set, the result is an orthonormal set.

It is easy to show that any orthogonal set of nonzero vectors in linearly independent.

Theorem 5.1.3. If {X1, . . . , Xk} is an orthogonal set of nonzero vectors, then
{X1, . . . , Xk} is linearly independent. (Orthogonal nonzero vectors are independent.)

Proof. Assume c1X1 + . . .+ ckXk = 0. We must show that each ci = 0. Now

0 = Xi · 0
= Xi · (c1X1 + . . .+ ckXk)

= c1(Xi ·X1) + . . .+ ci(Xi ·Xi) + . . .+ ck(Xi ·Xk)

= ci(Xi ·Xi).

Now we have that ci(Xi · Xi) = 0, but Xi 6= 0 and so by Exercise 16, Xi · Xi 6= 0. It
follows that ci = 0 and so X1, . . . , Xk are linearly independent.

Since an orthogonal set of nonzero vectors is linearly independent, one wonders whether
every vector space has a basis which is an orthogonal, or orthonormal, set.

FINDING AN ORTHONORMAL BASIS

It is always possible to find an orthonormal basis for any subspace of Rn or Cn. The theorem
below tells how. The procedure is called the Gram-Schmidt Process. The formulas look
messy, but the idea is rather simple. Suppose that X1 and X2 are two independent vectors
in Rn. Then they are not collinear.

The first step is to divide X1 by its length (normalize) in order to obtain a unit vector
Z1 in the same direction, as pictured in Figure 5.2.

Next, the vector X2 must be “straightened up” so that it is perpendicular to X1. To do
this, we subtract the component of X2 in the direction of X1. This component has length
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Figure 5.2: Finding Z1
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Figure 5.3: Two linearly independent vectors

Z1 · X2 (See Exercise 15, and note that ||Z1|| = 1) and so (Z1 · X2)Z1 is the appropriate
vector to subtract.

Finally, we have found a vector perpendicular to Z1, and so all that remains is to divide
by the length of the vector in order to obtain a unit vector. The Gram-Schmidt process
extends this method to an arbitrary collection of linearly independent vectors.

Theorem 5.1.4. Let W be a subspace of Rn or Cn and let X1, . . . , Xm be any basis
for W. Let

Y1 = X1 Z1 = Y1/||Y1||
Y2 = X2 − (Z1 ·X2)Z1 Z2 = Y2/||Y2||
Y3 = X3 − (Z1 ·X3)Z1 − (Z2 ·X3)Z2 Z3 = Y3/||Y3||

...
...

Ym = Xm − (Z1 ·Xm)Z1 − . . .− (Zm−1 ·Xm)Zm−1 Zm = Ym/||Ym||.

Then Z1, . . . , Zm is an orthonormal basis for W.
(Certain linear combinations of a basis will form an orthonormal basis.)

Proof. By Exercise 18, each Zi is a unit vector, so we need only prove that Z1, . . . , Zm are
orthogonal. Let’s assume that the vectors are in Rn so that we may avoid the conjugates.
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Since Zi · Zj = Zj · Zi we need only show that Zk is orthogonal to Z1, . . . , Zk−1 for
k = 2, . . . , m. We prove this by induction on the integer k.

For k = 2:

Z1 · Z2 = Z1 · (1/||Y2||(X2 − (Zi · Z2)Z1)

= (1/||Y2||)(Z1 ·X2 − (Z1 ·X2)(Z1 · Z1))

= (1/||Y2||)(0)
= 0

since Z1 · Z1 = ||Z1||2 = 1.
Assume that Zk is orthogonal to Z1, . . . , Zk−1. We must show Zk+1 is orthogonal to

Z1, . . . , Zk. Let i be an integer, 1 ≤ i ≤ k. Then

Zi · Zk+1 = Zi ·
Ç

1

||Yk+1||
(Xk+1 − (Z1 ·Xk+1)Z1 − . . .− (Zk ·Xk+1)Zk

å

=
1

||Yk + 1|| (Zi ·Xk+1 − (Z1 ·Xk+1)Zi · Z1 − · · · − (Zi ·Xk+1)(Zi · Zi))

− · · · − (Zk ·Xk+1)Zi · Zk)

=
1

||Yk + 1||(Zi ·Xk+1 − (Zi ·Xk+1)(Zi · Zi))

= 0

since Zi · Zi = 1 and Zi · Zj = 0 for i 6= j ≤ k + 1.
Finally, then, we see that Z1, . . . , Zm is an orthonormal basis for W.

Example 5.1.2. 1. Consider the subspace of R3 spanned by the vectors X1 = (1,−1, 2)
and X2 = (2, 0, 1). Note that X1 and X2 are linearly independent, but X1 ·X2 = 4 so
that X1 and X2 are not orthogonal. We apply the Gram-Schmidt Process:

Z1 =
1

||X1||
X1

=
1√
6
(1,−1, 2)

Y2 = X2 − (Z1 ·X2)Z1

= (2, 0, 1)− 1√
6
(4)

1√
6
(1,−1, 2)

= (2, 0, 1)− 4

6
(1,−1, 2)

= (2, 0, 1)− (2/3,−2/3, 4/3)

= (4/3, 2/3,−1/3), and

Z2 =
1

»

21/9
(4/3, 2/3,−1/3)

=
3√
21

(4, 2,−1).
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Notice that in calculating Z2 we could have more easily obtained the same vector if we
had divided (4, 2,−1) = 3Y2 by its length rather than performing the same operation
on Y2. See Exercise 14.

2. The standard basis for R3 is an orthonormal basis, but we will need in Section 5.5 to
find an orthonormal basis in which the first vector in the basis is a scalar multiple of a
given vector. This can always be done without using the Gram-Schmidt process, and
it can usually be done by inspection.

Suppose we consider the vector X1 = (1,−2, 1) and suppose we try to find an orthonor-
mal basis in which a scalar multiple of X1 is the first vector. Recall from Chapter 2
that we can find vectors X2 and X3 so that X1, X2, and X3 form a linearly independent
set. If we apply the Gram-Schmidt process to this set we obtain an orthonormal set
with the first vector a multiple of X1. But the Gram-Schmidt process is messy. By
inspection, we can find a vector orthogonal to X1. Take X2 = (2, 1, 0) (this is the old
switch-the-values-and-change-one-sign trick). Now find a vector X3 that is orthogonal
to both X1 and X2, say X3 = (1,−2,−5). Notice that in X3 the first two entries assure
that X3 is orthogonal to X2 no matter what the third entry is. We then choose the
third entry so that X3 is orthogonal to X1. We now have three orthogonal vectors
and to obtain the orthonormal basis it is only necessary to normalize. Dividing by the
lengths we get

Z1 =
1√
6
(1,−2, 1), Z2 =

1√
5
(2, 1, 0), Z3 =

1√
30

(1,−2,−5).

Notice that Z1 is a scalar multiple of X1.

�

5.1.1 GENERAL INNER PRODUCT SPACES (optional)

The vector spaces Rn and Cn have an inner product as defined above, but there are other
spaces on which such a product can be defined. In general, we have the following definition.

Definition 5.1.2. Let V be a vector space over F = R or F = C. An inner product on
V is a function <,> from V ×V → F with the following properties:

1. For all X, Y ∈ V, < X, Y >= < Y,X >. Antisymmetry

2. For all X, Y ∈ V and r ∈ F, < rX, Y >= r < X, Y > .2

Conjugate linearity in the first coordinate/linearity in the second coordinate

3. For allX, Y, Z ∈ V, < X+Y, Z >=< X,Z > + < Y,Z > (Conjugate) linearity in the first coordinate

4. For all X ∈ V, < X,X >≥ 0, with equality if and only if X = 0. Positive definiteness

2In keeping with the flavor of this text, we adopt the convention more commonly used by physicists rather
than that used by mathematicians. The conditions < rX, Y >= r < X, Y > and < X, rY >= r < X, Y >

lead to the the same properties.
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A vector space with an inner product as defined above is called an inner product
space. We often write X · Y for < X, Y > . In addition, we define the norm of X ∈ V by
||X||2 =< X,X > .

There are several elementary properties of inner product spaces that are worth noting.

Theorem 5.1.5. Let V be an inner product space over F = R or F = C. Let X, Y, Z ∈
V, and let r ∈ F.

1. < X,X >∈ R.

2. < X, rY >= r < X, Y >

3. < X, Y + Z >=< X, Y > + < X,Z >

Proof. The proofs are left as exercises.

Example 5.1.3. We are already familiar with the inner product space Rn with the usual dot
product as an inner product. It is straightforward to verify that the required conditions all
hold (see Exercise 22).

�

Example 5.1.4. Consider C[0, 1], the space of all continuous functions on [0, 1], and define
the inner product of f, g ∈ C[0, 1] by

< f, g >=
∫ 1

0
f(x)g(x)dx.

Certainly < f, g >= < g, f > =< g, f > since
∫ 1

0
f(x)g(x)dx =

∫ 1

0
g(x)f(x)dx. Also, <

rf, g >=
∫ 1

0
(rf)(x)g(x)dx =

∫ 1

0
rf(x)g(x)dx = r

∫ 1

0
f(x)g(x)dx = r < f, g >= r < f, g >

for any real number r. In addition, for any f, g, h ∈ C[0, 1], we have

< f + g, h > =
∫ 1

0
(f + g)(x)h(x)dx

=
∫ 1

0
(f(x) + g(x))h(x)dx

=
∫ 1

0
(f(x)h(x) + g(x)h(x))dx

=
∫ 1

0
f(x)h(x)dx+

∫ 1

0
g(x)h(x)dx

=< f, h > + < g, h > .

Finally, < f, f >=
∫ 1

0
(f(x))2dx ≥ 0 for any f ∈ C[0, 1], and if < f, f >= 0, then, since

(f(x))2 ≥ 0 for x ∈ [0, 1], we must have f(x) = 0 for x ∈ [0, 1].
A similar result holds for C[a, b] for any interval [a, b].
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�

We return now to the Cauchy-Schwarz inequality and the triangle inequality.

Theorem 5.1.6. Let V be an inner product space over F = R or F = C, and let
X, Y ∈ V. Then |X · Y | ≤ ||X||||Y ||.

Proof. If X = 0 or Y = 0, then the inequality holds since both sides are zero. Thus, we may

assume that X and Y are nonzero. Consider the projection P of Y onto X : P =
Y ·X
||X||2X.

Notice that

(Y − P ) ·X = Y ·X − P ·X

= Y ·X −
Ç

Y ·X
||X||2X

å

·X

= Y ·X − Y ·X
= 0.

This also implies that (Y − P ) · P = 0 since P is parallel to X (see Exercise 23)). Now
Y = P + (Y − P ), so

||Y ||2 = Y · Y
= (P + (Y − P )) · (P + (Y − P ))

= P · P + (Y − P ) · P + P · (Y − P ) + (Y − P ) · (Y − P )

=

Ç

Y ·X
||X||2X

å

·
Ç

Y ·X
||X||2X

å

+ ||Y − P ||2

=

Ç |Y ·X|
||X||2

å2

X ·X + ||Y − P ||2

≥
Ç |Y ·X|

||X||2
å2

||X||2

=
(|Y ·X|)2
||X||2 .

Thus ||X||2||Y ||2 ≥ (|Y ·X|)2, so |X · Y | ≤ ||X||2||Y ||2, as desired.

This leads to the famous Triangle Inequality:

Theorem 5.1.7. Let V be an inner product space over F = R or F = C, and let
X, Y ∈ V. Then ||X + Y || ≤ ||X||+ ||Y ||.
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Proof.

||X + Y ||2 = (X + Y ) · (X + Y )

= X ·X +X · Y + Y ·X + Y · Y
= ||X||2 +X · Y +X · Y + ||Y ||2
= ||X||2 + 2ℜ(X · Y ) + ||Y ||2
≤ ||X||2 + 2|X · Y |+ ||Y ||2
≤ ||X||2 + 2||X||||Y ||+ ||Y ||2
= (||X||+ ||Y ||)2.

Thus, ||X + Y || ≤ ||X||+ ||Y ||. Note the use of the Cauchy-Schwarz Inequality.

The Cauchy-Schwarz Inequality also gives us a way to measure the “angle” between
vectors in an arbitrary inner product space even when such vectors do not lend themselves
to geometric interpretations. If V is an inner product space, then the Cauchy-Schwarz
Inequality tells us that for all X, Y ∈ V, |X · Y | ≤ ||X||||Y || and thus (as before)

|X · Y |
||X||||Y || ≤ 1.

By analogy with Rn, we equate the left-hand side of this inequality with the cosine of some
angle θ and call θ the angle between the vectors.

Definition 5.1.3. Let V be an inner product space, and let X, Y ∈ V be nonzero. The
angle between X and Y is given by

cos θ =
|X · Y |
||X||||Y || .

We say that two vectors are orthogonal if θ = 0, or, equivalently, if their inner product
equals 0.

Example 5.1.5. Consider S = {f(x) ∈ C[−π, π]|f(x) = cos(nx) or f(x) = sin(nx) for some n ∈
Z≥0}. For an integers m 6= n, cos(mx) and cos(nx) are orthogonal and sin(mx) and sin(nx)
are orthogonal. In addition, cos(mx) and sin(nx) are orthogonal for any integers m and n.
(See the exercises.) By Exercise 24, it follows that S is an orthonormal basis for a subspace
of C[−π, π].

The set S is used to create Fourier series, infinite series representing periodic functions
(with period 2π, in this case) on (−∞,∞) akin to Taylor polynomials for other functions.

�

Example 5.1.6. Find the angle between f(x) = 5x2 and g(x) = 12x in the inner product
space C[0, 1].

We need < f, f >,< f, g >, and < g, g > in order to find the angle θ between f and g.

< f, f >=
∫ 1

0
(5x2)2dx =

∫ 1

0
25x4dx = 5
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< g, g >=
∫ 1

0
(12x)2dx =

∫ 1

0
144x2dx = 48

< f, g >=
∫ 1

0
(5x2)(12x)dx =

∫ 1

0
60x3dx = 15

Thus cos θ =
15

5 · 48 =
1

16
. This gives θ ≈ 1.51 radians or about 86.4◦.

On the other hand, < x, 3x − 2 >=
∫ 1

0
x(3x − 2)dx =

∫ 1

0
(3x2 − 2x)dx = 0, so x and

3x− 2 are orthogonal.

�

Section 5.1 Exercises

In Exercises 1-4, let X = (1, 3, -1), Y = (3, 2, 5) and Z = (-2, 3, -1).

1. Compute X · Y and X · Z.

2. Compute Y · Y and Z ·X.

3. Compute ||X||, ||Y ||, and ||Z||.

4. Let U =
1

||X||X . Compute ||U ||.

5. Let X1 = (1, 0, 3), X2 = (2, 1,−1). Find X1 ·X2 and ||X2||.

6. Use the Gram-Schmidt Process to obtain an orthonormal basis for the subspace of R3

spanned by the vectors (1,−1, 0) and (2,−1,−2).

7. Show that X1 = (1 + i, i, 1), X2 = (i, 1− i, 0), and X3 = (1− i, 1, 3i) are orthogonal.

8. Use The Gram-Schmidt Process to obtain an orthonormal basis for the subspace of R4

spanned by the vectors X1 = (1, 0, 1, 0), X2 = (1, 3, 1, 0), X3 = (3, 2,−1, 0).

In Exercises 9 - 12, proceed as in Example 5.1.2 above.

9. Find an orthonormal basis for R2 in which the first vector in the basis is a scalar
multiple of the vector (1, 2).

10. Find an orthonormal basis for R2 in which the first vector in the basis is a scalar
multiple of the vector (−2, 3).

11. Find an orthonormal basis for R3 in which the first vector in the basis is a scalar
multiple of the vector (0,−3, 2).

12. Find an orthonormal basis for R3 in which the first vector in the basis is a scalar
multiple of the vector (−1, 2,−2).
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13. Prove Theorem 5.1.1.

14. Prove parts (a), (b), and (c) of Theorem 5.1.2.

15. For vectors X, Y ∈ R3, prove that X ·Y = ||X||||Y || cos θ, where θ is the angle between
the vectors X and Y . (Hint: Consider the triangle formed by the vectors X and Y .
The third side of the triangle has length ||Y −X||. Apply the law of cosines.)

16. Show that if X is a nonzero real or complex vector, then X ·X 6= 0 so that ||X|| > 0.

17. Show that if X is a nonzero real or complex vector, and c is a scalar, then ||cX|| =
|c|||X||.

18. Show that if X is a nonzero real or complex vector, then U = (1/||X||)X is a unit
vector.

19. Let X be a nonzero real or complex vector and let c be a positive real scalar. Show

that
1

||X||X =
1

||cX||cX.

20. Let A and B be respectively m × n and n × r matrices over the complex numbers.
Show that AB = A B.

21. Prove Theorem 5.1.5.

22. Show that Rn is an inner product space with respect to the usual dot product.

23. Prove that if X · Y = 0 and Z is parallel to Y, then X · Z = 0.

24. Let V be an inner product space. Show that if S ⊆ V , where 0 /∈ S, such that for any
X, Y ∈ S, < X, Y >= 0, then S is linearly independent in V.

25. Show that for any integers m 6= n, cos(mx) and cos(nx) are orthogonal on [−π, π] and
sin(mx) and sin(nx) are orthogonal on [−π, π].

26. Show that for any integers m,n ∈ Z, cos(mx) and sin(nx) are orthogonal on [−π, π].

27. Let f(x) = x and g(x) = cos x in C[−π, π]. Find the angle between f and g.

28. Let f(x) = x and g(x) = sin x in C[−π, π]. Find the angle between f and g.

29. Let f(x) = 4x2 + 3 and g(x) = 7x− 1 in C[0, 1]. Find the angle between f and g.

30. Show that if X is a non-zero vector in an inner product space V, then the angle between
X and itself is 0.

Let V be an inner product space, and let W be a subspace of V. We define the or-
thogonal complement W⊥ of W by W⊥ = {v ∈ V | < v,w >= 0 for all w ∈ W}.

31. Prove that W⊥ is a subspace of V.
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32. Let {w1, . . . , wk} be an orthonormal basis for W , and define T : V → V by T (v) =

v − v · w1

w1 · w1
w1 − . . .− v · wk

wk · wk
wk for each v ∈ V (by analogy with the Gram-Schmidt

process). Prove the following:

(a) T is a linear transformation.

(b) Im(T ) = W⊥.

(c) ker(T ) = W.

(d) If dim(V ) = n, then dimW + dimW⊥ = n. [Hint: use T.]

(e) (W⊥)⊥ = W.

33. Prove that R(A)⊥ = N(A).

5.2 Eigenvalues and Eigenvectors

We begin now the study of an interesting problem. Given a linear transformation, T : U →
U, we wonder whether a basis B for the vector space U can be found so that TB

B
is a “nice”

matrix. The term “nice” might be interpreted to mean “diagonal” or “nearly diagonal”.
Recall that by the results regarding change of basis that if C is another basis for U, then

TC

C
= IC

B
TB

B
IB
C
= (IB

C
)−1TB

B
IB
C
.

This relationship between TC

C
and TB

B
gave rise to the definition of similarity of matrices:

two n× n matrices A and B are similar if and only if there is a nonsingular n × n matrix
S with B = S−1AS. By the results of Section 3.5, any nonsingular matrix can be written
as a product of either row or column elementary matrices and these elementary matrices
are associated with certain elementary row or column operations. Using the results (in
Section 3.5) concerning the relationship between the elementary row and column operations
and certain changes in basis, any nonsingular matrix S can be represented as a matrix IB

C

where B is a given basis and C is calculated from B by performing the necessary operations
on the elements of B. Because of this we will study matrices and similarity of matrices
without mention of linear transformations and bases for vector spaces. To motivate our
basic definitions, however, we will consider now a property of a linear transformation.

Let T : U → U be a linear transformation of the vector space U into itself. A vector
X with the property that T (X) = λX for some scalar, λ, is called an invariant vector of
T. Geometrically, this condition means that the action of T shrinks or stretches the vector
X , but does not change its direction. Invariant vectors are interesting, in part, for the
following reason: suppose U has a basis B = {X1, . . . , Xn} consisting of invariant vectors,
say T (Xi) = λiXi. Then computing the matrix for T relative to this basis B, we get
TB

B
= diag(λ1, . . . , λn). Because of this interesting property, we make the following definition

regarding an n× n matrix.
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EIGENVALUES AND EIGENVECTORS

Definition 5.2.1. Let A be an n× n matrix. A scalar λ is an eigenvalue of A if there is
a nonzero (column) vector X such that AX = λX . An eigenvector of A (associated with
the eigenvalue λ) is a nonzero (column) vector X with AX = λX for some scalar λ.

[Note: λ is the lower-case Greek letter lambda.]

For a scalar λ, the equation AX = λX has a nonzero solution if and only if (A−λI)X = 0
has a nonzero solution, where I is the n×n identity matrix. If the eigenvalue λ could be found,
we could find the associated eigenvector X by solving the homogeneous system of linear
equations (A− λI)X = 0 using the methods of Sections 1.6 and 2.9. Now (A− λI)X = 0 is
a matrix equation with n×n coefficient matrix and so, using facts about determinants from
Section 4.2,we see that (A− λI)X = 0 has a nonzero solution if and only if |A− λI| = 0. It
follows that λ is an eigenvalue if and only if |A−λI| = 0. Considering |A−λI| as a function
of λ, we see that it is a polynomial in the variable λ. For example, if

A =

ñ

1 3
2 −1

ô

,

then

|A− λI| =
∣

∣

∣

∣

∣

1− λ 3
2 −1− λ

∣

∣

∣

∣

∣

= (1− λ)(−1− λ)− 6 = λ2 − 7.

THE CHARACTERISTIC POLYNOMIAL - FINDING EIGEN-

VALUES

Definition 5.2.2. Let A be an n × n matrix. The polynomial pA(λ) = |A − λI| is called
the characteristic polynomial of A. The equation pA(λ) = |A − λI| = 0 is called the
characteristic equation of A.

As we have observed:

Theorem 5.2.1. The eigenvalues of A are the roots of the characteristic polynomial
pA(λ) of A. (The eigenvalues are the roots of the characteristic polynomial.)

Example 5.2.1. Let us use the above theorem to find eigenvalues and corresponding eigen-
vectors for a given matrix. Let

A =







3 1 2
−3 2 3
2 1 3





 .

Then expanding across the first row gives
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pA(λ) = |A− λI|

=

∣

∣

∣

∣

∣

∣

∣

3− λ 1 2
−3 2− λ 3
2 1 3− λ

∣

∣

∣

∣

∣

∣

∣

= (3− λ)[((2− λ)(3− λ)− 3)]− (−3(3− λ)− 2) + 2(3− 2(2− λ))

= −λ3 + 8λ2 − 17λ+ 10

= (λ− 1)(−λ2 + 7λ− 10)

= −(λ− 1)(λ− 2)(λ− 5),

and so the eigenvalues of A are λ1 = 1, λ2 = 2, and λ3 = 5. The reader may wish to consult
Appendix D for facts about polynomials and hints about finding solutions of polynomial
equations.

To find eigenvectors corresponding to these eigenvalues, one finds solutions of the systems
of homogeneous equations (A−λI)X = 0 where λ is one of the eigenvalues. We calculate the
coefficient matrices for each eigenvalue and then use row operations to simplify the solution.
Since we need only find one solution for each system, we perform only enough row operations
to enable us to find a solution by inspection:

A− 1I =







2 1 2
−3 1 3
2 1 2







R13(−1)
→

R12(−1)







2 1 2
−5 0 1
0 0 0





 , X1 =







1
−12
5







A− 2I =







1 1 2
−3 0 3
2 1 1







R13(−1)
→







1 1 2
−3 0 3
1 0 −1





 , X2 =







1
−3
1







A− 5I =







−2 1 2
−3 −3 3
2 1 −2







R13(1)
→







−2 1 2
−3 −3 3
0 2 0





 , X3 =







1
0
1







We see that X1, X2, and X3 are eigenvectors of A corresponding to the eigenvalues λ1 =
1, λ2 = 2, and λ3 = 5.

�

Theorem 5.2.2. Let A be an n× n matrix over C (or R) with eigenvalues λ1, . . . , λn

(not necessarily distinct). Then |A| = λ1λ+ 2 · · ·λn.

Proof. Notice that pA(0) = |A−0I| = |A|. Also, pA(λ) factors completely over C, so we have
pA(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ), so pA(0) = λ1λ2 · · ·λn. This gives the result.
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The following properties of the characteristic polynomial are easy to establish.

Theorem 5.2.3. Let A be an n× n matrix. Then

(a) pA(λ) = pAt(λ), so A and At have the same eigenvalues.
(A matrix and its transpose have the same eigenvalues.)

(b) If A is similar to B, pA(λ) = pB(λ), so A and B have the same eigenvalues.
(Similar matrices have the same eigenvalues.)

Proof. (a) pA(λ) = |A− λI| = |(A− λI)t| = |At − (λI)t| = |At − λI| = pAt(λ).

(b) If A is similar to B, then B = S−1AS for some nonsingular matrix S. Then we have

pB(λ) = |B − λI|
= |S−1AS − λI|
= |S−1AS − λS−1IS|
= |S−1(A− λI)S|
= |S−1||A− λI||S|
= |S−1||S||A− λI|
= |S−1S||A− λI|
= |I||A− λI|
= |A− λI|
= pA(λ).

As mentioned in our introductory remarks, if one can find a basis B of invariant vectors
for a linear transformation T , then [T : B,B] is a diagonal matrix. This is not always
possible, but the following theorem provides important information regarding eigenvectors
corresponding to distinct eigenvalues.

Theorem 5.2.4. If λ1, . . . , λk are distinct eigenvalues of the n × n matrix A and
X1, . . . , Xk are corresponding eigenvectors, then X1, . . . , Xk are linearly independent.
(Eigenvectors corresponding to distinct eigenvalues are independent.)

Proof. Assume not. Then X1, . . . , Xm are linearly independent for some m, but X1, . . . , Xm,
Xm+1 are linearly dependent. Then a1X1 + . . . + amXm + am+1Xm+1 = 0 for some scalars
a1, . . . , am+1, not all of which are zero. Multiply by A and get

Aa1X1 + . . .+ Aam+1Xm+1 = a1λ1X1 + . . .+ am+1λm+1Xm+1 = 0.
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Now multiply by λm+1 and subtract to get

0 = a1(λ1 − λm+1)X1 + . . .+ am(λm − λm+1)Xm + am+1(λm+1 − λm+1)Xm+1

= a1(λ1 − λm+1)X1 + . . .+ am(λm − λm + 1)Xm = 0.

ButX1, . . . , Xm are linearly independent and λi−λm+1 6= 0 (because the λis are all different),
so we get a1 = . . . = am = 0. It follows that a1X1+. . .+amXm+am+1Xm+1 = am+1Xm+1 = 0
and since Xm+1 6= 0 (it is an eigenvector), we get am+1 = 0. It follows that X1, . . . , Xk must
be linearly independent.

Two related classes of matrices arise often in applications and have interesting properties.
We will see in Section 5.5 that these matrices are always similar to diagonal matrices.

SYMMETRIC AND HERMITIAN MATRICES

Definition 5.2.3. An n × n matrix A is symmetric if and only if A = At and A is
hermitian3 if and only if A = A

t
.

Since the conjugate of a real number is the number itself, we see that a real symmetric
matrix is also hermitian.

Example 5.2.2. Consider the following matrices:

A =







1 3 3
3 −2 −1
3 −1 4





 , B =







1 i 1− i
−i 2 2 + i
1 + i 2− i −1





 , and C =







i 2 −i
2 1 3
i 3 −3





 .

The matrix A is symmetric (the entries that are symmetric about the main diagonal are
equal), and since A is a real matrix, A is also hermitian. The matrix B is not symmetric
since the entry in row 1 column 2 is i and the entry in row 2 column 1 is −i, but B is
hermitian since entries that are symmetric about the main diagonal are conjugates of each
other. Notice that for a matrix to be hermitian, the entries on the main diagonal must equal
their conjugates, that is they must be real. Because of this, the matrix C is not a hermitian
matrix. C is also not symmetric.

�

Theorem 5.2.5. The eigenvalues of a hermitian (and so also a real symmetric) matrix
A are all real. (Hermitian and real symmetric matrices have real eigenvalues.)

Proof. We make heavy use of properties of the conjugate and transpose operations that were
established in exercises:

AB = A B (Exercise 5.1.20)

3Hermitian matrices are named for the French mathematician Charles Hermite (1822-1901).
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(AB)t = BtAt (Exercise 4.1.16)

Notice also that
A = A and (At)t = A

for any matrix A. If AX = λX , then X
t
AX = λX

t
X. Now X

t
X = X ·X is real and X

t
AX

is real since

(X
t
AX)

t

= X
t
A

t
X

tt
.

Hence λ must be real.

Example 5.2.3. Let A =

ñ −1 2
2 1

ô

. Then A is symmetric and so we know that the eigen-

values are real and we can find real eigenvectors. Calculating the characteristic polynomial
we get pA(λ) = |A− λI| = λ2 − 5. The eigenvalues are λ1 =

√
5 and λ2 = −

√
5. To find an

eigenvector corresponding to λ1 we must find a nonzero solution of

(A− λ1I)X1 =

[

−1−
√
5 2

2 1−
√
5

]

ñ

x
y

ô

= 0.

Radicals are always unpleasant to deal with, so let us think carefully about the solution.
Since λ1 is an eigenvalue, A− λ1I is a singular matrix (the determinant must be 0). If this
matrix is singular, it must have rank 1. This means that the second row is a multiple of the

first and so if the first row times

ñ

x
y

ô

gives zero, so must the second. To find a solution,

then, we forget about the second row and concentrate on the first. To make the solution
vector, we use “the old switch the entries and change one sign trick” on the first row:

X1 =

ñ

x
y

ô

=

ñ

2

1 +
√
5

ô

.

A similar calculation will find the second eigenvector.

�

Section 5.2 Exercises

For each of the matrices in Exercises 1 - 8, find eigenvalues and corresponding eigenvectors.

1.

ñ

2 −1
0 −2

ô

2.

ñ −1 2
0 −1

ô

3.

ñ

4 1
−10 −3

ô

4.

ñ −5 6
−6 7

ô

5.







1 2 −1
0 1 3
0 0 2







6.







−2 3 1
0 −1 2
0 0 3







7.







3 2 4
1 2 2
−1 −1 −1







8.







3 −2 −2
0 −1 0
1 −2 0






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9. Show that

ñ

1 2
2 5

ô

and

ñ

1 2
−1 0

ô

are not similar.

10. Prove that A is singular if and only if 0 is an eigenvalue of A.

11. Let A =

ñ

1 2
0 2

ô

. Compute pA(A). (Note: If pA(λ) = anλ
n+ . . .+ a1λ+ a0, we define

pA(A) = anA
n + . . .+ a1A+ a0I.)

12. Let X1, . . . , Xk be eigenvectors of A corresponding to the eigenvalue λ, and let X =
a1X1 + . . . + akXk. Show that if X 6= 0 then X is an eigenvector of A corresponding
to λ.

In Exercises 13 - 17, find a 2×2 matrix A over the real numbers that satisfies the given
condition. Note that there may be several matrices that satisfy the condition or none.

13. A has eigenvalues −1 and 3.

14. The characteristic polynomial of A is (1− λ)2.

15. A has only one eigenvalue, −2, and the vector

ñ

1
−1

ô

is an eigenvector for this eigen-

value.

16. 0 is the only eigenvalue of A and every eigenvector is a scalar multiple of

ñ

2
−1

ô

.

17. The complex number 1 + i is an eigenvalue of A.

5.3 Similarity to a Diagonal Matrix

It is not difficult to characterize those matrices that are similar to diagonal matrices. The
characterization involves eigenvalues and eigenvectors of the matrices. Recall from Section
5.2 that similar matrices have the same characteristic polynomial and so the same eigenval-
ues. We will need two results - the proofs are left as exercises.

Lemma 5.3.1. If X1, . . . , Xk are linearly independent n × 1 column vectors and S is a
nonsingular n× n matrix, then SX1, . . . , SXk are linearly independent.

Proof. Exercise 17.

Lemma 5.3.2. If A is similar to B, say B = S−1AS, and X is an eigenvector of B
corresponding to λ, then SX is an eigenvector of A corresponding to λ.

Proof. Exercise 18.

Using these two lemmas we can characterize matrices that are similar to a diagonal
matrix.
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NECESSARY AND SUFFICIENT CONDITIONS

Theorem 5.3.3. Let A be an n × n matrix. Then A is similar to a diagonal
matrix D if and only if A has n linearly independent eigenvectors. In fact, if
X1, . . . , Xn are linearly independent eigenvectors of A corresponding to the eigen-
values λ1, . . . , λn and S = [X1, . . . , Xn], then S−1AS = D = diag(λ1, . . . , λn).
(A matrix is similar to a diagonal matrix iff it has n independent eigenvectors.)

Proof. Assume A is similar to a diagonal matrix D = diag(λ1, . . . , λn). Then S−1AS = D
for some nonsingular matrix S. The eigenvalues of D are λ1, . . . , λn and the transposes of
the standard basis vectors

Et
1 =













1
0
...
0













, Et
2 =













0
1
...
0













, . . . , Et
n =













0
0
...
1













are the corresponding eigenvectors. We see that D has n linearly independent eigenvec-
tors. By Lemma 5.3.1, SEt

1, . . . , SE
t
n are n linearly independent vectors, and by Lemma

5.3.2, SEt
1, . . . , SE

t
n are eigenvectors of A corresponding to λ1, . . . , λn.

Now let X1, . . . , Xn be linearly independent eigenvectors of A corresponding to the eigen-
values λ1, . . . , λn. Let S = [X1, . . . , Xn]. Using block multiplication, we see that

S−1AS = S−1A[X1, . . . , Xn]

= S−1[AX1, . . . , AXn]

= S−1[λ1X1, . . . , λnXn]

= [S−1λ1X1, . . . , S
−1λnXn]

= [λ1S
−1X1, . . . , λnS

−1Xn]

= [S−1X1, . . . , S
−1Xn]diag(λ1, . . . , λn)

= S−1[X1, . . . , Xn]diag(λ1, . . . , λn)

= S−1Sdiag(λ1, . . . , λn)

= diag(λ1, . . . , λn),

and so A is similar to a diagonal matrix.

The above theorem says that an n× n matrix A is similar to a diagonal matrix exactly
when the matrix has n linearly independent eigenvectors, and from the proof of the theorem
we see that it is the S matrix made up of the eigenvectors that does the transformation.

A previous theorem gives us a special case in which this theorem applies.

Corollary 5.3.4. Let A be an n × n matrix and assume pA(λ) = |A − λI| has n distinct
roots λ1, . . . , λn. Then A is similar to a diagonal matrix.
(A matrix with n distinct eigenvalues is similar to a diagonal matrix.)
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Proof. Let X1, . . . , Xn be eigenvectors corresponding to the distinct eigenvalues λ1, . . . , λn.
Then by Theorem 5.2.4, X1, . . . , Xn are linearly independent and so by the previous theorem,
A is similar to a diagonal matrix.

Corollary 5.3.5. Let A be an n × n matrix and assume pA(λ) factors completely. Let
λ1, . . . , λk be the distinct characteristic roots and assume the multiplicity of λi is mi. Then
if mi = n − rank(A − λiI) for i = 1, . . . , k, then A is similar to a diagonal matrix.
(A matrix in which the multiplicity of each eigenvalue is the number of independent eigenvectors is similar to a diagonal matrix.)

Proof. We have m1 + . . . + mk = n and each eigenvalue λi has mi linearly independent
eigenvectors, say,

X
(i)
1 , X

(i)
2 , . . . , X(i)

mi

since the dimension of the solution space of (A − λiI)X = 0 is n − rank(A − λiI) = mi

by Theorem 2.9.1. Now a linear combination of these eigenvectors is either 0 or another
eigenvector associated with the same eigenvalue by Exercise 5, Section 5.2. Now assume
that a linear combination of the eigenvectors is zero, say

k
∑

j=1

mi
∑

i=1

aijX
(j)
i = 0.

Rewriting this linear combination, we get

m1
∑

i=1

ai1X
(1)
i + . . .+

mk
∑

i=1

aikX
(k)
i = 0.

All of the coefficients are 1’s and each nonzero term is an eigenvector for one of the distinct
eigenvalues λ1, . . . , λk. Since these nonzero eigenvectors are linearly independent, all terms
must equal zero. We see that

mi
∑

i=1

aijX
(j)
i = 0

for j = 1, . . . , k. But the vectors in the above sum are linearly independent and so we
conclude that: a1j = . . . = amjj = 0 for j = 1, . . . , k. It follows that the eigenvectors are
linearly independent, and so, applying Theorem 5.3.3, we see that A is similar to a diagonal
matrix.

“Diagonalizing” a matrix gives a nice review of our earlier work: We calculate the de-
terminant |A − λI| to find the characteristic polynomial and solve it to find the eigenval-
ues. We then find a basis for the solution space of the homogeneous systems of equations
(A − λI)X = 0 for each eigenvalue λ. Theorem 5.3.3 tells us whether we will succeed in
diagonalizing. To illustrate this process, consider the following example.

Example 5.3.1. Let A =

ñ

0 1
2 −1

ô

. Then pA(λ) = |A − λI| =

∣

∣

∣

∣

∣

−λ 1
2 −1− λ

∣

∣

∣

∣

∣

, which

becomes −λ(−1− λ)− 2 = λ2 + λ− 2 = (λ− 1)(λ+ 2). Let λ1 = 1, λ2 = −2, and compute
the corresponding eigenvectors:
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(A− λ1I)X =

ñ −1 1
2 −2

ô ñ

x1

x2

ô

=

ñ

0
0

ô

; take X1 =

ñ

1
1

ô

(A− λ2I)X =

ñ

2 1
2 1

ô ñ

x1

x2

ô

=

ñ

0
0

ô

; take X2 =

ñ

1
−2

ô

Using Theorem 5.3.3, let S =
î

X1 X2

ó

=

ñ

1 1
1 −2

ô

. Then S−1 =

ñ

2/3 1/3
1/3 −1/3

ô

,

and

S−1AS =

ñ

1 0
0 −2

ô

.

�

Section 5.3 Exercises

In Exercises 1 - 6, determine whether the matrix is similar to a diagonal matrix.

1.

ñ −1 2
0 2

ô

2.

ñ

1 0
3 2

ô

3.







1 3 2
0 1 1
0 0 2







4.







−1 2 0
0 1 2
0 0 3







5.







1 0 1
0 1 0
0 0 2







6.







1 0 0
0 1 1
0 0 1







In Exercises 7 - 12, find a nonsingular matrix S such that S−1AS is a diagonal matrix.

7.

ñ −1 2
0 2

ô

8.

ñ

1 2
2 1

ô

9.

ñ −1 0
2 2

ô

10.







−1 2 1
0 3 2
0 0 1







11.







1 0 0
2 2 2
0 0 3







12.







1 0 1
0 1 0
1 0 1







In Exercises 13 - 15, show that the matrix is not similar to a diagonal matrix.

13.

ñ

1 1
0 1

ô

14.







1 2 1
0 1 1
0 0 2





 15.







1 0 0
1 1 1
0 0 1







16. Let A be a 3× 3 matrix with 1 an eigenvalue of multiplicity 2 and assume that
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A− 1I =







1 1 1
1 1 1
1 1 1





 .

Is A similar to a diagonal matrix?

17. Prove Lemma 5.3.1.

18. Prove Lemma 5.3.2.

19. Recall the definition of similarity: An n × n matrix A is similar to the n × n matrix
B if and only if there is a nonsingular n × n matrix S with B = S−1AS. Prove the
following properties of the similarity relation for n× n matrices A,B, and C:

(a) A is similar to A. (Similarity is reflexive.)

(b) If A is similar to B, then B is similar to A. (Similarity is reflexive.)

(c) If A is similar to B and B is similar to C, then A is similar to C. (Similarity is
transitive.)

(We say that similarity is an equivalence relation since it is reflexive, symmetric,
and transitive.)

5.4 Page Rank (Optional)

In this section, we investigate one of the important uses of eigenvectors and eigenvalues: the
Page Rank4 algorithm used by Google to sort search results.

Imagine an enormous database of all web pages that includes key words from those pages.
When you run a search, the software extracts those web pages that contain the key words
you searched for. But how does it decide the order in which to list them? They are arranged
according to their Page Rank, which measures their relative importance by keeping track
of the other pages that link to them. The idea is that the more pages there are linking to a
given page, the more important it is and therefore the more likely it is to contain what you
are seeking.

To develop this system, we will need to establish some assumptions.

1. The PageRank of a web page depends on the number of pages linking to it.

2. The PageRank of a web page depends on the PageRanks of the pages linking to it.

3. The PageRank of a web page is evenly divided among the pages it links to.

4. The PageRank of a web page is calculated iteratively, starting with equal page ranks
for all pages.

4Although one might reasonably think that the Page in “Page Rank” refers to webpages, it is actually
named for Larry Page, one of the founders of Google and the inventor of the algorithm.



5.4. PAGE RANK (OPTIONAL) 203

Consider the very small internet shown below; it has only four pages.

1 2

34

The arrows indicate links; for example, the arrow from 1 to 3 indicates that page 1 links
to page 3 (but page 3 does not link back to page 1). As there are four pages, the initial
ranking is PR0 = (0.25, 0.25, 0.25, 0.25)T , where the jth component of the vector corresponds
to web page j and we use PRk to record the page rank after k clicks. The values in PR0

correspond to the probability that a random surfer would start at a particular page. To find
PR1, we apportion each page’s rank equally among those pages it links to:

PR1(1) =
1

2
PR0(2)

PR1(2) =
1

3
PR0(1)

1

2
PR0(4)

PR1(3) =
1

3
PR0(1)

1

2
PR0(2)

1

2
PR0(4)

PR1(4) =
1

3
PR0(1) PR0(3)

.

For example, since page 1 links to three other pages, each of those pages receives 1/3 of
the Page Rank of page 1. At this first iteration, that is 1/3 of 0.25, but that 0.25 is recorded
in the equations above as PR0 to make it easier to generalize later.

Notice now that this system can more conveniently be represented as a matrix equation:
if we let

A =











0 1/2 0 0
1/3 0 0 1/2
1/3 1/2 0 1/2
1/3 0 1 0











,

we find PR1 = APR0. Thus, the result of clicking a second time is PR2 = APR1 = A2PR0,
and, in general, PRn = AnPR0. In addition, we can see that A is stochastic! The column
of A corresponding to page j indicates the fraction of j’s PageRank that is apportioned to
each other page. Since all of its PageRank is apportioned, the sum of each column is 1 (and
all entries are non-negative). We have a number of useful tools.

Theorem 5.4.1. If A is stochastic, so is An for any n.
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Proof. If X =









p1
...
pn









is a column vector whose entries sum to one (a stochastic vector) and

A =
î

A1 · · · An

ó

, where the entries in each Aj sum to 1, then AX = p1A1+. . .+pnAn (a
column vector). Since the entries in each Aj sum to 1, the entries in AX sum to p1+. . .+pn =
1, too, so AX is a stochastic vector whenever A is a stochastic matrix and X is a stochastic
vector. Therefore, A2 = AA = A

î

A1 · · · An

ó

=
î

AA1 · · · AAn

ó

is stochastic since
each column is a stochastic vector. Similarly, An is stochastic for each positive integer n.

Theorem 5.4.2. If A is stochastic, then A has an eigenvalue of 1.

Proof. A stochastic matrix A has columns that sum to 1, so AT has rows that sum to 1.

Thus AT









1
...
1









=









1
...
1









, and thus 1 is an eigenvalue of AT . Since A and AT have the same

eigenvalues, A has an eigenvalue of 1 as well.

The following is also true, although we will not prove it here.

Theorem 5.4.3. If A is stochastic, then lim
n→∞

An exists.

This is important because it means that our PageRanks come to a steady state after a
large number of clicks: If we let B = lim

n→∞
An, we have PR = lim

n→∞
AnPR0 = BPR0. Since

AB = B, we have A(BPR0) = BPR0, so BPR0 is the eigenvector of A corresponding to
the eigenvalue of 1 that we know A has. Since it is also the steady-state distribution vector,
it is actually the PageRank we’re looking for! That is: in order to find the PageRank of our
mini-internet, we need only find the eigenvector of A corresponding to the eigenvalue 1.

We proceed as usual using the matrix A started above:

(A− I)X =











−1 1/2 0 0
1/3 −1 0 1/2
1/3 1/2 −1 1/2
1/3 0 1 −1





















x1

x2

x3

x4











=











0
0
0
0











.

Solving by inspection, we see that X = (1, 2, 3, 10/3)t serves as our eigenvector. Scaling
so that the entries sum to 1, we find X = (0.1071, 0.2143, 0.3214, 0.3571)t. Thus, page 1 is
considered the least important page, and page 4 is considered the most important.
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Section 5.4 Exercises

1. For the stochastic matrix A =

ñ

0.4 0.8
0.6 0.2

ô

, find the stochastic eigenvector associated

with the eigenvalue 1.

2. For the stochastic matrix A =







0 0.7 0.2
0.1 0 0.8
0.9 0.3 0





 , find the stochastic eigenvector asso-

ciated with the eigenvalue 1.

3. Using the mini-internet shown, find the page ranks of all of the pages.

1 2

34

4. Using the mini-internet shown, find the page ranks of all of the pages.

1 2

3

4

5
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5.5 Symmetric and Hermitian Matrices

We are now in a position to begin the proof that every hermitian or real symmetric matrix
is similar to a diagonal matrix. This is a deep and important result with applications in
physics as shown in Section 5.8, as well as in other areas of mathematics, for example in the
simplification of quadratic forms as explained in Section 5.7.

The proof that a hermitian matrix is similar to a diagonal matrix is somewhat difficult
and indirect. We begin by proving that any matrix is similar, in a special way, to an upper
triangular matrix. Upper triangular matrices were mentioned earlier in Section 1.7. Recall
that an n×n matrix A = [aij ] is called upper triangular if and only if aij = 0 for i > j. Note
that in a square matrix of order n, a11, . . . , ann are the entries on the diagonal, {aij |i < j} is
the set of entries above the diagonal and {aij |i > j} is the set of entries below the diagonal.
Thus A is upper triangular if and only if all entries below the diagonal are zero. Likewise a
matrix is lower triangular if and only if the entries above the diagonal are zero.

The special form of similarity mentioned above is related to orthonormal sets of vectors.
Recall that we began the discussion in this chapter with the thought that we would like to
better understand the action of a linear transformation by finding a basis relative to which
the transformation was represented by a simple matrix. The basis that we will construct
will, in fact, be orthonormal.

ORTHOGONAL AND UNITARY MATRICES

The special type of similarity mentioned above involves a nonsingular matrix whose inverse
has special properties: A nonsingular matrix P is orthogonal if and only if P−1 = P t and
P is unitary if and only if P−1 = P

t
. So a nonsingular matrix is orthogonal provided its

inverse is its transpose and a nonsingular matrix is unitary in the event that the inverse
of the matrix is the conjugate of its transpose. In general, orthogonal matrices occur in
situations involving the real numbers and unitary matrices occur in the complex case.

The above terminology comes from the following: Assume {X1, . . . , Xn} is an orthonor-
mal set of real n-dimensional column vectors. Then for i 6= j,Xi · Xj = X t

iXj = 0 and
Xi ·Xi = X t

iXi = 1. Let P be the matrix formed using these column vectors as the columns
of P ; that is, P = [X1, . . . , Xn]. Then
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P tP =









X t
1
...

X t
n









[X1 . . .Xn]

=









X t
1X1 X t

1X2 . . . X t
1Xn

...
...

. . .
...

X t
nX1 X t

nX2 . . . X t
nXn









=









X1 ·X1 X1 ·X2 . . . X1 ·Xn
...

...
. . .

...
Xn ·X1 Xn ·X2 . . . Xn ·Xn









=









1 0 . . . 0
...

...
. . .

...
0 0 . . . 1









= In.

Thus P t = P−1. Likewise, if {X1, . . . , Xn} is an orthogonal set of complex vectors and
U = [X1 . . .Xn] then U is a unitary matrix. It follows that since the vectors

[

1/
√
2

1
√
2

]

and

[

−1/
√
2

1/
√
2

]

are orthogonal unit vectors, the matrix

P =

[

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

]

is an orthogonal matrix and

P−1 = P t =

[

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]

.

Theorem 5.5.1. (a) A product of orthogonal matrices is an orthogonal matrix.

(b) A product of unitary matrices is a unitary matrix.

Proof. Exercise 20.

Let A and B be n×n matrices. We say that A is orthogonally similar to B if and only
if there is an orthogonal matrix P with B = P tAP . Likewise A is unitarily similar to B
provided there is a unitary matrix U with B = U

t
AU . We will see that any real matrix whose

characteristic polynomial factors completely is orthogonally similar to an upper triangular
matrix.
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THE UPPER TRIANGULARIZATION PROCESS

As with ordinary similarity, if A is orthogonally similar to B, then B is orthogonally similar
to A and likewise for unitary similarity. In addition, if A is orthogonally similar (or unitarily
similar) to B, then A is also similar to B.

If a matrix B is upper triangular, then the determinant of B is the product of the entries
on the diagonal:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 . . . b1n
0 b22 . . . b2n
...

...
. . .

...
0 0 . . . bnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= b11b22 . . . bnn.

It follows that pB(λ) = |B−λI| = (b11−λ)(b22−λ) . . . (bnn−λ) and so the eigenvalues of B
lie on the diagonal. Also, we see that the characteristic polynomial of B factors completely.
Since similar matrices have the same characteristic polynomial, we see that a necessary
condition for a matrix to be similar to an upper triangular matrix is that the characteristic
polynomial of the matrix factors completely. Of course, over the field of complex numbers
every polynomial of positive degree factors completely.

The following theorem tells us about the upper triangularization process. The proof of
the theorem is “constructive” in that it tells us how to construct both the upper triangular
matrix and the matrix that performs the similarity transformation.

Theorem 5.5.2 (Schur’s Theorem). Let A be an n× n matrix.

(a) If A is a real matrix and the characteristic polynomial of A factors completely
over R, then A is orthogonally similar to a real upper triangular matrix.
(A real matrix is orthogonally similar to an upper triangular matrix if the characteristic polynomial factors.)

(b) If A is a complex matrix, then A is unitarily similar to an upper triangular
matrix. (A complex matrix is unitarily similar to an upper triangular matrix.)

Proof. The same proof works in each case. In (b), note that the characteristic polynomial
factors completely.

The proof is by induction on the order n of the matrix A. The theorem is seen to be true
for n = 1. Assume that the theorem is true for matrices of order (n− 1)× (n− 1).

Let A be n × n and let λ1, . . . , λn be the eigenvalues of A. Let X1 be an eigenvector
corresponding to λ1 and choose X2, . . . , Xn such that X1, . . . , Xn is a linearly independent set
of n-dimensional column vectors. Apply the Gram-Schmidt Process toX1, . . . , Xn and obtain
an orthonormal set Y1, . . . , Yn of vectors. Since Y1 = (1/||X1||)X1, Y1is also an eigenvector
of A corresponding to λ1. Let P1 = [Y1, . . . , Yn]. Then in case (a) P1 is orthogonal and in
case (b), P1 is unitary by previous remarks. Also P1 is nonsingular. Now
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P−1
1 AP1 = P−1

1 [AY1, . . . , AYn]

= P−1
1 [λ1Y1, AY2, . . . , AYn]

= [λ1P
−1
1 Y1, P

−1
1 AY2, . . . , P

−1
1 AYn]

=

ñ

λ1 B1

0 A1

ô

,

where B1 and A1 are some matrices. The entries in the first column are λ1, 0, . . . , 0 since
P−1
1 Y1 is the first column of P−1

1 P1 = In.
Since similar matrices have the same characteristic polynomials, we get

pA(λ) = (λ1 − λ)pA1
(λ)

by expanding down the first column. Since pA(λ) factors completely, it follows that the
characteristic polynomial of A1 factors completely. Hence A1 satisfies the hypothesis of the
theorem and so by the induction assumption, there exists an orthogonal or unitary matrix
P2 such that P−1

2 A1P2 is upper triangular. We “imbed” P2 in the lower right-hand corner of
the identity and call the matrix P3:

P3 =

ñ

1 0
0 P2

ô

This will be the matrix that finally transforms P−1
1 AP1 into upper triangular form. Notice

that P3 is orthogonal. Let P = P1P3. Then we have

P−1AP = P−1
3 P−1

1 AP1P3

= P−1
3

ñ

λ1 B1

0 A1

ô

P3

=

ñ

1 0
0 P−1

2

ô ñ

λ1 B1

0 A1

ô ñ

1 0
0 P2

ô

=

ñ

λ1 B2

0 P−1
2 A1P2

ô

.

Since P−1
2 A1P2 is upper triangular, it follows that P

−1AP is upper triangular. Since P2 is
orthogonal (or unitary in case ii)), it follows that P3 is orthogonal (or unitary, respectively)
and so by induction the theorem is proved.

Applying the above theorem, it is now easy to prove that a real symmetric matrix is
similar to a diagonal matrix - in fact, orthogonally similar!

DIAGONALIZATION OF SYMMETRIC AND HERMITIAN

MATRICES

A diagonal matrix D is clearly a symmetric matrix. If a matrix A is orthogonally similar
to a diagonal matrix, say P tAP = D, then it must also be symmetric, for P tAP = D =
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Dt = (P tAP )t = P tAtP tt = P tAtP , and since P is nonsingular, it can be canceled to leave
A = At. As a corollary to the above theorem, we can see that the converse is also true. This
important result is sometimes called the Principal Axes Theorem.

Corollary 5.5.3 (Principle Axes Theorem). Let A be a real n × n matrix. Then A is
orthogonally similar to a diagonal matrix if and only if A is symmetric.
(A real symmetric matrix is orthogonally similar to a diagonal matrix.)

Proof. Assume that A is symmetric. By Theorem 5.2.5, the eigenvalues of a real symmetric
matrix are all real. It follows that the characteristic polynomial of A factors completely and
so Schur’s Theorem (Theorem 5.5.2) may be applied. Now A is symmetric, so A = At. By
the theorem, there is an orthogonal matrix P (Recall that P−1 = P t) with P tAP upper
triangular. Now (P tAP )t = P tAtP tt = P tAP . Thus P tAP is symmetric and since a
symmetric upper triangular matrix is diagonal, the corollary follows.

To see that the converse is true, assume that A is orthogonally similar to a diagonal
matrix, say D = P tAP is diagonal. Then D = P tAP = Dt = (P tAP )t = P tAtP tt = P tAtP .
Solving we see that A = At.

A similar result can be proved for hermitian matrices.

Corollary 5.5.4. If A is an n×n complex matrix, then A is hermitian if and only if A is uni-
tarily similar to a real diagonal matrix. (A hermitian matrix is unitarily similar to a real diagonal matrix.)

Since an n × n symmetric matrix A is similar to a diagonal matrix, the matrix must
have n linearly independent eigenvectors. We saw in Section 5.3 that the column vectors
of the matrix S that diagonalizes a given matrix are eigenvectors of that matrix. Since the
symmetric matrix A is orthogonally similar to a diagonal matrix, we see that A must have
n eigenvectors that form an orthonormal set. Similar statements are true for hermitian ma-
trices. The following theorem states that eigenvectors corresponding to distinct eigenvalues
are automatically orthogonal.

Theorem 5.5.5. Let A be a hermitian (or real symmetric) ma-
trix and let λ1 and λ2 be distinct eigenvalues of A with X1 and
X2 the corresponding eigenvectors. Then X1 and X2 are orthogonal.
(For a hermitian matrix, eigenvectors corresponding to distinct eigenvalues are orthogonal.)

Proof. Assume A is real symmetric. We have AX1 = λ1X1 and AX2 = λ2X2. Then, taking
the transpose of each side we see that (AX1)

t = X t
1A

t = λ1X
t
1 and so, multiplying on

the right by X2, X
t
1A

tX2 = λ1X
t
1X2. Since At = A,X t

1AX2 = λ1X
t
1X2. Likewise, since

AX2 = λ2X2, we obtain X t
1AX2 = λ2X

t
1X2 by multiplying on the left by X t

1. Subtracting,
we get 0 = λ1X

t
1X2 − λ2X

t
1X2 = (λ1 − λ2)X

t
1X2 = (λ1 − λ2)X1 ·X2. Since λ1 6= λ2, we have

X1 ·X2 = 0.

From Theorem 5.5.5, it follows that to “orthogonalize” a set of linearly independent
eigenvectors of a hermitian matrix, we need only to “orthogonalize” each of the sets of
eigenvectors corresponding to each eigenvalue.
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Example 5.5.1. (a) Let A =







7 −2 1
−2 10 −2
1 −2 7





 . Notice that A is a real symmetric matrix

and therefore it is orthogonally similar to a real diagonal matrix. The characteristic
polynomial is pA(λ) = −λ3 − 24λ2 + 180λ− 432 and the eigenvalues are λ1 = 6, λ2 =
6, λ3 = 12. Corresponding eigenvectors are

X1 =







1
0
−1





 , X2 =







1
1
1





 , X3 =







1
−2
1





 .

By Theorem 5.5.5, the vectors X1 and X2 will be orthogonal to X3. We chose X1 and
X2 so that they were also orthogonal, and so it follows that all three vectors X1, X2,
and X3 are orthogonal. It suffices, then, to normalize the vectors. We get

Y1 =







1/
√
2

0

−1/
√
2





 , Y2 =







1/
√
3

1/
√
3

1/
√
3





 , Y3 =







1/
√
6

−2/
√
6

1/
√
6





 .

Then {Y1, Y2, Y3} is an orthonormal set of vectors, and if P = [Y1Y2Y3], we see that
P−1AP = diag(6, 6, 12).

(b) Let us illustrate the method of “upper triangularization” given in the proof of Theorem
5.5.2. The method proceeds step-by-step one column at a time. Let us consider an
example in which the first column has been reduced. Consider the matrix

A =







1 2 1
0 1 0
0 3 1





 .

By inspection we can see that pA(λ) = |A − λI| = (1 − λ)3. As in the proof of the
theorem, we let

A1 =

ñ

1 0
3 1

ô

and we try to find an orthogonal matrix P2 such that P−1
2 A1P2. is upper triangular. It

is easy to see that

ñ

0
1

ô

is an eigenvector. We add on the orthogonal vector

ñ

1
0

ô

and

let P2 =

ñ

0 1
1 0

ô

. As in the proof, we imbed P2 in the identity matrtix and obtain

P3 =







1 0 0
0 0 1
0 1 0





 .

This is the orthogonal matrix that upper triangularizes A; in fact,
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P−1
3 AP3 =







1 1 2
0 1 3
0 0 1





 .

Note that in the above product, P−1
3 = P3 = R23 = C23 and so the product can be

computed using a row operation and a column operation.

(c) Consider the matrix

A =







1 1 0
2 −1 2
1 −2 2





 .

We want to orthogonally upper triangularize A. Computing the characteristic polyno-
mial, we can see that pA(λ) = |A− λI| = −λ(1 − λ)2. Now

A− 1I =







0 1 0
2 −2 2
1 −2 1







We choose an eigenvector X1 and two vectors X2, X3 orthogonal to X1 :

X1 =







1
0
−1





 , X2 =







0
1
0





 , X3 =







1
0
1





 .

Normalizing and forming the matrix P1 we get

P1 =
1√
2







1 0 1

0
√
2 0

−1 0 1





 .

Computing P−1
1 AP1 we obtain

P−1
1 AP1 =















1
3
√
2

2
−1

0 −1 2
√
2

0 −
√
2

2
2















.

The first column has been upper triangularized, and we consider the 2 × 2 matrix in
the lower right hand corner:

A1 =







−1 2
√
2

−
√
2

2
2





 .
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We know that λ = 0 is an eigenvalue and that the matrix has rank one. We take an
eigenvector and add another vector that is orthogonal:

ñ

2
√
2

1

ô

,

ñ −1

2
√
2

ô

.

Notice that in forming the eigenvector the entries in row one of the matrix were used
with the order changed and one sign changed. The same trick gives the second vector.
Normalizing, forming the 2 × 2 matrix, and embedding in the identity matrix we get
P3:

P3 =















1 0 0

0
2
√
2

3
−1

3

0
1

3

2
√
2

3















.

Finally, we compute P−1
3 P−1

1 AP1P3 :

P−1
3 P−1

1 AP1P3 =















1
−13

3
−
√
2

6

0 0
35
√
2

18
0 0 1















.

Notice that the eigenvalues appear on the diagonal in the order chosen. In calculating
P1 we chose the eigenvalue 1 and in P3 we used 0. The remaining eigenvalue is 1, and
so on the diagonal we have 1, 0, 1. We could have made different choices and gotten a
different listing of eigenvalues on the diagonal. In general, the upper triangular matrix
obtained is not unique.

�

Section 5.5 Exercises

For each of the matrices A in Exercises 1 - 8, find an orthogonal matrix P such that P tAP is
upper triangular. Note that neither P nor P tAP is unique so that there may be more than
one correct answer.

1.

ñ

1 0
2 1

ô

2.

ñ

1 1
1 1

ô

3.

ñ

0 0
1 1

ô

4.

ñ

1 1
2 0

ô

5.







1 0 0
0 2 0
0 1 −1







6.







1 0 0
0 1 0
1 0 1







7.







1 2 0
0 1 0
1 1 1







8.







1 3 0
0 1 0
1 1 2






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For each of the symmetric matrices A in Exercises 9 - 12, find an orthogonal matrix P
such that P tAP is diagonal.

9.

ñ

3 −1
−1 3

ô

10.

ñ

0 −1
−1 0

ô

11.







1 0 0
0 1 1
0 1 1





 12.







0 0 1
0 1 0
1 0 0







For each of the matrices in Exercises 13 - 16, determine by inspection whether the
matrix is similar to a diagonal matrix, orthogonally similar to a diagonal matrix,
orthogonally similar to an upper triangular matrix, or unitarily similar to an upper
triangular matrix.

13.

ñ

1 0
2 2

ô

14.







1 0 0
3 2 0
1 −2 3





 15.







1 0 1
0 1 0
1 0 1





 16.







1 2 −1
2 3 2
−1 2 1







17. Find a unitary matrix U such that U−1AU is an upper triangular complex matrix,
where

A =







1 −1 −1
1 −1 0
1 0 −1





 .

18. Give an example of a hermitian matrix that is not symmetric.

19. Give an example of a symmetric matrix that is not hermitian.

20. Prove Theorem 5.5.1.

21. Find a unitary matrix U such that U−1

ñ

1 i
−i 1

ô

U is diagonal.

5.6 The Cayley-Hamilton Theorem

Let A be an n × n matrix over a scalar field F and p(x) = a0 + a1x + . . . + amx
m be a

polynomial over F . For a scalar r, p(r) is defined by

p(r) = a0 + a1r + . . .+ anr
n.

Notice that the combination on the right is defined. If one attempts to replace the scalar r
by a matrix A, notice that

a0 + a1A+ . . .+ anA
n

is not defined since a0 is a scalar, but a1A is a matrix. This problem is easily avoided: We
define p(A) by p(A) = a0I + a1A + . . . + amA

m, where I is the n × n identity matrix and
Ak = A · A . . . A (k factors).
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MATRICES AND POLYNOMIALS

We raise the following question: given a matrix A, is there a nontrivial polynomial p with
p(A) = 0. If this is the case, we say that A “satisfies the polynomial equation p(x) = 0,” or
less formally, that A “satisfies the polynomial p.” We will see that the investigation of this
question will prove to be fruitful. The existence of such a polynomial is easily established:
The vector space of all n×n matrices has dimension n2 and so any n2+1 matrices are linearly
dependent. Thus I, A,A2, . . . , An2

are linearly dependent and so a0I+a1A+ . . .+an2An2

= 0
(the n×n zero matrix) for some scalars a0, . . . , a

n2

. It follows that A satisfies the polynomial
p(x) = a0 + a1x+ . . . + anx

n2

; that is, p(A) = 0. So we see that A satisfies a polynomial of
degree n2 or less. The following theorem shows that “less” is always true.

Theorem 5.6.1 (Cayley-Hamilton). If A is a square matrix and pA(λ) = |A−λI| its
characteristic polynomial, then pA(A) = 0. (A matrix satisfies its characteristic polynomial.)

Proof. Let pA(λ) = |A− λI| = a0 + a1λ+ . . .+ anλ
n be the characteristic polynomial of A.

Consider Adj(A−λI). Since the adjoint is computed by cofactors, each entry of Adj(A−λI)
is a polynomial in λ of degree at most n− 1. Because of this, we may write

Adj(A− λI) = A0 + A1λ+ . . .+ An−1λ
n−1,

where A0, . . . , An−1 are n× n matrices. Now we know that

(A− λI)(Adj(A− λI)) = |A− λI|I = pA(λ)I.

Substituting the expressions for Adj(A− λI) and pA(λ), we get

(A− λI)Adj(A− λI) = AA0 + AA1λ+ . . .+ AAn−1λ
n−1 − A0λ− A1λ

2 − . . .− An−1λ
n

= pA(λ)I

= a0I + a1Iλ+ . . .+ anλ
n.

Equating coefficients of like powers of λ, we get

anI = −An−1

an−1I = AAn−1 − An−2

...

a1I = AA1 − A0

a0I = AA0.

Multiply the first equation by An, the second by An−1, etc., and add. We get
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anIA
n + . . .+ a1IA+ a0I = anA

n + . . .+ a1A+ a0I

= pA(A)

= An(−An−1) + An−1(AAn−1 −An−2)

+ . . .+ A(AA1 − A0) + IAA0

= 0

since all terms cancel out.

The Cayley-Hamilton Theorem is named for two of the founders of matrix theory and
linear algebra: the English mathematician Arthur Cayley (1821 - 1895) and the Irish mathe-
matician Sir William Rowan Hamilton (1805 - 1865). Using the Cayley-Hamilton Theorem,
we can write powers of an n× n matrix A in terms of the first n− 1 powers of A.

Example 5.6.1. Let

A =

ñ

1 −1
2 3

ô

Then pA(x) = (1−x)(3−x)+2 = x2−4x+5. (Since we are thinking more about polynomials
and less about eigenvalues at this point, we will let x represent the indeterminate in the
polynomial under discussion rather than λ. Don’t be troubled by the change.) By the
Cayley-Hamilton Theorem, pA(A) = A2−4A+5I = 0, so A2 = 4A−5I. Now we may write

A3 = AA2

= 4A2 − 5A

= 4(4A− 5I)− 5A

= 16A− 5A− 20I

= 11A− 20I

A4 = AA3

= A(11A− 20I)

= 11A2 − 20A

= 11(4A− 5I)− 20A

= 24A− 55I,

etc. In addition, the Cayley-Hamilton Theorem can be used to find the inverse of a nonsin-
gular matrix. For example with A as above, pA(x) = x2 − 4x+ 5, so that A2 − 4A+5I = 0.
From this we see that A2 − 4A = −5I, or (A− 4I)A = −5I, or (−1/5)(A− 4I)A = I.

It follows that A−1 = −1

5
(A− 4I) = −1

5

ñ −3 −1
2 −1

ô

.
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�

Certainly the characteristic polynomial tells us something about a matrix - the roots are
the eigenvalues of the matrix. The Cayley-Hamilton tells us that the matrix satisfies this
polynomial and it is not hard to see that if a matrix satisfies a given polynomial, then it
satisfies any polynomial which contains the given polynomial as a factor. Perhaps there is a
“least” polynomial that the matrix satisfies.

THE MINIMUM POLYNOMIAL

If p(x) = a0 + a1x + . . . + anx
n is a polynomial of degree n, then an is called the leading

coefficient of p(x). If an = 1, p(x) is called a monic polynomial. For example, the leading
coefficient in 2x2 − 3x+ 7 is 2 and 7 + 2x+ x2 is monic, but 7 + 2x− x2 is not monic. Also
note that if a is the leading coefficient of p(x) (which implies that a 6= 0), then (1/a)p(x)
is monic. If A is an n × n matrix, then the leading coefficient of pA(x) is (−1)n, so pA(x)
is monic for n even and −pA(x) is monic for n odd. Now ±pA(A) = 0 and so A satisfies a
monic polynomial. We make the following definition.

Definition 5.6.1. Let A be an n×n matrix. The minimum polynomial of A is the monic
polynomial mA(x) of least degree such that mA(A) = 0.

By the preceding remarks such a polynomial must exist, for A satisfies one monic poly-
nomial and so A satisfies a monic polynomial of least degree.

Theorem 5.6.2. If A is a square matrix and p(x) a polynomial with
p(A) = 0, then mA(x) is a factor of p(x); that is, p(x) = mA(x)q(x)
for some polynomial q(x). In particular, mA(x) is a factor of pA(x).
(The minimum polynomial is a factor of the characteristic polynomial.)

Proof. Use the division algorithm to divide mA(x) into p(x) and obtain p(x) = mA(x)q(x)+
r(x), where the degree of r(x) is less than the degree of mA(x) or r(x) = 0. Then p(A) =
mA(A)q(A)+r(A) = 0+r(A), and so r(A) = 0. Now if r(x) 6= 0, then let a 6= 0 be the leading
coefficient of r. Dividing by a we get (1/a)r(A) = 0 and (1/a)r(x) is a monic polynomial of
degree less than that of mA(x). This is a contradiction, so r(x) must be the zero polynomial.
It follows that mA(x) is a factor of p(x).

This theorem gives a method for finding the minimum polynomial of a matrix: Calculate
the characteristic polynomial pA(x) and factor it into monic factors

pA(x) = (−1)np1(x) . . . pk(x).

Now just try all possibilities.

Example 5.6.2. Let

A =







1 0 2
0 1 0
0 0 2





 .
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Then pA(x) = (1−x)2(2−x). The monic factors of pA(x) are x−2, x−1, (x−1)2, (x−2)(x−1),
and (x− 2)(x− 1)2. Now try them: We can see that x− 2 and x− 1 fail; that is, A− 2I 6= 0
and A− 1I 6= 0. Next, try (x− 1)2:

(A− I)2 =







0 0 2
0 0 0
0 0 1







2

=







0 0 2
0 0 0
0 0 1





 .

No good! (But how interesting - A matrix that equals its square! Does this happen often?)
Now try (x− 2)(x− 1) :

(A− 2I)(A− I) =







−1 0 2
0 −1 0
0 0 0













0 0 2
0 0 0
0 0 1





 =







0 0 0
0 0 0
0 0 0





 .

Thus A satisfies the monic polynomial (x−2)(x−1) and it follows thatmA(x) = (x−2)(x−1).

�

Corollary 5.6.3. The minimum polynomial of an n× n matrix A is unique.

Proof. Let both m1(x) and m2(x) have the properties of a minimum polynomial: both m1

and m2 are monic and of least degree. By Theorem 5.6.2, m1 is a factor of m2 and conversely.
Assume m1(x) = m2(x)q(x), where q is some polynomial. Now m1 and m2 must have the
same degree (both have the least degree). It follows that q(x) = a is a constant polynomial.
Now consider the leading coefficients on each side of the equality: m1(x) = a(m2)(x). Since
both m1 and m2 are monic, a = 1 and m1 = m2.

Some of the trial and error in finding mA(x) can be eliminated by using the following
theorem.

Theorem 5.6.4. Let A be an n×n matrix with minimum and characteristic polynomi-
als mA(x) and pA(x), respectively. If x−c is a factor of pA(x), then x−c is a factor of
mA(x). (The minimum polynomial contains all of the linear factors corresponding to the distinct eigenvalues.)

Proof. As before, use the division algorithm to write:

mA(x) = q(x)(x− c) +mA(c) (5.6.1)

Note that by the remainder theorem, the remainder is mA(c).
Substitute A into Equation 5.6.1 to obtain

mA(A) = q(A)(A− cI) +mA(c)I (5.6.2)

Since x− c is a factor of pA(x), c is an eigenvalue of A. By definition, AX = cX for some
nonzero n× 1 column vector X . Applying Equation 5.6.2 to X , we get

mA(A)X = q(A)(A− cI)X +mA(c)X (5.6.3)
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But AX = cX implies (A−cI)X = AX−cIX = 0 and mA(A) = 0. From Equation 5.6.3 we
see that 0 = 0+mA(c)X , and sinceX 6= 0, mA(c) = 0. It follows thatmA(x) = (x−c)q(x).

Applying Theorem 5.6.4 in finding the minimum polynomial of the matrix A in the
previous example, we see that since pA(x) = −(x − 1)2(x − 2), the only possibilities for
mA(x) are (x− 1)(x− 2) and (x− 1)2(x− 2). We try the first and it works, so

mA(x) = (x− 1)(x− 2).

Section 5.6 Exercises

1. Let A be a 3 × 3 matrix with pA(λ) = −λ3 + 2λ2 + 3λ + 2. Express A−1 and A4 as
linear combinations of powers of A.

2. Let A be a 3× 3 matrix with eigenvalues 1,−2, and −1. Express A−1 and A4 as linear
combinations of powers of A.

3. Evaluate A6 and A−1 using the Cayley-Hamilton Theorem, where A =

ñ

1 −1
2 3

ô

.

4. Using the Cayley-Hamilton Theorem, find the inverse of







1 0 2
0 −1 3
0 0 2





 .

5. Let A be a 3× 3 matrix with pA(λ) = −λ3 + 3λ2 − 2λ. Find the minimum polynomial
of A.

6. Find the minimum polynomial of







1 0 0
2 1 0
3 −1 1





 .

7. Show that similar matrices have the same minimum polynomial.

8. Find the characteristic polynomial and the minimum polynomials of the 5×5 diagonal
matrix diag(1, 1, 1, 2, 2).

9. Find the characteristic polynomial and the minimum polynomials of the 2× 2 matrix

ñ

1 1
0 1

ô

.

10. Find the characteristic polynomial and the minimum polynomials of the 3× 3 matrix







1 1 0
0 1 1
0 0 1





 .
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11. Describe the minimum polynomial of an arbitrary n× n diagonal matrix
D = diag(a1, a2, . . . , an). (Hint: Assume the characteristic polynomial is given by
pD(λ) = (−1)n(λ− b1)

m1 . . . (λ− bk)
mk , where b1, . . . , bk are the distinct eigenvalues.)

12. Let A be an n×n matrix and assume that A is similar to a diagonal matrix. Find the
minimum polynomial of A. (Hint: See Exercises 7 and 11.)

5.7 Quadratic Forms (optional)

In calculus one studies general quadratic equations of the form

ax2 + bxy + cy2 + dx+ ey = f (5.7.1)

and attempts to classify the curve represented by one of these equations. Recall that if the
equation can be put into one the forms

x2 + b′y = c′

a′x2 + b′y2 = c′

a′x+ b′y2 = c′
(5.7.2)

then it is relatively easy to identify the curve. Now two modifications are generally used to
change an equation of the form of Equation 5.7.1 into one of the forms of Equations 5.7.2.
First the term involving xy, if it exists, is eliminated by rotating the axes through an angle
α, where

cot 2α =
a− c

b
,

to obtain new coordinates x1, y1, satisfying

x = x1 cosα− y1 sinα
y = x1 sinα+ y1 cosα

(5.7.3)

Having performed this operation, the resulting equation will be free of terms involving the
cross product xy. A translation of the form

x2 = x1 + h

y2 = y1 + k

will then produce an equation of the form of Equation 5.7.2. Recall that the translation can
be easily found by completing the square on the terms involving x and the terms involving
y.

Notice that Equation 5.7.3 can be expressed in the form of a matrix equation

ñ

x
y

ô

=

ñ

cosα − sinα
sinα cosα

ô ñ

x1

x2

ô

, (5.7.4)

and observe that the coefficient matrix in Equation 5.7.4 is an orthogonal matrix. Remem-
bering that an orthogonal similarity transformation diagonalizes a symmetric matrix, we
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look for some connection in this situation. A symmetric matrix arises as follows: consider
the “quadratic” part of Equation 5.7.1 and let

A =









a
b

2
b

2
c









and X =

ñ

x
y

ô

.

Then we see that

X tAX = [xy]









a
b

2
b

2
c









ñ

x
y

ô

= [xy]









ax+
b

2
y

b

2
x+ cy









= ax2 +
b

2
xy +

b

2
xy + cy2

= ax2 + bxy + cy2.

Of course, A is a symmetric matrix.
One wonders about higher dimensional analogs of the above procedure. In particular,

what sort of rotation simplifies a quadratic equation in three variables x, y, and z. We
present the general theory.

QUADRATIC FORMS IN N VARIABLES

A quadratic form is a function q of n real variables x1, . . . , xn of the form

q = q(x1, . . . , xn)
= a11x

2
1 + a12x1x2 + . . .+ a1nx1xn

+ a21x2x1 + a22x
2
2 + . . .+ a2nx2xn

+ . . .+ an1xnx1 + an2xnx2 + . . .+ annx
2
n

(5.7.5)

where A = [aij ] is an n×n real symmetric matrix. Since A is symmetric, aij = aji for all i, j,
with i 6= j and so the terms aijxixj and ajixjxi are equal. It follows that q can be expressed
in the form

q = a11x
2
1 + 2a12x1x2 + . . .+ 2a1nx1xn

+ a22x
2
2 + 2a23x2x3 + . . .+ 2a2nx2xn

...

+ annx
2
n.

We say that q is the quadratic form associated with the matrix A. There is a “complex
number” version of the quadratic form that involves a hermitian matrix A and a definition
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similar to Equations 5.7.5. We will not consider these “hermitian forms”; however, the theory
is similar to that of the “real quadratic forms”.

Let us now use matrix notation for the quadratic form given in Equations 5.7.5. Let
A = [aij ] be the n × n real symmetric matrix in the definition and let X be the column
vector

X =









x1
...
xn









Then we have

X tAX = [x1 . . . xn]





a11 . . . a1n
...

. . .
...













x1
...
xn









= [x1 . . . xn]









a11x1 + . . .+ a1nxn
...

an1 + . . .+ annxn









= a11x
2
1 + a12x1x2 + . . .+ a1nx1xn

+ a21x2x1 + a22x
2
2 + . . .+ a2nx2xn

...

+ an1xnx1 + an2xnx2 + . . .+ annx
2
n

= q(x1, . . . , xn)

= q.

Finally then,
q = X tAX. (5.7.6)

DIAGONALIZING QUADRATIC FORMS

We say that a quadratic form q = q(x1, . . . , xn) is in diagonal form when

q = a11x
2
1 + a22x

2
2 + . . .+ annx

2
n

That is, none of the “cross terms” xixj , i 6= j, appear.
It is an easy matter now to see that any quadratic form can be put into diagonal form

by an appropriate change of variables. Let q, A and X be as in Equation 5.7.6. Then A is
a real symmetric matrix and so by the Principal Axes Theorem (Theorem 5.5.3) there is an
orthogonal matrix S with

StAS = diag(λ1, . . . , λn) = D, (5.7.7)

where λ1, . . . , λn are the eigenvalues of A and are real numbers. Now solving Equation 5.7.7
for A we obtain
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A = SDSt (5.7.8)

using the fact that S−1 = St so that SSt = StS = In. Substituting Equation 5.7.8 into
Equation 5.7.6 we see that

q = q(x1, . . . , xn) = X tAX = X t(SDSt)X = (X tS)D(StX) = (StX)tD(StX)

Now, if we let

Y =









y1
...
yn









= StX

or X = SY , we get

q = q(y1, . . . , yn) = Y tDY = λ1y
2
1 + . . .+ λny

2
n,

which is a quadratic form in diagonal form.
This establishes the following:

Theorem 5.7.1. Let q = X tAX be a quadratic form. Then there is an orthogonal
matrix S such that if

Y =









y1
...
yn









= StX,

then q = λ1y
2
1 + . . .+ λny

2
n, where λ1, . . . , λn are the eigenvalues of A.

(A quadratic form can be put into diagonal form by an orthogonal matrix.)

Example 5.7.1. Consider the quadratic equation

2x2 + 2y2 + 2z2 − 2xz = 4 (5.7.9)

The left-hand side of this equation is a quadratic form and it can be represented by

q =
î

x y z
ó







2 0 −1
0 2 0
−1 0 2













x
y
z





 .

Let us reduce q to diagonal form. Let

A =







2 0 −1
0 2 0
−1 0 2





 .

Calculating the characteristic polynomial of A and solving we find that the eigenvalues of A
are λ1 = 1, λ2 = 2, and λ3 = 3. Corresponding eigenvectors for A are
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X1 =







1
0
1





 , X2 =







0
1
0





 , and X3 =







1
0
−1





 .

Notice that X1, X2, and X3 are orthogonal (necessarily since A is symmetric and the eigen-
values are distinct). We normalize the eigenvectors and construct S :

S =















1√
2

0
1√
2

0 1 0
1√
2

0 − 1√
2















.

Now using the variables x1, y1, z1 given by







x1

y1
z1





 = St







x
y
z





 =















1√
2

0
1√
2

0 1 0
1√
2

0 − 1√
2





















x
y
z





 ,

we get by Theorem 5.7.1 that

q = λ1x
2
1 + λ2y

2
1 + λ3z

2
1 = x2

1 + 2y21 + 3z21 .

It follows that Equation 5.7.9 becomes

x2
1 + 2y21 + 3z21 = 4

and so the surface defined is an ellipsoid.

�

EIGENVALUES AND POSITIVE-DEFINITENESS

Let q = q(x1, . . . , xn) be a quadratic form. Then q is called positive provided

q(x1, . . . , xn) ≥ 0

for all x1, . . . , xn and q is positive definite provided q(x1, . . . , xn) > 0 for all x1, . . . , xn,
(x1, . . . , xn) 6= (0, . . . , 0). Similarly, q is negative (negative definite) provided

q(x1, . . . , xn) ≤ 0

for all x1, . . . , xn (respectively, q(x1, . . . , xn) < 0 for all x1, . . . , xn, (x1, . . . , xn) 6= (0, . . . , 0)).
If q assumes both positive and negative values, then q is called indefinite. A quadratic
form q is positive semidefinite (negative semidefinite) if q is positive (negative) but
not positive definite (negative definite).

The following are easy examples of the various types of quadratic forms:
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x2
1 + x2

2 is positive definite;

x2
1 − 2x1x2 + 2x2

2 = (x1 − x2)
2 is positive semidefinite;

−x2
1 − x2

2 is negative definite;

−(x1 − x2)
2 is negative semidefinite;

x2
1 − x2

2 is indefinite.

Using Theorem 5.7.1, it is easy to characterize the above types of quadratic forms.

Theorem 5.7.2. Let q be a quadratic form with associated real symmetric matrix A.
Then

(a) q is positive semidefinite if and only if the eigenvalues of A are all non-negative.

(b) q is positive definite if and only if the eigenvalues of A are all positive.

(c) q is negative semidefinite if and only if the eigenvalues of A are nonpositive.

(d) q is negative if and only if the eigenvalues of A are all negative.

(e) q is indefinite if and only if A has both positive and negative eigenvalues.

(The conditions of positive and negative definiteness are related to the signs of the eigenvalues.)

Proof. Using Theorem 5.7.1, q can be expressed in the form q = λ1y
2
1 + . . .+ λny

2
n. Clearly,

if λ1, . . . , λn = 0, then q = 0. It follows that (a) holds. The other parts follow in a similar
manner.

Quadratic forms and their properties of being positive or negative definite arise natu-
rally in determining conditions on a function of several variables that guarantee that the
function has a maximum or a minimum at a given point. Let y = f(x1, . . . , xn) be a
real-valued function of n real variables. Let us simplify the situation with the following
observation: f has a maximum (minimum) at the point (a1, . . . , an) if and only if the func-
tion g(x1, . . . , xn) = f(x+ a1, . . . , x+ an) has a maximum (resp. minimum) at (0, 0, . . . , 0).
We will attempt to give conditions under which f(x1, . . . , xn) will obtain a maximum or
minimum at (0, . . . , 0).

FINDING MAXIMA AND MINIMA

Let us assume that f(x1, . . . , xn) has a Taylor expansion about the point (0, . . . , 0). This
implies the existence and continuity of partial derivatives of orders 1, 2 and 3. We use fi
for the partial derivative of f with respect to xi and fij or (fi)j for the second partial of f
with respect to xi then xj . Recall that because of the continuity of the partial derivatives,
fij = fji.
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A necessary condition for the existence of a maximum or minimum at (0, . . . , 0) is that
fi(0, 0, . . . , 0) = 0 for i = 1, . . . , n. Let us use the notation aij = fij(0, 0, . . . , 0).

Now according to Taylor’s Theorem,

f(x1, x2, . . . , xn) = f(0, 0, . . . , 0) +R1 +R2 +R3 (5.7.10)

where R1 involves the first partials and linear terms xi, R2 involves second partials and
products xixj and R3 is the remainder involving third partials and products of the form
xixjxk. We assume that the first partials are zero so that R1 = 0. Rewriting Equation 5.7.10
we get

f(x1, x2, . . . , xn)− f(0, 0, . . .0) = R2 +R3.

We must assume that for values of x1, . . . , xn close to zero, the products xixjxk will be small
so that R3 is small and that the sign of f(x1, . . . , xn)− f(0, . . . , 0) will be the same as that
of R2. Let us write out R2 using aij = fij(0, . . . , 0) :

R2 =
1

2
a11x

2
1 + . . .+ a1nx1xn + a21x2x1 + a22x

2
2 + . . .+ an1xnx1 + . . .+ annx

2
n.

Now aij = aji by the continuity of the second partials, and so R2 is a quadratic form with
associated symmetric matrix

A =
1

2
[aij ] =

1

2
[fij(0, 0, . . . , 0)]. (5.7.11)

With these assumptions, we see that

1. If R2 is positive definite, then f(x1, . . . , xn)− f(0, . . . , 0) will be positive for values of
x1, . . . , xn close to zero so that f will have a minimum at (0, . . . , 0);

2. If R2 is negative definite, then f(x1, . . . , xn)− f(0, . . . , 0) will be negative for values of
x1, . . . , xn close to zero so that f will have a maximum at (0, . . . , 0).

3. If R2 is indefinite, then f will have neither a maximum or minimum at (0, . . . , 0).

To determine the nature of R2, one can apply Theorem 5.7.2 and consider the eigenvalues
of the above matrix A.

Example 5.7.2. Let us investigate the function

f(x1, x2, x3) = x2
1 + x1x2 + x2

3

for maxima and minima. Setting first partials equal to zero we get

f1 = 2x1 + x2 = 0

f2 = x1 = 0

f3 = 2x3 = 0
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and so the only critical point is (0, 0, 0). Calculating second partials at (0, 0, 0), we get
f11 = 2, f12 = 1, f13 = 0, f22 = 0, f23 = 0, and f33 = 2. Using Equation 5.7.11, the matrix A
associated with the quadratic form R2 is

A =
1

2







2 1 0
1 0 0
0 0 2





 .

To determine whether R2 is positive or negative definite or indefinite, we calculate pA(x)
and solve for the eigenvalues:

pA(x) = −(x− 2)(x2 − 2x− 1).

Solving, we get eigenvalues

λ1 = 2, λ2 =
2 +

√
5

2
, and λ3 =

2−
√
5

2
.

We can see that λ1, λ2 > 0, while λ3 < 0. By Theorem 5.7.2, we see that A is indefinite
so that f has no maxima or minima.

�

Section 5.7 Exercises

1. Consider the equation 5x2+4xy+2y2 = 9. Find the angle of rotation that will eliminate
the term 4xy. Find new coordinates x1, y1 and substitute to obtain the new equation.
(You will perhaps need to consult a calculus book for the half-angle formulas in order
to find cosα and sinα.)

2. Given the equation 2x2 + 8x + y2 − 2y = 12, complete the square in order to find a
translation that will eliminate the x and y terms.

3. Which of the following are quadratic forms

(a) x2 + xy

(b) x2 + 2xy + y2

(c) x2 + 4xyz + y2 + z2

(d) −x2 − z2 + y

(e) x2 + 2x+ y2

(f) x3 − z2

4. Given the quadratic form, q = 2x2+xy−y2, find matrices A and X , with A symmetric,
so that q = X tAX.

5. Given the quadratic form, q = 2x2 + xy− y2+4xz+3z2, find matrices A and X , with
A symmetric, so that q = X tAX.

6. Let q = x2
1 + x2

2 + x2
3+2x2x3. Find a symmetric matrix A such that q = X tAX, where

X =







x1

x2

x3





 .
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7. Let q = 3x2
1+x2

2+x2
3+4x2x3. Find a matrix A such that q = X tAX, whereX =







x1

x2

x3





.

8. Find an orthogonal matrix S such that the change of variables Y = StX reduces q to
a diagonal form, where q is the quadratic form of Exercise 6.

9. Find an orthogonal matrix S such that the change of variables Y = StX reduces q to
a diagonal form, where q is the quadratic form of Exercise 7.

10. Is q in Exercise 6 positive definite, negative definite, etc.?

11. Classify the curve given by x2
1 − 4x1x2 − 2x2

2 = 4.

12. Investigate the following function for maxima and minima:

f(x1, x2) = 2x2
1 + x1x2 + x2

2.

13. Investigate the following function for maxima and minima:

f(x1, x2, x3) = x2
1 − x2x3 − 2x2

2.

5.8 Applications - The Inertia Tensor and Principal

Axes (optional)

In most calculus courses, vector-valued functions of a real variable and the calculus of such
functions are introduced. This topic was discussed briefly in Section 4.4, and the reader
may find it helpful to review that section. If R = R(t) is vector-valued function of the real
variable t, then one can express R in terms of its coordinate functions:

R(t) = (x(t), y(t), z(t)),

where x, y and z are real-valued functions of t. The derivative of R(t) is denoted by R′(t)

or
d

dt
(R(t)) and is defined by

R′(t) =
d

dt
(R(t)) = (x′(t), y′(t), z′(t)).

As is the case with scalar valued functions, the derivative measures rate of change and is
used to define velocity and acceleration.
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VELOCITY AND ACCELERATION

An important application of vector-valued functions is in describing the motion of a particle
in three-dimensional space. We let R(t) denote the position vector of given particle in
space at time t; that is, R(t) is the vector from the origin 0 of a given coordinate system
to the point (x(t), y(t), z(t)) at which the particle is located at the time t. The velocity
vector V (t) of the particle is defined by V (t) = R′(t) and the acceleration vector is given
by A(t) = V ′(t) = R′′(t).

Recall that in Section 4.4, the angular velocity vector Ω = Ω(t) was introduced and it
was shown that

V = Ω× R. (5.8.1)

In this section we continue the investigation of angular motion.
For a moving particle of mass m and velocity vector V , the momentum P of the particle

is defined by

P = mV. (5.8.2)

According to Newton’s second law, the rate of change of momentum of a particle is
proportional to and in the direction of the force impressed on the body, and so with the
correct choice of units we have F = mA, which is known as Newton’s law of motion.

ANGULAR MOTION

For angular motion; that is, the rotation of a particle about an axis, the angular momen-
tum L is defined by

L = R× P, (5.8.3)

where R is the position vector and P is the momentum vector defined in 5.8.2. The time
rate of change of L is called the torque and is denoted by N . Torque is the angular version
of the notion of force, and as with the linear situation we have

dL

dt
= N. (5.8.4)

Using Equations 5.8.1 and 5.8.2, we write L as a function of Ω as follows:

L = R× P = R× (mV ) = m(R× V ) = m(R× (Ω× R). (5.8.5)

Let L = L(Ω) and notice that L(cΩ) = c(m(R× (Ω×R))) = cL(Ω) for any scalar c, and

L(Ω1 + Ω2) = m(R× (Ω1 + Ω2)× R)

= m(R× ((Ω1 × R) + (Ω2 ×R)))

= m(R× (Ω1 × R) +R× (Ω2 ×R))

= m(R× (Ω1 × R)) +m(R× (Ω2 ×R))

= L(Ω1) + L(Ω2)
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for any two vectors Ω1 and Ω2. From this we see that L is a linear transformation defined
on 3-dimensional vectors Ω and having 3-dimensional images L(Ω); that is, L is a linear
transformation from R3 into R3.

Now let us assume that we have a rigid body consisting of n particles with masses
m1, . . . , mn and position vectors R1, . . . , Rn. The masses are constant, but the position
vectors are functions of time. Let us assume that we have a fixed coordinate system with
i, j,k, being an orthonormal basis as in section 4.4. We will use the notation

Rk = Rk(t) = (xk(t), yk(t), zk(t)) = xk(t)i+ yk(t)j+ zk(t)k. (5.8.6)

To calculate the angular momentum of the system of particles, we add the momenta of each
of the particles, using Equation 5.8.5 and obtain

L(Ω) =
n
∑

k=1

mk(Rk × (Ω× Rk)). (5.8.7)

Since a sum of linear transformations is again a linear transformation, we can see that the
angular momentum function of the rigid system of n particles is also a linear transformation.

THE INERTIA TENSOR

Since L is a linear transformation, it is represented by a matrix, say IT , relative to the i, j,k
basis. It follows that L(Ω) = ITΩ for any angular velocity vector Ω. The matrix IT is called
the inertia tensor of the system of particles. In general, Ω is a function of time t, so that
IT is also a function of time, but at any time t, we can calculate IT in terms of the masses
m1, . . . , mk and the position vectors R1, . . . , Rk.

We let

IT =







Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz







and notice that using the representation

i =







1
0
0





 , j =







0
1
0





 , and k =







0
0
1





 ,

L(i) = IT i =







Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz













1
0
0







so that

L(i) · i = Ixx, L(j) · j = Iyy, L(k) · k = Izz (5.8.8)

Likewise L(j) · i = Ixy, etc.
From 5.8.7, we get

L(Ω) =
n
∑

k=1

mk(Rk × (Ω× Rk)),
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and applying the vector identity

A× (B × C) = B(A · C)− C(A · B)

(see Exercise 12, Section 4.4), we get

L(Ω) =
n
∑

k=1

mk(Ω(Rk · Rk)−Rk(Rk · Ω)) (5.8.9)

Using Equations 5.8.8 and 5.8.9, we calculate the entries of IT at any fixed time t:

Ixx = L(i) · i

=
n
∑

k=1

mk(i(Rk · Rk)−Rk(Rk · i)) · i

=
n
∑

k=1

mk(i · i)(Rk · Rk)− (Rk · i)(Rk · i)

=
n
∑

k=1

mk((Rk · Rk)− (Rk · i)2)

=
n
∑

k=1

mk(x
2
k + y2k + z2k − x2

k)

=
n
∑

k=1

mk(y
2
k + z2k).

Likewise,

Ixy = L(i) · j

=
n
∑

k=1

mk(i(Rk · Rk)−Rk(Rk · i)) · j

=
n
∑

k=1

mk((i · j)(Rk · Rk)− (Rk · j)(Rk · i))

=
n
∑

k=1

mk(−xkyk)

= −
n
∑

k=1

mk(xkyk)

and
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Iyx = L(j) · i

=
n
∑

k=1

mk(j(Rk · Rk)−Rk(Rk · j)) · i

=
n
∑

k=1

mk(j · i(Rk · Rk)− (Rk · i)(Rk · j))

=
n
∑

k=1

mk(−xkyk)

= −
n
∑

k=1

mk(xkyk),

so we see that Ixy = Iyx.
Similar calculations produce the other entries of IT . We can show that

Ixx =
n
∑

k=1

mk(y
2
k + z2k)

Iyy =
n
∑

k=1

mk(x
2
k + z2k)

Izz =
n
∑

k=1

mk(x
2
k + y2k)

(5.8.10)

and

Ixy = −
n
∑

k=1

mk(xkyk) = Iyx

Ixz = −
n
∑

k=1

mk(xkzk) = Izx

Iyz = −
n
∑

k=1

mk(ykzk) = Izy.

(5.8.11)

The diagonal entries in Equations 5.8.10 are called the moments of inertia and the
remaining entries in Equations 5.8.11 are called the products of inertia, and it is now clear
why we have introduced this complicated topic.

Theorem 5.8.1. The inertia tensor IT of a rigid body of particles is a symmetric
matrix. (The inertia tensor is symmetric.)

We know a lot about symmetric matrices from the theory in Section 5.5. According to
Corollary 5.5.3, any real symmetric n × n matrix A is orthogonally similar to a diagonal
matrix and according to Theorem 5.2.5, the entries on the diagonal are real. Applying these
results to IT we get an orthogonal matrix S and real numbers e1, e2, e3 such that

StITS =







e1 0 0
0 e2 0
0 0 e3





 .
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PRINCIPAL AXES

If E1, E2, E3, are the column vectors of S so that S = [E1, E2, E3], then E1, E2, E3 are
mutually orthogonal and each is a unit vector. Also StITS = D = diag(e1, e2, e3) so that
ITS = SD or

ITS = IT [E1, E2, E3]

= [ITE1, ITE2, ITE3]

= [E1, E2, E3]







e1 0 0
0 e2 0
0 0 e3







= [e1E1, e2E2, e3E3].

We see that ITEi = eiEi for i = 1, 2, 3, so that each Ei is an eigenvector. By the results
of Section 3.4, D = diag(e1, e2, e3) is the matrix for the linear transformation L relative to
the basis E1, E2, E3. Relative to E1, E2, E3, the inertia tensor IT is the diagonal matrix D.
The vectors E1, E2 are E3 are called principal axes of the body.

Theorem 5.8.2 (Principal Axes Theorem). Given a rigid body of n particles and
a fixed time t, there are three mutually orthogonal unit vectors E1, E2, E3 such that
relative to E1, E2, and E3 the inertia tensor IT is a diagonal matrix; that is, all products
of inertia are zero. (Every rigid body has three principal axes.)

The above theorem is also called the Principal Axes Theorem. The principal axes are,
of course, convenient in that the inertia tensor is a diagonal matrix, but there is a physical
significance to principal axes which we will establish.

Recall from calculus that the center of mass of system of particles with masses mi and
position vectors (xi, yi, zi) is a point (x, y, z) where

x =

n
∑

k=1

mkxk

m
, y =

n
∑

k=1

mkyk

m
, and z =

n
∑

k=1

mkzk

m
;

and where

m =
n
∑

k=1

mk

and where we are using the same notation for the n particles as used earlier. Let us now
make assumptions regarding the specific coordinate system chosen for the presumed rigid
body of n particles. First we assume that the origin 0 of the coordinate system is at the
center of mass. If this is the case, x = y = z = 0 and so we have

n
∑

k=1

mkxk

m
=

n
∑

k=1

mkyk

m
=

n
∑

k=1

mkzk

m
(5.8.12)
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Next, assume that a certain time, say t = 0, the coordinate system is taken to be the
principal axes E1, E2, E3; then the inertia tensor is a diagonal matrix, say

IT =







e1 0 0
0 e2 0
0 0 e3





 . (5.8.13)

Let us fix the coordinate system and adopt the notation i = E1, j = E2,k = E3. Now
assume that the body rotates about the principal axis E3 = k. Then the angular velocity
can be expressed in the form

Ω = Ω(t) = f(t)k =







0
0

f(t)





 .

Assume that at time t, the body has rotated through an angle α = α(t) radians. Note
that

α(t) =
∫ t

0
f(x)dx.

Now at time t 6= 0, we have

z(t) = z(0)
y(t) = x(0) sinα + y(0) cosα
x(t) = x(0) cosα− y(0) sinα

(5.8.14)

At t = 0, the relation

L(Ω) = ITΩ (5.8.15)

is valid with IT given by Equation 5.8.13, but at time t 6= 0, the inertia tensor has changed.
We want to evaluate the product

L(Ω) = ITΩ = IT







0
0

f(t)





 (5.8.16)

at the time t 6= 0 and so we only need evaluate the two products of inertia Ixz and Iyz and
the moment of inertia Izz. We calculate these at time t :
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Ixz = Ixz(t)

=
n
∑

k=1

mkxkzk(t)

= −
n
∑

k=1

mk(xk(0) cosα− yk(0) sinα)zk(0)

= cosα
n
∑

k=1

(−mkxk(0)zk(0)) + sinα
n
∑

k=1

mkyk(0)zk(0)

= cosαIxz(0) + sinαIyz(0)

= 0.

Likewise Iyz = 0. Calculating the moment of inertia, we get

L(Ω(t)) = IT (t)Ω(t)

=







− − 0
− − 0
− − e3













0
0

f(t)







=







0
0

e3f(t)







= e3







0
0

f(t)





 .

It follows that L(Ω(t)) = e3Ω(t), where Ω(t) is an angular velocity in the direction of the
principal axis E3. Calculating the torque N , we get

N =
d

dt
L(Ω(t)) =

d

dt
e3







0
0

f(t)





 = e3







0
0

f ′(t)





 ,

and so N and Ω(t) lie in the same direction.
The physical implication of the above observation is that a rigid system of particles

rotates “freely” about any one of its three principal axes. Put more precisely, if Ω is an
angular velocity vector in the direction of a principal axis, then the torque N resulting from
Ω lies in the same direction as Ω. The only change in Ω is a change in magnitude, not in the
direction of Ω.

Example 5.8.1. Consider four points in space of mass 2 each. Let the points be located at
(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),and (1, 1, 0, 0). The points are the corners of a square
and we feel sure, since the points have the same mass, that the center of mass is at the
intersection of the diagonals of the square and that the principal axes should lie along the
diagonals. Let us perform the calculations. The mass is
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m =
4
∑

k=1

mk = 2 + 2 + 2 + 2 = 8,

x is obtained by

x =

4
∑

k=1

mkxk

m
=

1 · 2 + 1 · 2
8

=
1

2
,

and similarly, y = 1/2 and z = 0. The center of mass is located at the point (1/2, 1/2, 0).
To calculate the inertia tensor

IT =







Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz





 ,

we use Formulas 5.8.10 and 5.8.11. The moments of inertia are

Ixx =
4
∑

k=1

mk(y
2
k + z2k) = 2(02 + 02 + 12 + 12) = 2 · 2 = 4,

and similarly, Iyy = 4 and Izz = 8. Calculating the products of inertia, we obtain

Ixy = −
4
∑

k=1

mk(xkyk) = −2(0 + 0 + 0 + 1) = −2,

Ixz = −
4
∑

k=1

mk(xkzk) = −2(0 + 0 + 0 + 0) = 0,

and likewise Iyz = 0. We see that

IT =







4 −2 0
−2 4 0
0 0 8





 .

To find the principal axes, we need to find the eigenvalues and eigenvectors. The char-
acteristic polynomial of IT is pIT = (8− λ)(λ2 − 8λ+12) = (8− λ)(6− λ)(2− λ). Thus, the
eigenvalues are 2, 6, and 8. Calculating corresponding eigenvectors we get







1
−1
0





 ,







1
1
0





 , and







0
0
1





 .

Normalizing, we obtain the principal axes:







1/
√
2

−1/
√
2

0





 ,







1/
√
2

1/
√
2

0





 , and







0
0
1





 .
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Section 5.8 Exercises

1. Let the position vector of a moving particle at any time t be given by

R(t) = (cosπt, sin πt, t).

Find the location of the particle when t = 0 and t = 1. Find the velocity and acceler-
ation vectors at any time t. Describe the path followed by the particle.

2. Let the position vector of a particle that is rotating about the z-axis be given by
R(t) = (cosπt, sin πt, 0) at any time t. Find the location of the particle when t = 0
and t = 1. Find the velocity and acceleration vectors at any time t. Describe the path
followed by the particle. Calculate the angular velocity vector Ω and the cross product
Ω× R.

3. Suppose that the particle in Exercise 2 has mass 3. Find the momentum vector P and
calculate the angular momentum L.

4. Let a rigid system of three particles of masses 3, 2, and 4 be positioned at the points
(−1, 1, 0), (0, 1, 1) and (−2, 0, 2), respectively. Calculate the inertia tensor for the sys-
tem.

5. Find the center of mass for the system of particles in Exercise 4.

6. Consider a rigid system of two particles in space. The first particle is located at the
point (2, 0, 0) and is of mass 3, the second is located at (−3, 0, 0) and has mass 2. Show
that the center of mass is at the origin. Calculate the inertia tensor. Find principal
axes.

7. Consider a rigid system of three particles in space. Each particle has mass 3. One
particle is located at the point (1, 1, 0), the second is located at (1, 0, 0), and the third
is at (0, 1, 0). Find the center of mass. Calculate the inertia tensor and find principal
axes.
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Chapter 6

THE JORDAN CANONICAL FORM
AND APPLICATIONS

6.1 Introduction

In this chapter we elaborate upon the investigations into similarity which were begun in
Chapter 5 and bring our understanding of the matter to a satisfactory and elegant conclusion
in the presentation of the “Jordan1 canonical form.” This term refers to a special form that
a matrix may be transformed into under similarity.

We saw in Chapter 5 that the similarity transformation of a matrix into a special form
is of interest from the point of view of applications and that problems of transforming a
matrix under similarity are quite interesting in themselves. The diagonalization of symmetric
matrices was applied to quadratic forms in Section 5.7 and to the inertia tensor in Section
5.8. We will see in Section 6.3 that the Jordan canonical form is of use in solving systems of
differential equations.

It would be convenient if every real matrix were orthogonally similar to a diagonal matrix,
but unfortunately, it is only the symmetric matrices that have this property. In problems
involving similarity, say similarity to an upper triangular matrix, factorization of the char-
acteristic polynomial is always a stumbling block and so any result must carry along the
necessary assumptions regarding it. It has been proved that there is no “quadratic formula”
type method for solving polynomial equations of degree five and larger, and so we can feel
sure that this factorization must be assumed separately. Is there a best result that can be
stated, with reasonable assumptions, regarding similarity? An answer will soon appear.

In this section, we will review the theory and methods developed in Chapter 5 regarding
similarity, diagonalization, eigenvalues and eigenvectors, and the characteristic and minimum
polynomials. In addition, we will consider several examples and present the definition of the
Jordan block, a fundamental unit in the discussion that follows.

1It is named for the French mathematician Camille Jordan (1838-1922).
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REVIEW

Let A be an n× n matrix. We will use the notation of Chapter 5 for the characteristic and
minimum polynomials of A, and we will rely on the definitions of eigenvalue and eigenvector
from that same chapter.

6.1.1 Summary of Previous Results:

(a) The eigenvalues of A are the roots of the characteristic polynomial, pA(λ), of A. To
find an eigenvector of A corresponding to the eigenvalue λ0, one finds a solution of the
homogeneous system (A− λ0I)X = 0. (Theorem 5.2.1)

(b) A is similar to a diagonal matrix if and only if A has n linearly independent eigenvectors.
If X1, . . . , Xn are independent eigenvectors corresponding to the eigenvalues λ1, . . . , λn

and S = [X1 . . .Xn], then S is nonsingular and S−1AS = diag(λ1, . . . , λn). (Theorem
5.3.3)

(c) If A is a real matrix and pA(λ) factors completely or A is a complex matrix, then A
is orthogonally similar (resp., unitarily similar) to an upper triangular matrix. The
eigenvalues of an upper triangular matrix are the entries on the diagonal. (Schur’s
Theorem, Theorem 5.5.2)

(d) A is a real symmetric matrix if and only if A is orthogonally similar to a diagonal
matrix. In this case, the eigenvalues of A are real. (Corollary 5.5.3 (the Principal Axes
Theorem and Theorem 5.2.5)

(e) A is a hermitian matrix over the complex numbers if and only if A is unitarily similar
to a diagonal matrix and the eigenvalues of A are real. (Corollary 5.5.4 and Theorem
5.2.5)

(f) Eigenvectors corresponding to distinct eigenvalues of A are linearly independent. If A
is hermitian or real symmetric, then eigenvectors corresponding to distinct eigenvalues
are orthogonal. (Theorem 5.2.4 and Theorem 5.5.5)

(g) A matrix satisfies its characteristic polynomial; that is, pA(A) = 0. (Theorem 5.6.1
(the Cayley-Hamilton Theorem))

(h) The monic polynomial mA(λ) of least degree satisfying mA(A) = 0 is the minimum
polynomial of A. If pA(λ) = (a1−λ)m1 · · · (as−λ)ms , then mA(λ) = (a1−λ)n1 · · · (as−
λ)ns, where 1 ≤ ni ≤ mi for i = 1, . . . , s. That is, mA(λ) is a factor of pA(λ) and mA(λ)
contains each of the linear factors of pA(λ). (Definition, Theorem 5.6.2, and Theorem
5.6.4)

(i) Similar matrices have the same minimum and characteristic polynomials. In particular,
similar matrices have the same eigenvalues. (Theorem 5.2.3 and Exercise 7 of section
5.6)

Having reviewed these facts from Chapter 5, let us consider some easy examples to gain
some experience with and appreciation for the theory we have just reviewed.



6.1. INTRODUCTION 241

6.1.2 Examples

Example 6.1.1. (a) Let A =

ñ

1 1
0 2

ô

. Then A is upper triangular and so the eigenvalues

of A are 1 and 2 (See part (c) of the Summary). Since the eigenvalues of A are distinct,
the corresponding eigenvectors are linearly independent (See part (f) of the Summary),
and so A is similar to the diagonal matrix diag(1, 2) by part (b) of the Summary.

(b) Let A =

ñ

1 1
0 1

ô

. Then the only eigenvalue of A is 1 and it has multiplicity 2. Now

A−1I has rank 1. It follows that there are at most 2−1 = 1 independent eigenvectors,
and so, A is not similar to a diagonal matrix (See part (b) of the Summary).

(c) Let A =

ñ

0 1
−1 0

ô

. Then pA(λ) = λ2+1 and so the characteristic polynomial does not

factor completely over the real numbers. It follows that A is not similar to a diagonal
matrix over the real numbers. However, considering A as a matrix over the complex
numbers, pA(λ) factors as pA(λ) = (λ − i)(λ + i). Thus A has two distinct complex
eigenvalues and so there is a complex matrix S with:

S−1AS =

ñ

i 0
0 −i

ô

(d) Let A =

ñ

3 1
1 7

ô

. Then A is symmetric and so A is similar to a real diagonal matrix

(See Summary part (d)).

(e) Let A =

ñ

1 1− i
1 + i 7

ô

. Then A is a hermitian matrix and so A is similar to a real

diagonal matrix (See Summary part (e)).

�

We will consider now the fundamental elements that make up the Jordan canonical form
of a matrix.

JORDAN BLOCKS

The reader might recall that in both the “diagonalization” process and the “upper trian-
gularization” process, the order in which the eigenvalues occurred on the diagonal of the
resulting matrix was arbitrary in that any order desired could be obtained. The order could
be controlled by choosing the eigenvectors in the proper order. So, for example, if a is an
eigenvalue of A of multiplicity m, one could arrange to have a appear in the first m entries
of the resulting similar upper triangular matrix.

We consider now a special type of matrix that has a single eigenvalue. We will see in
Section 6.2 that any matrix (with pA(λ) factoring completely) is similar to a matrix with
these special matrices on the diagonal.
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A Jordan block is an m×m matrix J of the form

J =





























a 1 0 . . . 0 0 0
0 a 1 . . . 0 0 0
0 0 a . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . a 1 0
0 0 0 . . . 0 a 1
0 0 0 . . . 0 0 a





























.

We say that a is the eigenvalue associated with J , and we see that in the matrix J , each
entry on the diagonal is an a and each entry on the “superdiagonal” (the entries above the
diagonal) is a 1. All other entries are 0. For example,

[3],

ñ

2 1
0 2

ô

, and







−1 1 0
0 −1 1
0 0 −1







are Jordan blocks, but

ñ

2 1
0 1

ô

and







−1 1 0
0 −1 0
0 0 −1







are not Jordan blocks. It is not difficult to calculate the minimum and characteristic poly-
nomials for a Jordan block.

Theorem 6.1.1. Let J be an m ×m Jordan block with eigenvalue a. Then pJ(λ) =
(−1)m(λ− a)m and mJ(λ) = (λ− a)m.
(For a Jordan block the characteristic and minimum polynomials are equal, except possibly for sign.)

Proof. Since J is upper triangular, we see that

pJ(λ) = |J − λI| = (a− λ)m = (−1)m(λ− a)m.

By previous results, we know that mJ (λ) is a factor of pJ(λ) and so mJ(λ) = (λ−a)k, where
1 ≤ k ≤ m and k is the least integer satisfying

mJ (J) = (J − aI)k = 0.

Now

J − aI =























0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0






















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and we see that

(J − aI)2 =





























0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0





























...

(J − aI)m−1 =













0 . . . 0 1
0 . . . 0 0
...

...
. . .

...
0 . . . 0 0













(J − aI)m = (J − aI)(J − aI)m−1

= 0.

From this we see that mJ (λ) = (λ− a)m.

Now let us consider the eigenvectors associated with an m × m Jordan block J with
eigenvalue a. Since

J − aI =



















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0



















,

it is not hard to see that the first m−1 row vectors are linearly independent and that J−aI
has rank m − 1. From this we see that J has only m − (m − 1) = 1 linearly independent
eigenvectors. Let us find conditions under which an m×m matrix A is similar to a Jordan
block.

Let A be an m×m matrix and assume A is similar to the Jordan block J with a on the
diagonal. Then since similar matrices have the same characteristic polynomials, pA(λ) =
(a − λ)m. Let S be the nonsingular matrix with S−1AS = J and assume S = [X1 . . .Xm],
where Xj is the j-th column vector of S. Then we get AS = SJ and so

A[X1 . . . Xm] = [X1 . . .Xm]



















a 1 0 . . . 0
0 a 1 . . . 0
0 0 a . . . 0
...

...
...

. . .
...

0 0 0 . . . a



















.

It follows that
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î

AX1 AX2 . . . AXm

ó

=
î

aX1 X1 + aX2 X2 + aX3 . . . Xm−1 + aXm

ó

and so

AX1 = aX1

AX2 = X1 + aX2

...

AXm = Xm−1 + aXm.

Rewriting this we obtain

(A− aI)X1 = 0

(A− aI)X2 = X1

(A− aI)X3 = X2

...

(A− aI)Xm = Xm−1.

Notice that X1 is an eigenvector. The other vectors X2, . . . , Xm are called generalized
eigenvectors, and X1, . . . , Xm is called a Jordan basis. This proves one part of the
following theorem.

Theorem 6.1.2. An m × m matrix A is similar to an m × m Jordan block J with
eigenvalue a if and only if there are independent m × 1 column vectors X1, . . . , Xm

satisfying

(A− aI)X1 = 0

(A− aI)X2 = X1

(A− aI)X3 = X2

...

(A− aI)Xm = Xm−1.

(A Jordan block corresponds to a string of generalized eigenvectors.)

Proof. See Exercise 11.

Example 6.1.2. Let A =

ñ

3 1
−1 1

ô

. Then pA(λ) = (λ − 2)2, so λ = 2 is an eigenvalue of

multiplicity 2. The rank of A− 2I =

ñ

1 1
−1 −1

ô

is 1 and so there is only one independent
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eigenvector. It follows that A is not similar to a diagonal matrix. Let X1 =

ñ

1
−1

ô

. Then X1

is an eigenvector of A associated with the eigenvalue λ = 2, and there is no other eigenvector
independent from X1. Let us attempt to find a vector X2 so that X1, X2 forms a Jordan
basis. We need to solve the equation (A− 2I)X2 = X1 or

ñ

1 1
−1 −1

ô ñ

x
y

ô

=

ñ

1
−1

ô

.

We see that X2 =

ñ

1
0

ô

is a solution. Now let S = [X1X2] =

ñ

1 1
−1 0

ô

. Then

S−1AS =

ñ

2 1
0 2

ô

,

which is a Jordan block.

�

Section 6.1 Exercises

For each of the matrices in Exercises 1 - 5 determine which are similar to diagonal matrices.
Give reasons for your conclusion.

1.

ñ

0 2
1 1

ô

2.

ñ

3 7
7 −2

ô

3.

ñ

1 0
2 1

ô

4.







−1 2 1
0 1 1
1 0 2







5.







1 i 1− i
−i 3 1
1 + i 1 2







6. Which of the following matrices are Jordan blocks? Give reasons.

(a)

ñ

1 1
0 2

ô

(b) [2]

(c)

ñ −1 1
0 −1

ô

(d)

ñ

2 0
0 2

ô

(e)







1 0 0
0 1 1
0 0 1







7. Find a Jordan block J that is similar to the matrix A =

ñ

1 −1
1 3

ô

.

8. Find a Jordan block J that is similar to the matrix A =







1 0 0
1 1 1
1 0 1





 .

9. For the matrices A and J in Exercise 7, find a matrix S such that S−1AS = J.

10. For the matrices A and J in Exercise 8, find a matrix S such that S−1AS = J.
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11. Prove the remaining part of Theorem 6.1.2.

12. Let A and S = [X1X2X3] be 3× 3 matrices and assume that

S−1AS =







2 1 0
0 2 1
0 0 2





 .

Write the relationships satisfied by the matrix A and the column vectors of S.

13. Follow the instructions in Exercises 12 assuming that

S−1AS =







2 1 0
0 2 0
0 0 2





 .

6.2 The Jordan Canonical Form

As we have observed before, not every matrix is similar to a diagonal matrix. By Theorem
5.5.2, we know that if the characteristic polynomial of a matrix A factors completely, then
A is similar to an upper triangular matrix. One wonders if this is the best result that can be
obtained. The answer is “no” and in this chapter we investigate this “closest-to-diagonal”
matrix that can be obtained by similarity transformations.

Let A be an n × n matrix and let S be the set of all matrices that are similar to A. If
the characteristic polynomial of A, pA(λ), factors completely, then we know that A is similar
to an upper triangular matrix U . But this upper triangular matrix U is not unique. For

example, suppose A =

ñ

1 1
0 2

ô

. Then A itself is upper triangular, and, of course, A is

similar to itself so that A ∈ S. But A has two distinct eigenvalues (1 and 2) so that A is

similar to the diagonal matrix D =

ñ

1 0
0 2

ô

. It follows that D ∈ S and so D is a second

upper triangular matrix in S. Since A is also similar to the diagonal matrix D′ =

ñ

2 0
0 1

ô

,

one can see that “absolute” uniqueness is probably impossible to achieve.

The following theorem identifies a “closest-to-diagonal” matrix J in the class S of matrices
that are similar to a given matrix A, and states that this matrix J is unique (more or less).
Because of this, J is called a canonical form, and being named after its founder, it is called
the Jordan canonical form. The matrix J is called the Jordan canonical form “of A,” and
J is said to be “in” Jordan canonical form. In this context the word “canonical” has nothing
to do with church law, but rather carries the implication of “simplest” and “unique.” The
proof is omitted here, but outlined in Appendix F.



6.2. THE JORDAN CANONICAL FORM 247

Theorem 6.2.1. Let A be an n×n matrix and assume that pA(λ) factors completely.
Then A is similar to a matrix J of the form

J =













J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk













,

where J1, . . . , Jk are Jordan blocks. The matrix J is unique except for the order of the
blocks J1, . . . , Jk, which can occur in any order.
(If the characteristic polynomial factors completely, the matrix is similar to a matrix in Jordan form.)

The above theorem is an “existence” theorem in that it states the existence of a quantity,
J in this case, but offers no help in finding it. There are not many parameters in the
make-up of the matrix J . We need to know how many blocks, the size of the blocks, and
the eigenvalue associated with the blocks. These parameters may often be determined by
investigating properties of the original matrix A.

6.2.1 PROPERTIES OF THE JORDAN FORM

It is, in general, difficult to find the Jordan canonical form of a matrix, but knowledge
of certain elementary facts simplifies the task. In the following discussion we will assume
that A is an n × n matrix and the characteristic polynomial of A factors completely, say
pA(λ) = (a1 − λ)m1 . . . (as − λ)ms, where a1, . . . , as are distinct. Further, let the minimum
polynomial of A be mA(λ) = (λ− a1)

n1 . . . (λ− as)
ns. Let J be the Jordan canonical form

of A, and assume J1, . . . , Jk are the Jordan blocks of J.
Since J and A are similar they have the same characteristic polynomial, and since J is

upper triangular, the eigenvalues of J lie on the diagonal. From this it is easy to see that
the following theorem is true.

Theorem 6.2.2. The sum of the orders of the blocks in which ai occurs on the diagonal
is mi; that is, ai occurs on the diagonal of J mi times.
(An eigenvalue of multiplicity m occurs m times on the diagonal of the Jordan form.)

Now let S be a nonsingular matrix such that S−1AS = J , or AS = SJ. If S = [X1 . . .Xn],
where Xj is the j-th column of S, then X1, . . . , Xn are linearly independent and we have

AS =
î

AX1 . . . AXn

ó

= SJ

=
î

X1 . . . Xn

ó









J1 . . . 0
...

. . .
...

0 . . . Jk









=
î

b1X1 X1 + b1X2 . . . Xr−1 + b1Xr b2Xr+1 Xr+1 + b2Xr+2 . . .
ó

,
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where bi is the eigenvalue associated with Ji and J1 is r×r. Note that b1 = b2 = a1 is possible.
This relabeling is necessary because a1 could show up in both J1 and J2, for example.

If we let Ai = A− biI and if we equate the columns of AS and SJ , we have

AX1 = b1X1 =⇒ A1X1 = 0 A2Xr+1 = 0
AX2 = X1 + b1X2 =⇒ A1X2 = X1 A2Xr+2 = Xr+1

...
...

...
...

AXr = Xr−1 + b1Xr =⇒ A1Xr = Xr−1 etc.

A basis of the above form is called a Jordan basis. From the above computation one
sees that X1, Xr+1, . . . are linearly independent eigenvectors and there is one of them for
each Jordan block of J . We have shown the following theorem:

Theorem 6.2.3. The number of blocks associated with the eigenvalue ai is equal to
the number of linearly independent eigenvectors associated with ai.
(There is a block in J for each independent eigenvector.)

Although it is harder to see, the following also holds:

Theorem 6.2.4. The order of the largest block associ-
ated with ai is ni, the exponent of (λ − ai) in mA(λ).
(The largest block with a given eigenvalue is multiplicity of the eigenvalue in the minimum polynomial.)

Proof. By assumption, mA(λ) = (λ − a1)
n1 . . . (λ − as)

ns is the minimum polynomial of A
and since similar matrices have the same minimum polynomial (See Exercise 7, Section 5.6),
mJ(λ) = mA(λ). Notice what happens when one multiplies matrices (assuming the products
are defined) that are in “block-diagonal form”:









A1 . . . 0
...

. . .
...

0 . . . Ak

















B1 . . . 0
...

. . .
...

0 . . . Bk









=









A1B1 . . . 0
...

. . .
...

0 . . . AkBk









.

Assume now that J1 is the largest block associated with the eigenvalue a1 and that J1 is
r × r. Recall that by Theorem 6.1.1, the minimum polynomial of J1 is (λ− a1)

r. That is, r
is the least power of (J1 − a1I) that is the zero matrix. Now substitute J into mJ (λ) and
apply these observations:
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mJ(J) = (J − a1I)
n1 . . . (J − asI)

ns

=









J1 − a1I · · · 0
...

. . .
...

0 · · · Jk − a1I









n1

. . .









J1 − asI · · · 0
...

. . .
...

0 · · · Jk − asI









ns

=









(J1 − a1I)
n1 · · · 0

...
. . .

...
0 · · · (Jk − a1I)

n1









. . .









(J1 − asI)
ns · · · 0

...
. . .

...
0 · · · (Jk − asI)

ns









=









(J1 − a1I)
n1 . . . (J1 − asI)

ns · · · 0
...

. . .
...

0 · · · (Jk − a1I)
n1 . . . (Jk − asI)

ns









.

Now since mJ(J) = 0, all blocks on the diagonal of this last matrix must be zero. It
follows that

(J1 − a1I)
n1 . . . (J1 − asI)

ns = 0.

But a1 6= a2, . . . , as, and so each of the terms (J1 − a2I), . . . , (J1 − asI) have nonzero
entries on their diagonals. It follows that (J1 − a1I)

n1 = 0, and so n1 ≥ r, the order of J1.
Now J1 was assumed to be the largest block associated with a1 and so if J2 also has the
eigenvalue a1, (J2 − a1I)

r = 0, as well (by Theorem 6.1.1 since r is greater than or equal to
the order of J2). But n1 is the least integer satisfying this condition, so n1 ≤ r. Thus n1 = r,
and the theorem is proved since the order of the blocks may be arbitrarily chosen.

6.2.2 FINDING THE JORDAN FORM

While it is not in general easy to find the Jordan canonical form of a matrix, the above results
provide enough information that it is possible to determine the Jordan form in certain cases.
Finding the characteristic and minimum polynomials is the first step. Next, knowing the
nature of the associated eigenvectors provides further clues. Often these two steps prove
sufficient, but in other cases, one must try to find a Jordan basis. The following examples
illustrate the various possibilities.

Example 6.2.1. (a) Assume that A is a matrix such that:

pA(λ) = (1− λ)3(2− λ)2

mA(λ) = (λ− 1)2(λ− 2).

Then if J is the Jordan canonical form of A, we know by Theorem 6.2.2 that 1 appears
three times on the diagonal of J and 2 appears twice. By Theorem 6.2.4, the order of
the largest block associated with the eigenvalue 2 is 1. From this we can see that
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J =

















ñ

1 1
0 1

ô

0

[1]
[2]

0 [2]

















.

Here we have shown the Jordan blocks that lie on the diagonal and represent the 0’s
that lie outside the blocks by a single 0.

(b) If A is such that

pA(λ) = (1− λ)3(2− λ)2 = −mA(λ),

then the largest block with a 2 on the diagonal has order 2 and the largest block with
a 1 on the diagonal has order 3. From this we see that the Jordan canonical form is:

J =























1 1 0
0 1 1
0 0 1





 0

0

ñ

2 1
0 2

ô

















.

(c) Assume that A is a 4× 4 matrix with

pA(λ) = (1− λ)4 and mA(λ) = (λ− 1)2.

By Theorem 6.2.4, the largest Jordan block associated with the eigenvalue 1 is 2 × 2.
This leaves two possibilities. If A has three independent eigenvectors, then there are
three blocks in the Jordan canonical form J and

J =











ñ

1 1
0 1

ô

0

[1]
0 [1]











.

On the other hand, if A has only two independent eigenvectors, then J has two Jordan
blocks on its diagonal and so

J =











ñ

1 1
0 1

ô

0

0

ñ

1 1
0 1

ô











.

(d) Knowing the characteristic and minimum polynomials and the number of linearly in-
dependent eigenvectors may not be sufficient to determine the Jordan canonical form
of a matrix. Suppose that A is a 7× 7 matrix with
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pA(λ) = (1− λ)7 and mA(λ) = (λ− 1)3.

If A has three linearly independent eigenvectors, then the Jordan canonical form J
of A must have three Jordan blocks. Because of the minimum polynomial of A, the
largest block must be 3× 3. These conditions don’t determine J . J could consist of a
3× 3 Jordan block and two 2× 2 blocks or J could have two 3× 3 Jordan blocks and
one 1× 1 block.

(e) Let A =







1 1 0
1 1 1
0 −1 1





 . Then pA(λ) = (1 − λ)3 and so λ = 1 is the only eigenvalue of

A. Let us examine the eigenvectors of A in order to determine the Jordan canonical
form of A. Consider

(A− 1I)X =







0 1 0
1 0 1
0 −1 0













x1

x2

x3





 = 0.

We see that x2 = 0 and x1 = −x3, and so X1 =







1
0
−1





 is a solution and there is only

one linearly independent solution. It follows from Theorem 6.2.3 that there is only one
Jordan block in the Jordan canonical form J of A and so

J =







1 1 0
0 1 1
0 0 1





 .

To make the example interesting, let us find a matrix S such that S−1AS = J . From
the previous discussion we know that we want to take S = [X1X2X3], where X1, X2, X3

is a Jordan basis; that is, (A − I)X1 = 0, (A − I)X2 = X1 and (A − I)X3 = X2. We
compute solutions to these equations:

(A− I)X1 = 0; take X1 =







1
0
−1







(A− I)X2 = X1; take X2 =







1
1
−1





 or







0
1
0







(A− I)X3 = X2; take X3 =







1
1
0





 or







0
1
1





 .

Then X1, X2, X3 are linearly independent and so they form a Jordan basis. If we let
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S =







1 1 1
0 1 1
−1 −1 0





 ,

then

S−1 =







1 −1 0
−1 1 −1
1 0 1







and S−1AS = J.

(f) Finding a Jordan basis is not always straightforward. Suppose that

A =







3 1 0
−1 1 0
1 1 2





 .

The characteristic polynomial is (2− λ)3 and we see that

A− 2I =







1 1 0
−1 −1 0
1 1 0





 ,

and so A−2I has rank 1. This means that there are two independent eigenvectors and
therefore two Jordan blocks, a 2 × 2 block and a 1 × 1 block. To find a Jordan basis
we must find X1, X2, X3 satisfying

(A− 2I)X1 = 0

(A− 2I)X2 = X1

(A− 2I)X3 = 0

Solving for eigenvectors X1 and X3, consider

(A− 2I)X =







1 1 0
−1 −1 0
1 1 0













x
y
z





 =







0
0
0





 .

We see that X1 =







0
0
1





 and X3 =







1
−1
0





 are obvious choices. Now let’s find X2. We

must solve

(A− 2I)X2 = X1

or
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(A− 2I)X2 =







1 1 0
−1 −1 0
1 1 0













x
y
z





 =







0
0
1





 .

Considering the first and last rows, we see that there’s no solution. Perhaps we should
switch eigenvectors and try to solve

(A− 2I)X2 = X3

or

(A− 2I)X2 =







1 1 0
−1 −1 0
1 1 0













x
y
z





 =







1
−1
0





 .

Again, no solution. The theorem above states that our matrix A is similar to a matrix
in Jordan form and it implies the existence of a Jordan basis. The theorem doesn’t
guarantee that the Jordan basis will be easy to find! We need to replace the eigenvector
X1 by another eigenvector so that (A− 2I)X2 = X1 does have a solution. Let’s let

X1 =







1
−1
1





 .

Then X1 is and eigenvector and X2 can be chosen to be







1
0
0





 . The matrix S =







1 1 0
−1 0 0
1 0 1





 will properly transform the matrix A to its Jordan form.

�

Section 6.2 Exercises

In Exercises 1 - 6, find the Jordan canonical form of the matrix satisfying the given conditions.

1. A is a 3× 3 matrix with pA(λ) = (−2− λ)3 and mA(λ) = (λ+ 2)2.

2. A is a 3× 3 matrix with pA(λ) = (2− λ)3 and mA(λ) = (λ− 2)3.

3. A is a 3× 3 matrix with pA(λ) = (2− λ)3 and (A− 2I)2 = 0, but A 6= 2I.

4. A is a 5× 5 matrix with pA(λ) = (2− λ)3(3− λ)2 and mA(λ) = (λ− 2)2(λ− 3).
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5. A is a 6× 6 matrix with pA(λ) = (2− λ)4(3− λ)2 and mA(λ) = (λ− 2)2(λ− 3)2. The
matrix A− 2I has rank 4.

6. A is a 6 × 6 matrix with pA(λ) = (1 − λ)4(−2 − λ)2 and mA(λ) = (λ + 2)2(λ − 1)2.
The matrix A− I has rank 3.

Find the Jordan canonical form of the matrices in Exercises 7 - 12.

7.

ñ

1 1
1 1

ô

8.

ñ

1 0
1 0

ô

9.







2 1 0
−1 0 0
0 0 2







10.







1 0 1
1 1 1
0 0 1







11.







0 1 0
−8 6 1
−1 −1 −1







12.







1 0 1
1 1 2
0 0 1







13. Let A =







1 1 0
0 1 0
1 −1 2





. Find a matrix S such that S−1AS is in Jordan canonical form.

14. Find the Jordan canonical form J of







1 0 1
1 1 2
0 0 1





 and find a nonsingular matrix S with

S−1AS = J.

15. Give an example of a 3 × 3 matrix A satisfying: (a) λ = 2 is the only eigenvalue of
A, and (b) there are two linearly independent eigenvectors of A associated with this
eigenvalue.

16. Give an example of a 3 × 3 matrix A satisfying: (a) λ = 1 is the only eigenvalue of
A, and (b) there is only one linearly independent eigenvector of A associated with this
eigenvalue.

17. Let A be a 3 × 3 matrix satisfying: (a) λ = 1 is the only eigenvalue of A, and (b)
there are three linearly independent eigenvectors of A associated with the eigenvalue
of λ = 1. Show that A = I.

6.3 Systems of Constant Coefficient Differential Equa-

tions (optional)

The Jordan canonical form of a matrix is of use in solving differential equations. In most
elementary courses in differential equations, a general discussion of systems of first order,
constant coefficient linear differential equations is not included. This omission is mainly
due to the unavailability of the Jordan canonical form which is necessary in solving such
systems. It seems appropriate to include a discussion of these systems here. In what follows,
the reader will find some background in differential equations helpful, but not absolutely
necessary.
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By a system of first order constant coefficient linear differential equations we
mean a system of the form

x′
1 = a11x1 + . . . + a1nxn + f1(t)

...
...

x′
n = an1x1 + . . . + annxn + fn(t)

(6.3.1)

Of course a solution of System 6.3.1 is a collection of functions x1(t), . . . , xn(t) that satisfy
the equations on some interval.

These systems of equations arise naturally: If we consider the n-th order constant coef-
ficient linear differential equation

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = g(t), (6.3.2)

then this equation can be “reduced” to a system of the form 6.3.1 by making the substitutions

x1 = y
x2 = y′

...
xn = y(n−1)

(6.3.3)

Using the substitutions 6.3.3 in 6.3.2 we obtain

x′
1 = x2

x′
2 = x3

...
x′
n−1 = xn

x′
n = −an−1xn − . . .− a1x2 − a0x1 + g(t),

(6.3.4)

which is a system of equations of the form 6.3.1.
A further natural occurrence of linear systems of differential equations arises in applying

Kirchhoff’s laws (see Section 1.7) to electrical networks involving inductors and capacitors,
applying laws of motion to coupled spring-mass systems, and in other physical situations.
To solve a first order system of linear differential equations we will need to be able to solve
a single first order equation. We start with a brief review.

6.3.1 SOLVING A FIRST ORDER EQUATION

The general first order linear differential equation is an equation of the form

y′ + f(t)y = g(t), (6.3.5)

where f and g are assumed to be continuous. This equation can be solved by using the
integrating factor

p(t) = e
∫

f(t)dt (6.3.6)

If both sides of Equation 6.3.5 are multiplied by p(t), we obtain
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y′p(t) + f(t)yp(t) = g(t)p(t). (6.3.7)

But notice that

d

dt
(yp(t)) = y′p(t) + yp′(t)

= y′p(t) + yf(t)p(t)
(6.3.8)

since

p′(t) = e
∫

f(t)dt = p(t)f(t).

Now combining 6.3.7 and 6.3.8, we get

d

dt
(yp(t)) = g(t)p(t);

integrating, we obtain

yp(t) =
∫

g(t)p(t)dt+ C

or

y =
1

p(t)

∫

g(t)p(t)dt+
C

p(t)
. (6.3.9)

The assumption of continuity of the functions f(t) and g(t) guarantees that the integrals
in 6.3.6 and 6.3.9 exist. The solution 6.3.9 is called the general solution of 6.3.5 and it
involves the unknown constant C. An initial condition of the form y(a) = b determines the
value of C and gives the unique solution that satisfies this condition.

Example 6.3.1. Consider the equation

y′ + 2ty = t.

Applying the above method we multiply by the integrating factor

p(t) = e
∫

2tdt = et
2

and obtain

y′et
2

+ 2tet
2

y = tet
2

.

Rewriting this equation we get

d

dt
yet

2

= tet
2

and integrating both sides with respect to t gives

yet
2

=
∫

tet
2

dt =
et

2

2
+ C.
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It follows that

y =
1

2
+ Ce−t2 .

If a solution is desired that satisfies y(0) = 2, then we get

2 =
1

2
+ Ce0

so that C =
3

2
and we obtain the specific solution

y =
1

2
+

3

2
e−t2 .

�

Just as matrix notation simplified the expression and solution of systems of linear equa-
tions, the same holds true for systems of differential equations.

6.3.2 MATRIX NOTATION

Let us now return to the problem of finding a solution to the system of equations 6.3.1. We
introduce matrix notation to write Equations 6.3.1 in a more compact “matrix” differential
equation. Let

X = X(t) =









x1(t)
...

xn(t)









,

A = [aij ],

and

F = F (t) =









f1(t)
...

fn(t)









.

For a “matrix” function X(t) we define the derivative X ′ of X by

X ′(t) =









x′
1(t)
...

x′
n(t)









.

Using this notation, the system 6.3.1 can then be expressed as a matrix differential
equation of the form

X ′ = AX + F (t) (6.3.10)
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6.3.3 USING THE JORDAN FORM

The first step in solving the matrix equation 6.3.10 is as follows: A is similar to a matrix J
in Jordan canonical form (J may have complex numbers on its diagonal), say S−1AS = J
or A = SJS−1. Then

X ′ = SJS−1X + F (t)

or

S−1X ′ = JS−1X + S−1F (t).

Let Y = S−1X and G(t) = S−1F (t). Then Equation 6.3.10 becomes

Y ′ = JY +G(t). (6.3.11)

Now let J =









J1 · · · 0
...

. . .
...

0 · · · Jk









, where each Ji is Jordan block. Assume that Ji is ni × ni

and let Y =









Y1
...
Yk









and G(t) =









G1(t)
...

Gk(t)









, where Yi and Gi(t) are ni × 1. Then we get

Y ′ =









Y ′
1
...
Y ′
k









=









J1 · · · 0
...

. . .
...

0 · · · Jk

















Y1
...
Yk









+









G1(t)
...

Gk(t)









=









J1Y1 +G1(t)
...

JkYk +Gk(t)









.

From this we see that we need only solve the systems

Y ′
i = JiYi +Gi(t) (6.3.12)

for i = 1, . . . , k, where each Ji is a Jordan block. Given the solutions Yi, let Y =









Y1
...
Yk









and take X = SY . X is then the solution of 6.3.10 and so we need only consider a system
of equations of the form

Z ′ = JZ +H(t), (6.3.13)
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where J is a Jordan block. Let Z =









z1
...
zm









, H(t) =









h1(t)
...

hm(t)









, and

J =























a 1 0 . . . 0 0
0 a 1 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 1
0 0 0 . . . 0 a























.

The system 6.3.12 is then equivalent to

z′1 = az1 + z2 + h1(t)
...

z′m−1 = azm−1 + zm + hm−1(t)
z′m = azm + h(t).

(6.3.14)

The problem of solving a system of differential equations has now been reduced to solving
a system associated with a single Jordan block. We tackle that problem next.

6.3.4 SOLVING WHEN JORDAN BLOCKS OCCUR

Solving systems determined by Jordan blocks as in 6.3.14 is relatively straightforward. We
start from the bottom and work up: solve the last equation for zm and substitute zm into
the next to the last equation and solve for zm−1, and so forth.. At each step we need to solve
a constant coefficient first order linear differential equation of the form y′ − ay = f(t).

To solve y′ − ay = f(t), we proceed as before: Find the integrating factor e
∫

−adt = e−at.
Multiply the equation by the integrating factor and get

y′e−at − ae−aty = e−atf(t).

Notice that the left hand side of the equation is the derivative of ye−at, and so we have

d

dt
(ye−at) = e−atf(t).

Now we can integrate both sides to obtain

ye−at =
∫

e−atf(t)dt

and solve for y, obtaining y = eat
∫

e−atf(t)dt.

Example 6.3.2. Solve Z ′ =

ñ

2 1
0 2

ô

Z +

ñ

et

e2t

ô

. We must solve the system:

(a) z′1 = 2z1 + z2 + et
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(b) z′2 = 2z2 + e2t.

1. Solve (b) first: The integrating factor is e−2t; multiply and get

z′2e
−2tz2 =

d

dt
z2e

−2tz2 =
d

dt
z2e

−2t = e−2te2t = 1.

Integrating, we get z1e
−2t =

∫

1dt− t+ C, so that z2 = te2t + Ce2t.

2. Substitution into (a) gives

z′1 = 2z1 + te2t + Ce2t + et;

now solve for z1. The integrating factor is e−2t. Multiply, manipulate and get

z′1e
−2t − 2e−2tz1 =

d

dt
z1e

−2t = t + C + e−t.

Integrating, we get

z1e
−2t =

t2

2
+ Ct− e−t + C ′

or

z1 =
t2

2
e2t + Cte2t − et + C ′e2t.

It follows that the general solution of the system of equations is:

z1 =
t2

2
e2t + Cte2t − et + C ′e2t

z2 = te2t + Ce2t.

If a solution satisfying the initial conditions z1(0) = 2, z2(0) = 3 is desired, we can solve

for C and C ′ : z2(0) = 0e2·0+Ce2·0 = 3, so C = 3. z1(0) =
0

2
e2·0+C ·0·e0−e0+C ′e0 = 2,

so C ′ = 1 and we get the following solution of the initial value problem:

z1 =
t2

2
e2t + 3te2t − et + e2t

z2 = te2t + 3e2t.

�

The above example illustrates only one step in a rather long and complicated process.
To illustrate the entire process, we will go through the details of the following example:
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Example 6.3.3. Find the general solution of

x′
1 = 3x1 + x2 + x3 + 1

x′
2 = 2x1 + 2x2 + x3 + et

x′
3 = −6x1 − 3x2 − 2x3 + e2t.

We first formulate the problem in matrix form:

X ′ =







3 1 1
2 2 1
−6 −3 −2





X +







1
et

e2t







and calculate the Jordan canonical form J of the matrix

A =







3 1 1
2 2 1
−6 −3 −2





 .

Now pA(λ) = (1− λ)3 and mA(λ) = (λ− 1)2 since (A− 1I)2 = 0. We see that

J =







1 1 0
0 1 0
0 0 1





 .

We will need to know the matrix S that satisfies S−1AS = J . Recall that S =
î

X1 X2 X3

ó

, where X1, X2, X3 is a Jordan basis. Because of the form of J , these
basis vectors must satisfy (A − I)X1 = 0, (A − I)X2 = X1, (A − I)X3 = 0. After some
experimentation, we get

X1 =







1
1
−3





 , X2 =







0
0
1





 , and X3 =







−1
1
1





 .

Thus S =







1 0 −1
1 0 1
−3 1 3





. Also, S−1 = −1

2







−1 −1 0
−4 −2 −2
1 −1 0





 =
1

2







1 1 0
4 2 2
−1 1 0





 .

By the previous section, we must solve

Y ′ = JY +G(t),

where Y = S−1X and G(t) = S−1F (t) =













1

2
(1 + et)

2 + et + e2t

1

2
(et − 1)













. We let Y =







y1
y2
y3





 and solve the

system, which you will recall involves solving the systems determined by the blocks of J .
The 1× 1 block gives the equation
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y′3 = y3 +
1

2
(et − 1).

The solution is y3 =
1

2
tet + Cet +

1

2
.

The 2× 2 block gives the system

y′1 = y1 + y2 +
1

2
(1 + et)

y′2 = y2 + 2 + et + e2t.

Solving the second equation, we get

y2 = −2 + tet + e2t + C ′et.

Substituting into the first equation gives the equation

y′1 − y1 = y2 +
1

2
(1 + et) = −3

2
+ tet + e2t +

Ç

C ′ +
1

2

å

et.

Solving this equation we get:

y1 =
3

2
+

t2

2
et + e2t +

Ç

C ′ +
1

2

å

tet + C ′′et

=
3

2
+ et

Ç

t2

2
+

Ç

C ′ +
1

2

å

t + C ′′

å

+ e2t.

We have found y1, y2 and y3 above and so we have determined Y . Now Y = S−1X , so
X = SY and so

X =







1 0 −1
1 0 1
−3 1 3





















3

2
+ et

Ç

t2

2
+

Ç

C ′ +
1

2

å

t+ C ′′

å

+ e2t

−2 + tet + e2t + C ′et

1

2
tet + Cet +

1

2















=





















1 + et
Ç

t2

2
+ C ′t+ C ′′ − C

å

+ e2t

2 + et
Ç

t2

2
+ (C ′ + 1)t+ C ′′ + C

å

+ e2t

−6 + et
Ç

−3t2

2
− 3C ′t− 3C ′′ + C ′ + C

å

− 2e2t





















is the general solution of the original system of equations.
To find the specific solution that satisfies the initial conditions x1(0) = 0, x2(0) =

1, x3(0) = 1, substitute t = 0 and solve for C,C ′ and C ′′. We obtain the following sys-
tem of equations:
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x1(0) = 0 = 1 + C ′′ − C + 1 or C ′′ − C = −2
x2(0) = 1 = 2 + C ′′ + C + 1 or C ′′ + C = −2
x3(0) = 1 = −6− 3C ′′ + C ′ + C − 2 or −3C ′′ + C ′ + C = 9.

Solving the system of linear equations, we get C = 0, C ′ = 3, and C ′′ = −2. The specific
solution is then

X =





















1 + et
Ç

t2

2
+ 3t +−2

å

+ e2t

2 + et
Ç

t2

2
+ 4t− 2

å

+ e2t

−6 + et
Ç

−3t2

2
− 9t+ 9

å

− 2e2t





















.

�

Section 6.3 Exercises

In Exercises 1 - 4, find an integrating factor and use it to find the general solution of the
given first order linear equation. Then find a specific solution which satisfies the given initial
condition.

1. y′ − 2y = et, y(0) = 1

2. y′ + 3y = t, y(0) = −1

3. y′ − ty = t, y(0) = 0

4. y′ − t−1y = t2, y(1) = −1

In Exercises 5 and 6, express the systems in the form of a matrix equation, that is,
find matrices X,A, and F (t) with X ′ = AX + F (t).

5.

x′
1 = 2x1 + x2 + et

x′2 = 3x2 + e2t

6.

x′
1 = 3x1 + x2 + sin t

x′
2 = 2x1 − 2x2 + t

7. Find the general solution of

X ′ =

ñ −1 1
0 −1

ô

X +

ñ

t
et

ô

and then find the specific solution that satisfies the following initial conditions: x1(0) =
1, x2(0) = −2.



264 CHAPTER 6. THE JORDAN CANONICAL FORM AND APPLICATIONS

8. Find the general solution of

X ′ =

ñ

2 1
0 2

ô

X +

ñ

t2

t

ô

and then find the specific solution that satisfies the following initial conditions: x1(0) =
−1, x2(0) = 0.

9. Solve the following initial value problem:

X ′ =







2 1 0
0 2 0
0 0 1





X +







1
0
0





 ,

x1(0) = 0, x2(0) = 1, x3(0) = 0.

10. Find the general solution of the following system of equations:

x′
1 = 2x1 − x2 + x3 + 1

x′
2 = x1 + x3 + et

x′
3 = x1 − 2x2 + 3x3 + e−t

11. Find the general solution of

X ′ =

ñ −1 1
4 −1

ô

X.



Chapter 7

Linear Programming

7.1 Introduction

In business, industry and many other areas, one often encounters problems that involve
the optimization of some function (that usually measures profit, efficiency, cost, etc.) by
properly determining how resources should be allocated or how production should be geared.
Such problems are called “mathematical programming” problems - presumably because the
solution must be given in the form of a “program” for obtaining the optimum value of the
function. We will consider a particular sort of mathematical programming called “linear
programming” - the word linear referring to the fact that the function to be optimized will
be a linear function of the variables involved.

Unlike most of the linear algebra that we have studied, linear programming is a relatively
recent development. Linear programming was first studied in this country about 1947 by
George B. Dantzig and several other mathematicians who were working on a project for
the U. S. Air Force. Dantzig developed a method for solving linear programming problems
that is called the Simplex Method. It seems that the Russian mathematician L. V. Kan-
torovich worked on similar programming problems a few years earlier - about 1939. Recent
developments in linear programming are discussed in Section 7.3.

We will first of all consider a very simple linear programming problem in order to get
some idea of what is involved: A company manufactures cars and trucks - one model of each.
Its profit is $110 on each car and $100 on each truck. Let x and y represent the number of
cars and truck manufactured per week, respectively. Since the company is always able to sell
all the cars and trucks it manufactures, the profit per week will be P = 110x+ 100y. The
company, of course, wants to maximize its profits, but there are some restrictions: The same
engine is used in both the cars and trucks, and because of a restriction in the factory’s physical
plant only 50 engines per week can be manufactured. From this we see that x + y ≤ 50.
Also because of restrictions in other parts of the factory, we have: 4x+y ≤ 155, x+2y ≤ 90.
Since it is not possible to manufacture fewer than 0 cars or trucks, we have x ≥ 0 and y ≥ 0.
The problem we must solve is:

265
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Figure 7.1: Constraints for the auto manufacturer

Maximize P = 110x+ 100y (linear form)
Subject to 0 ≤ x, 0 ≤ y

x+ y ≤ 50 (linear constraints)
4x+ y ≤ 155
x+ 2y ≤ 90

(7.1.1)

To solve the problem, we begin by plotting the lines that bound the set of points (x, y)
that satisfy the linear constraints listed above. These lines consist of the x-axis, the y-axis
and the three lines in the diagram (see Figure 7.1). We call the region determined by the
linear constraints R0. Notice that R0 is a closed and bounded set and that P is a continuous
function on R0. By the results of calculus, P has a maximum value on R0 and so we can
be sure that an optimal value of P exists. However in a linear programming problem, the
existence of an optimal value, while important, is hardly the complete solution - one must
actually know the point (x0, y0) at which P obtains the optimal value.

We take a different approach and consider the “graph” of P as a function of x and y
defined on the region R0. P is a linear function of x and y, and so defines a plane through
the origin; see Figure 7.1. We are looking for the maximum value of P on the region R0,
and so we are looking for the point on the plane determined by P that lies furthest above
R0. We argue that the maximum value of P cannot occur at an interior point of the region
R0 and that it, in fact, must occur at one of the “corners” of the region. we list the values
of P at the corners:



7.1. INTRODUCTION 267

P y

xO
 

0R

Figure 7.2: A graph of the objective function over the domain

Point Coordinates Value of P
1. (155/4, 0) 17050/4 = 4262.5
2. (35, 15) 5350
3. (10, 40) 5100
4. (0, 45) 4500

From the table above we see that the maximum profit per week is $5350 and it can be
obtained when 35 cars and 15 trucks are manufactured.

THE GENERAL PROBLEM

We propose to investigate problems of the above sort and we hope to develop methods for
solving them. First, we must formulate the general problem. It seems clear that we should
attempt to solve:

Maximize z = c1x1 + . . .+ cnxn + b0 (7.1.2)

Subject to a11x1 + . . .+ a1nxn ≤ b1
...

am1x1 + . . .+ amnxn ≤ bm
x1, . . . , xn ≥ 0.

(7.1.3)

The above problem is called a linear programming (usually abbreviated LP) problem.
The function 7.1.2 is called the objective function and the inequalities 7.1.3 are called the
linear constraints. A point (x1, . . . , xn) that satisfies the linear constraints is called a
feasible point.

This formulation of the LP problem is more general than it might first appear:

1. To minimize z, maximize −z and take the negative of the maximum value found.

2. A constraint of the form a1x1 + . . . + anxn ≥ b that involves a “greater than” is
equivalent to the condition −a1x1 − . . .− anxn ≤ −b.
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3. If the condition xi ≤ 0 is required, the variable xi can be replaced by −xi and the
appropriate change in the aij ’s can be made.

4. If one of the inequalities in 7.1.3 is an equality, we can use the following trick: a = b
if and only if a ≤ b and −a ≤ −b. Thus, adding one equality rules out this apparent
restriction.

Before going further, we should consider some extreme cases of the above problem in
order to get an idea of the problems we face:

1. There may be no maximum value of z: For example, if z = x + y is the objective
function and the constraints are 0x + y ≤ 2, 0 ≤ x, y, then the variable x is not
restricted and so arbitrarily large values of z can be obtained.

2. There may be no feasible points. For example, if one tries to maximize the function
z = x + y subject to the constraints x + y = −1 and x, y ≥ 0, it is quickly seen that
there are no points that satisfy the constraints.

3. The method may be impractical. In the problem we considered at the beginning, there
were two variables x and y and five linear constraints. To find all of the “corners” of the

region it was necessary to solve

Ç

5
2

å

= 10 pairs of linear equations in two unknowns.

If there were 10 constraints and 5 unknowns, we would have to solve

Ç

10
5

å

= 252

systems of equations each with five equations in five unknowns. Furthermore, many
of the solutions might not be feasible points so that each solution would have to be
tested to be certain that it satisfied all of the other constraints.

SLACK VARIABLES

Inequalities are harder to deal with than equations and so we will introduce “slack
variables” xn+1, . . . , xn+m to change the inequalities of the general LP problem 7.1.2,
7.1.3 into equalities. The problem then becomes

Maximize z = c1x1 + . . .+ cnxn

Subject to a11x1 + . . .+ a1nxn + xn+1 = b1
a21x1 + . . .+ a1nxn + xn+2 = b2

...
am1x1 + . . .+ amnxn + xn+m = bm

x1, . . . , xn, . . . , xn+m = 0

(7.1.4)

It is easy to see that the two problems are equivalent. We will attempt to solve the
latter problem.

Matrix notation is useful. We define
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A =









a11 . . . a1n 1 . . . 0
...

. . .
...

...
. . .

...
am1 . . . amn 0 . . . 1









, X =









x1
...

xn+m









, B =









b1
...
bm









,

and C =
î

c1 . . . cn 0 . . . 0
ó

.

We identify the 1×1 matrix CX with its single scalar entry, and for two m×n matrices
A = [aij ] and B = [bij ], we define A ≤ B if and only if aij ≤ bij for all i and j. With
these understandings, the general linear programming problem can now be stated in
the following form:

Maximize z = CX + b0
Subject to AX = B

X = 0
(7.1.5)

Section 7.1 Exercises

In Exercises 1-4, solve the LP problem that has the same linear constraints as those in
Problem 7.1.1 but with the objective function given by:

4. P = 100x+ 200y

5. P = 100x+ 125y

6. P = 75x+ 40y

7. P = 100x+ 50y

8. Solve the following LP problem:

Maximize z = 40x+ 50y
Subject to x, y ≥ 0

x+ 2y ≤ 720
5x+ 4y ≤ 1800
3x+ y ≤ 900

9. Solve the LP problem with the constraints as in Exercise 8, but with objective function
z = 50x+ 40y.

10. Consider the following LP problem:

Maximize z = 2x1 + 4x2 + x3

Subject to x1 − x2 + 3x3 ≤ 3
2x1 + x2 + 3x3 ≤ 4

x1 + 3x2 ≤ 6
x1, x2, x3 ≥ 0
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Add slack variables to put the problem in the form 7.1.4 and then express the problem
in the form of a matrix LP problem of the form 7.1.5.

11. Consider the following LP problem:

Maximize z = 2x1 + x2 + 2x3

Subject to x1 + x2 + 2x3 ≤ 4
2x1 − x2 + 2x3 ≤ 6
x1 + 3x2 + x3 ≤ 6

x1, x2, x3 ≥ 0

Add slack variables to put the problem in the form 7.1.4 and then express the problem
in the form of a matrix LP problem of the form 7.1.5.

12. What can be concluded about the following LP problem?

Maximize P = x+ y + z
Subject to x+ y − z ≤ 1

x+ y ≤ 1
x, y, z ≥ 0

13. Consider the following LP problem:

Maximize P = 2x+ 3y + z
Subject to x+ y − z ≤ 5

x+ y + z ≤ 2
x, y, z ≥ 0

What may be concluded?

14. Let z = c1x1+ . . .+ cnxn be a function of the n variables x1, . . . , xn, and assume that z
is defined only on the line segment from (a1, . . . , an) to (b1, . . . , bn). (NOTE: This line
consists of the set of points {t(a1, . . . , an) + (1− t)(b1, . . . , bn)|0 ≤ t ≤ 1}). Prove that
z is either constant on the line or takes on a maximum value at one of the endpoints
of the line.

15. Suppose that we consider a different sort of optimization problem, one in which there
is a circular constraint region. For example, suppose we wish to solve:

Maximize z = 4x+ 5y
Subject to x, y ≥ 0

x2 + y2 ≤ 100

Here there is a much simpler solution. Recall from calculus that the gradient of a
function points in the direction of maximum increase of the value of the function. The
function z above is a function of the two variables x and y and it has the gradient
∇z = (4, 5), which is a constant. To find the maximum value of z, proceed along
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the line through the vector (4, 5) until the boundary of the circle x2 + y2 = 100 is
encountered. The maximum value should be found at that point. Find the point and
the corresponding value of z.

7.2 The Simplex Method in Equation Form

In order to introduce the simplex method for solving linear programming problems, we will
solve the example of Section 7.1 using this method.

Recall that in Section 1.5 the notion of “pivoting” was introduced. Given a system of
linear equations and a nonzero coefficient, say a, of xj in the i-th equation, to pivot on
a means one does the following sequence of operations: (1) multiply both sides of the i-th
equation by 1/a; (2) eliminate the variable xj from the other equations by adding to each
equation the proper multiple of the i-th equation. The coefficient a is called the pivot. Of
course, this definition of “pivot” is completely analogous to the notion of “pivot” that was
defined on entries in a matrix. Indeed pivot operations on systems of equations gave us the
motivation to consider row operations and finally pivots on the entries in the augmented
matrix of the system of equations.

Example 7.2.1. Given the system

2x1 + 3x2 = 6

x1 + 2x2 = 2,

to pivot on the coefficient 3 of x2 in the first equation means to replace the system by

(2/3)x1 + x2 = 2

(−1/3)x1 = −2.

�

To solve the problem of the previous section using the simplex method we do the following:

1. Add slack variables and write the problem as shown:

x1 + x2 + x3 = 50
4x1 + x2 + x4 = 155
x1 + 2x2 + x5 = 90
P − 110x1 − 100x2 = 0

2. Select a pivot as follows: Find the “most negative” coefficient in the last row; in this
case, it’s −110 and it’s the coefficient of x1. The pivot will be the coefficient of x1

in one of the first three equations. To determine which equation, compute the ratios
of the constant terms by the positive coefficients of x1 : 50/1, 155/4, 90/1. Choose the
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equation with the smallest ratio (155/4) and pivot on that coefficient (4) of x1. This
gives

(3/4)x2 + x3 − (1/4)x4 = 45/4
x1 + (1/4)x2 + (1/4)x4 = 155/4

(7/4)x2 − (1/4)x4 + x5 = 205/4
P + (110/4− 100)x2 + (110/4)x4 = 17050/4

The reader will wonder about the reason behind the strange rules! The “most negative”
entry is chosen in order to increase the efficiency - in general, the final solution is
obtained in fewer steps if the “most negative” entry is chosen. The reason for choosing
the smallest ratio is to keep the constants on the right-hand side of the constraint
equations positive (See Exercise 5). The need for this will be made clear in the next
section.

3. Repeat the process: the coefficient of x2 is the most negative in the last row and the
coefficient 3/4 of x2 in the first equation has the smallest ratio, so pivot on 3/4 and
get:

x2 + (4/3)x3 − (1/3)x4 = 15
x1 − (1/4)x3 + (1/3)x4 = 35

−(7/4)x3 − (37/36)x4 + x5 = 25
P + (290/3)x3 + (40/12)x4 = 5350

4. Since there are no more negative coefficients in the last equation, the process stops.
By inspecting the last equation, we see that the maximum value for P is 5350 (since
x3 and x4 are both nonnegative) and this maximum occurs when x3 = x4 = 0. The
first and second equations then give x2 = 15 and x1 = 35. It is not hard to see that the
last LP problem is equivalent to the original problem, and so the problem is solved.

The above method is known as the “Simplex Method in Equation Form.” As in working
with systems of linear equations, we see that it is clumsy writing the variables at each step
and using matrix notation simplifies the matter. Notice the operations that were performed
on the equations: multiples of the first three equations were added to the other equations,
the first three equations were multiplied by constants, but the last equation was not mul-
tiplied by a constant and multiples of it were not added to other equations. These are the
basic operations that may be performed on linear programming problems. To put it more
succinctly, pivot operations may be performed on the coefficients in the constraint equations.

Section 7.2 Exercises

In Exercises 1-4, solve the LP problems using the simplex method in equation form:
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1.

Maximize P = x1 + 2x2

Subject to x1 + x2 ≤ 7
2x1 + x2 ≤ 11

x1, x2 ≥ 0

2.

Maximize P = 3x1 + 2x2

Subject to x1 + 2x2 ≤ 9
2x1 + x2 ≤ 20

x1, x2 ≥ 0

3.

Maximize P = 50x1 + 40x2

Subject to x1 + 2x2 ≤ 200
5x1 + 4x2 ≤ 1800
3x1 + x2 ≤ 900

x1, x2 ≥ 0

4.

Maximize P = 30x1 + 70x2

Subject to 2x1 + x2 ≤ 240
4x1 + 7x2 ≤ 1800
2x1 + x2 ≤ 900

x1, x2 ≥ 0

5. Consider the system of linear equations

ax+ by = h

cx+ dy = k

and assume that h and k are positive. Assume that a > 0, c > 0, and h/a < k/c. Show
that a pivot on a results in a system of equations with positive constants.

7.3 The Simplex Method

We will investigate the general LP problem as formulated before:

Maximize z = CX + b0
Subject to AX = B,X ≥ 0,

(7.3.1)

where A = [aij ] is m× n, C = (c1, . . . , cn), B =









b1
...
bm









, and X =









x1
...
xn









.

Notice that in the matrix equation AX = B, we have assumed that slack variables have
been added to make the inequalities become equalities, and in the assumption that A is
m × n, we have assumed that the slack variables are among the variables x1, . . . , xn. This
differs from the notation in Section 7.1 where we assumed that A was m× (n+m). We will
call the matrix

ñ

A B
−C b0

ô

the augmented matrix of the LP problem.
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In solving LP problems in equation form, we saw that certain operations could be per-
formed on the equations. Just as in the solution of systems of linear equations, this leads us
to row operations that may be performed on the augmented matrix of the LP problem.

ROW OPERATIONS

Theorem 7.3.1. Assume that an arbitrary finite sequence of elementary row opera-
tions are performed on the augmented matrix of the LP problem 7.3.1, except that the
last row is not added to the other rows and the last row is not switched with another
row. Let the resulting matrix be

ñ

A′ B′

−C ′ b′0

ô

Then the LP problem:

Maximize z = C ′X + b′0
Subject to A′X = B′, X ≥ 0

is equivalent to the original problem 7.3.1. That is, the solution sets of AX = B and
A′X = B′ are equal and for any solution X, z = CX + b0 = C ′X + b′0, so that z
takes on a maximum value at X0 if and only if z′ takes on a maximum value at X0.
(Certain row operations are permissible on the augmented matrix of an LP problem.)

Proof. The matrix [A|B] is row equivalent to the matrix [A′|B′] so that by the results of
Chapter 1, AX = B, and A′X = B′ are equivalent and so have the same solution sets.

Let X0 be a solution of AX = B. The bottom row of the new augmented matrix, [−C ′|b′0]
consists of the original bottom row [−C|b0] with multiples of the rows of [A|B] added to it.
We have [−C ′|b′0] = [−C|b0] +

î

r1 . . . rm
ó

[A|B], and so

z′ = C ′X0 + b′0
= (C − (r1, . . . , rm)A)X0 + (b0 + (r1, . . . , rm)B)

= CX0 + b0 + (r1, . . . , rm)(−AX0 +B)

= CX0 + b0

= z

since −AX0+B = 0. It follows that z has a maximum at X0 if and only if z′ has a maximum
at X0.

In effect, this theorem states that pivots may be performed on any entry of the matrix A
in the upper left-hand corner of the augmented matrix of an LP problem and the resulting
matrix will be the augmented matrix of an equivalent LP problem. Just as with the problem
of finding solutions of systems of linear equations, the trick is to find an “algorithm” or
systematic method for arriving at an equivalent augmented matrix for which the solution of
the problem is apparent.
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BASIC VARIABLES AND FEASIBLE POINTS

Recall that a point (x1, . . . , xn) satisfying the constraint AX = B,X = 0 is called the
feasible point or feasible solution. A feasible point that maximizes the value of z is
called an optimal feasible solution. We wish to find a special sort of feasible solution.
Assume that in A the columns of Im appear; say column i of Im is column ji of [A|B]. If all
the columns of Im appear as columns of A, we say that A and [A|B] are in basic form. It
is then easy to find a solution to AX = B : Let xji = bi for i = 1, . . . , m and let all other
xj = 0. The variables xji corresponding to the columns of the identity matrix are called
basic variablesand a solution obtained in this manner is called a basic solution. Notice
that if we began with the constraints written as “less thans” and add a slack variable to
make each inequality an equality, that the resulting augmented matrix is automatically in
basic form.

Example 7.3.1. Assume that:

[A|B] =











0 2 1 0 0 1 3
1 1 0 0 0 −1 6
0 1 0 0 1 2 7
0 2 0 1 0 1 2











.

Then [A|B] is in basic form since the columns of I4 appear as columns 1, 3, 4, and 5 of A.
The basic variables are x1, x2, x4, x5 and the variables x2 and x6 are nonbasic. The resulting
basic solution is x1 = 6, x3 = 3, x4 = 2, x5 = 7, x2 = 0, and x6 = 0.

�

In order for a basic solution to be feasible, we must have B ≥ 0. We will make a further
assumption: a system of equations AX = B is called nondegenerate if and only if every
m×m submatrix of the m× (n + 1) matrix [A|B] is nonsingular. We will say that the LP
problem 7.3.1 is nondegenerate provided that AX = B is nondegenerate.

A basic solution of the nondegenerate system AX = B can be obtained as follows: choose
the entries in rows and columns j1, . . . , jm of A and let A′ be the submatrix of A consisting
of these rows and columns. Choose xj1 , . . . , xjm so that

A′









xj1
...

xjm









= B

and choose the other xj ’s to be zero. Notice that since every m ×m submatrix of [A|B] is
nonsingular, each xji = |A′

i|/|A′|, and |A′
i| is the determinant of an m×m submatrix of [A|B]

(with columns rearranged), we have xji nonzero. From this we see the following theorem.

Theorem 7.3.2. The basic variables in any basic solution of a nondegenerate system of
equations take on nonzero values. (Basic variables have nonzero values if the system is nondegenerate.)

Consider now the LP problem 7.3.1 and its augmented matrix
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ñ

A B
−C b0

ô

.

By Theorem 7.3.1, certain pivot operations may be performed on this matrix. Assume that
after a sequence of pivots the resulting matrix is

ñ

A′ B′

−C ′ b′0

ô

and that the matrix [A′|B′] is in basic form with xj1 , . . . , xjm being the basic variables and
xjm+1

, . . . , xjn the remaining variables. Assume further that the LP problem is nondegenerate
and that A′ = [a′ij ], B

′ = [b′i], and C ′ = [c′j]. We may assume that c′j1, . . . , c
′
jm = 0 (for if not,

a pivot on a′iji = 1 would make c′ji = 0). In order for the basic solution to be feasible, we
must have B′ > 0. This brings us to the resolution:

RESOLUTION OF AN LP PROBLEM

Theorem 7.3.3. Under the above assumptions we have:

(I) If −cjm+1
, . . . ,−cjn are all nonnegative, then xj1 = b′j1 , . . . , xjm =

b′jm, and xjm+1
= . . . = xjn = 0 is an optimal fea-

sible solution with the maximum value of z being b′0 .
(If the −C-part contains all non-negative numbers, the the optimal value is in the lower right-hand corner.)

(II) If one of the entries −c′ji(m+ 1 ≤ i ≤ n) is negative, then we have two cases:

(a) If a′kji = 0 for k = 1, . . . , m, then there exist feasible solutions with
arbitrarily large values of z so that z has no maximum value.
(If the −C-part contains a negative and all entries above it are negative, then there is no largest value.)

(b) a′kji > 0 for at least one value of k(1 ≤ k ≤ m), then a new basic solution
can be found that increases the value of z.
(If there is a positive number above a negative in the −C-part, then the value of z can be increased.)

Proof. 1. The objective function associated with the new augmented matrix above is
z′ = cjm+1

xjm+1
+ . . .+cjnxjn +b′0. Since cjm+1

, . . . , cjn are all negative or zero, and since
for any feasible solution xjm+1

, . . . , xjn are all nonnegative, we see that the maximum
value of z′ is b′0 and that it occurs when xjm+1

= . . . = xjn = 0.

2. (a) Since a′kj1 ≤ 0fork = 1, . . . , m, solutions of A′X = B′ can be found with arbi-
trarily large values of xji. Considering the form z′ and the fact that c′ji > 0, we
see that arbitrarily large values of z′ can be obtained.

(b) Assume a′kj1 > 0. If we pivot on a′kj1, a new basic feasible solution is obtained and
in the resulting matrix b′0 is replaced by
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b′′0 = b′0 + c′ji(b
′
ji
/a′kj1).

Since c′ji, b
′
ji
, and a′kj1 are all positive, b′′0 > b′0.

We will make frequent use of this theorem in solving LP problems. The theorem tells us
when a solution has been obtained, when there is no solution in that no maximum value of
z exists, and how to proceed to larger values of z when they exist. Notice that part (II) (b)
makes no claim that the process will ever end; that is, that a largest value of z will ever be
found.

The Simplex Algorithm gives a method for solving (if a solution exists) a linear program-
ming problem. The method involves two parts called “Phase I” and “Phase II.” Theorem
7.3.3 parts I and II (a) provide a means for determining when the problem is solved. The
algorithm and its phases consist of a set of instructions for solving the problem. We will
not attempt to prove that the algorithm “works.” Instead, we will only state it and give
illustrations of its application.

The LP problem considered is the original one 7.3.1:

Maximize z = CX + b0
Subject to AX = B,X ≥ 0,

where A = [aij ] is m× n, B = [bi] is m× 1 and C = [zi] is 1× n. The augmented matrix is

ñ

A B
−C b0

ô

.

Note that the assumption of nondegeneracy still holds.



278 CHAPTER 7. LINEAR PROGRAMMING

Theorem 7.3.4 (The Simplex Algorithm). If B ≥ 0, go to Phase II.
If B 6≥ 0, begin with Phase I.
Phase I:

1. Let bk be the lowest negative entry in B (that is, the negative in B entry with
only positive entries below it.)

2. Choose a negative entry akj in row k (the best choice is the “most negative”
entry). This determines the pivot column.

3. For akj and each positive element aij below akj in the pivot column, form the
quotient bi/aij . The entry aij giving the smallest quotient bi/aij is the pivot ele-
ment.

4. Pivot on aij .

5. Repeat steps 1 - 4 until either there are no negative elements in the last column
or until there is a negative entry in the last column with the remainder of that
row consisting of positive entries indicating that there is no feasible solution and
so that the LP problem has no solution.

If B ≥ 0, do the following:
Phase II:

1. Choose some entry in the bottom row that is negative, say −cj in column j (the
best choice is the “most negative” entry).

2. For the positive entries in column j, calculate the quotients bi/aij. The entry aij
giving the smallest quotient is chosen to be the pivot.

3. Pivot on aij .

4. Repeat steps 1 - 4 until there are no negative entries in the last row, indicating
that the optimal feasible solution has been found; or until there is a negative entry
in the last row with all entries above it being nonpositive, indicating that z has
no maximum value.

Example 7.3.2. (Using Phase I) LP problem:

Maximize z = 40x1 + 60x2

Subject to 2x1 + x2 ≥ 70
x1 + x2 ≤ 40
x1 + 3x2 ≥ 90

x1, x2 ≥ 0.

The first step is to change the “≥” to “≤” and to add slack variables, obtaining
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Maximize z = 40x1 + 60x2

Subject to −2x1 − x2 + x3 = −70
x1 + x2 + x4 = 40

−x1 − 3x2 + x5 = −90
x1, x2, x3, x4, x5 = 0.

Now write the augmented matrix and apply Phase I rules:











−2 −1 1 0 0 −70
1 1 0 1 0 40
−1 −3 0 0 1 −90
−40 −60 0 0 0 0











.

Phase I rules dictate that the −1 or the −3 in row 3 may be the pivot, with −3 being
more efficient. Pivot on −3 and get











−5/3 0 1 0 −1/3 −40
2/3 0 0 1 1/3 10
1/3 1 0 0 −1/3 30
−20 0 0 0 −20 1800











.

A negative entry remains in the last column and so Phase I rules must again be followed,
this time with Column 1 as the pivot column. Calculate the ratios: −40/(−5/3),
10/(2/3), and 30/(1/3). The smallest is 10/(2/3), and so we pivot on 2/3, obtaining











0 0 1 5/2 5/2 −70/3
1 0 0 3/2 3/2 15
0 1 0 −1/3 −1/3 20
0 0 0 0 −10 2000











.

A negative entry remains in row 1 of the last column, but it is the only negative entry
in row 1. The constraint equation corresponding to row 1 is:

x3 + (5/2)x4 + (5/2)x5 = −70/3

and since x3, x4, x5 ≥ 0, there can be no solution, and so the LP problem has no
solution.

(a) (Using both Phases I and II) LP problem:

Maximize z = 9x1 + 3x2

Subject to x1 + x2 ≤ 20
−x1 + 2x2 ≥ 10
3x1 + x2 ≥ 6
x1, x2 ≥ 0.
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Multiply the second and third inequalities by −1 (thus reversing the inequalities), add
slack variables and write the augmented matrix of the LP problem. We obtain:











1 1 1 0 0 20
1 −2 0 1 0 −10
−3 −1 0 0 1 −6
−9 −3 0 0 0 0











.

The last column has negative entries and so Phase I must be applied. Row 3 will be
the pivot row and entries −3 or −1 in columns 1 or 2 may be chosen. The entry −3
in column 1 is better, but let us choose the −1 in column 2 as the pivot. Pivoting, we
obtain











−2 0 1 0 1 14
7 0 0 1 −2 2
3 1 0 0 −1 6
0 0 0 0 −3 18











.

The last column has no negative entries and so Phase I need not be applied. The
negative entry in the last row indicates that Phase II must be applied. The only
positive ratio is 14/1 obtained from the entry in row 1 and column 5. We pivot on this
entry, obtaining











−2 0 1 0 1 14
3 0 2 1 0 30
1 1 1 0 0 20
−6 0 3 0 0 60











.

Notice that the constraint portion of the matrix is now in basic form with a basic
solution being: x1 = 0, x2 = 20, x3 = 0, x4 = 30, and x5 = 14, and a corresponding z
value of 60. Because of the negative entry in row 4 column 1, Phase II must again be
applied. The positive ratios are: 30/3 and 20/1 and so the 3 in row 2, column 1, is
chosen as the pivot. Pivoting again, we obtain











0 0 7/3 2/3 1 34
1 0 2/3 1/3 0 10
0 1 1/3 −1/3 0 10
0 0 7 2 0 120











.

The last row has no negative entries and the last column remains positive. This means
that the problem has been resolved. The basic solution is: x1 = 10, x2 = 10, x3 =
0, x4 = 0, x5 = 34, and the maximum value of z is 120.

�
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EFFICIENCY OF THE SIMPLEX METHOD

Let us consider the efficiency of the Simplex Method. In Section 4.5 we introduced the idea
of computational complexity. How much memory does it take to solve a problem using a
computer, and how much time does it take? While we cannot present the details here, it is
appropriate to give an outline of the current situation regarding the solution of LP problems.

Theorem 7.3.3 states that if a negative number appears in the −C part of the augmented
matrix of an LP problem, and if there is a positive number above it, then the value of z
can be increased. The Simplex Algorithm uses this fact, and states roughly: if there is a
negative in the bottom row, locate the pivot element, pivot, and repeat until the negatives
are gone. How many pivots must we do? We might unwisely assume that each time we
perform a pivot in Phase II, the number of negatives is reduced by one. This is not the case.

Much research has been done on the question of the efficiency of methods of solving LP
problems. In 1972, V. Klee and G. L. Minty (How good is the simplex method?, Inequalities
III, Academic Press, New York, 1972, 159 - 179) showed that in a worst case, the simplex
method is of exponential order. In 1979, L. G. Khachiyan (A polynomial algorithm in linear
programming, Doklady Akademii Nauk SSSR 244:S (1979) 1093 - 1096) found the so called
“ellipsoid algorithm” which has a running time proportional to n6L2. Here n is the number
of variables and L is a measure of the length of the input data.

A major breakthrough came in 1984 with the announcement of the “Karmarkar Algo-
rithm” (N. Karmarkar, A new polynomial-time algorithm for linear programming, Combi-
natorica 4(4) (1984) 373 - 395.) by the mathematician Narendra Karmarkar of AT&T Bell
Laboratories. The running-time of this algorithm is proportional to n3.5L2. Karmarkar’s
algorithm involves the application of a transformation to the LP problem so that a sphere
is involved. We saw in Exercise 15 that it is easy, considering the gradient of the objective
function, to maximize a linear function when the feasible region is spherical. Karmarkar’s
method takes advantage of this observation.

While the worst case behavior of the Simplex Method is not good, experience has shown
that its behavior the solution of many ordinary problems is quite good. Further study of
this problem will no doubt give rise to new results.

Section 7.3 Exercises

In Exercises 1 - 6, solve the linear programming problems with the given augmented matrices.
Use Theorem 7.3.3 and the Simplex Method.

1.











1 0 0 0 2 1 1
0 1 0 2 1 −1 2
0 0 1 0 2 1 1
0 0 0 2 1 1 3











2.











1 0 0 0 2 1 1
0 1 0 2 −1 1 2
0 0 1 3 1 1 1
0 0 0 2 −1 1 2










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3.










1 0 0 0 −1 1 1
0 1 0 0 −2 1 1
0 0 1 0 −1 2 1
0 0 0 2 −1 −1 2











4.










1 1 0 0 1 0 1
1 2 1 0 2 0 3
0 2 0 0 1 1 2
0 −1 0 1 1 −1 −1











5.






1 2 2 1 2
0 0 1 −1 −1
0 0 2 −1 2







6.










1 0 0 1 −1 −1
0 1 0 −1 1 2
0 0 1 1 2 3
0 0 2 3 5











In Exercises 7 - 10, add slack variables and write the augmented matrix of the LP
problem. Then solve the given problem using the Simplex Method.

7.
Maximize z = 40x1 + 60x2

Subject to 2x1 + x2 ≤ 70
x1 + x2 ≤ 40
x1 + 3x2 ≤ 90

x1, x2 ≥ 0

8.
Maximize z = 40x1 + 60x2

Subject to x1 + x2 ≤ 70
x1 + 2x2 ≤ 40
3x1 + x2 ≤ 90

x1, x2 ≥ 0

9.
Maximize z = 5x1 + 3x2 + 4x3

Subject to 4x1 + 2x2 + 4x3 ≤ 80
2x1 + 2x2 + 3x3 ≤ 50
x1 + 3x2 + 2x3 ≤ 40

x1, x2, x3 ≥ 0

10.
Maximize z = 5x1 + 3x2 + 4x3

Subject to 2x1 + x2 + 4x3 ≤ 60
5x1 + 2x2 + 2x3 ≤ 40
x1 + 3x2 + 2x3 ≤ 50

x1, x2, x3 ≥ 0

11. A company makes two products, X ’s and Y ’s. They make $40 on each X and $50 on
each Y . The following chart gives the constraints on each product - each item required
3 jobs in production. How many X ’s and Y ’s should be made in order to maximize
the profit?
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Job 1 Job 2 Job 3

X 1 hour 3 hours 3 hours
Y 2 hours 4 hours 1 hour

Total Hours 720 1800 900
Available

12. A company makes microscopes and telescopes and can sell all they can make. The
facts are listed in the following chart.

assembly testing packaging profit

microscopes 2 hr/unit 3 hr/unit 1 hr/unit $10/unit
telescopes 4 hr/unit 1 hr/unit 2 hr/unit $20/unit

Hours 50 hr/wk 60 hr/wk 25hr/wk
Available

Set up the LP problem to maximize profit for the company and solve it using the
Simplex Algorithm.

7.4 Applications - Game Theory

The theory of games is an important and relatively new area of mathematics. Early work
was done in the area by John von Neumann and the first book on the subject was Theory
of Games and Economic Behavior by von Neumann and Oskar Morgenstern in 1944. We
will present here only the most elementary introduction to the subject and show how linear
programming can be used in solving simple problems in game theory.

Consider the game of matching pennies. As it is often played, two players, A and B, each
toss a penny independently of each other, and the outcomes are compared. If the outcomes
match (both head or both tails) then player B wins a penny from player A. Otherwise (that
is, if one has a head and the other a tail), A wins a penny from B. This game can be
summarized in the following table:

Player B
H T

H -1 1
Player A

T 1 -1

The table shows Players A’s gain or loss. We will call Player A the row player and Player
B the column player.

The array of numbers

ñ −1 1
1 −1

ô
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is called the payoff matrix. The entries represent the amount paid to the row player A
for each of the four possible outcomes (H,H), (H, T ), (T,H) and (T, T ). A negative entry
represents a payoff to the column player B.

A game of this sort is called a two-person game since it involves only two players. The
game is called zero-sum since the money lost by one player is gained by the other. We will
consider only two-person, zero-sum games.

Matching pennies in the form presented above is not very interesting since no skill or
strategy is involved. Let us change the rules slightly: Player A places a penny with either
heads or tails up on the table so that B cannot see it. B then guesses whether it is heads or
tails and tries to match it by placing his penny with either heads or tails up depending on
the guess. Now the game involves some strategy! How should A and B make their choices
in order to win the most money or lose the least? We will see shortly that the version
of matching pennies that was first presented really amounts to both players playing with
optimal strategy.

STRATEGIES

By a strategy we mean a process for deciding at each step in a game which choice is to
be made. It is a basic principle in game theory one should assume that one’s opponent
is not only rational, but intelligent. For example, if one player decides to employ some
fixed strategy, say choosing heads and tails alternately, then the opponent will detect this
strategy and make use of it. For this reason fixed or determined strategy is rejected in favor
of a rational, but random or mixed strategy. In this type of strategy, one decides in what
proportion each choice should be made, but makes each individual choice randomly in a
manner that will produce the correct proportions.

Let us return to the second version of matching pennies and take the point of view of
the column player B. Player B wishes to find an optimal strategy. We let s denote the
proportion of choices by B of heads and t denote the proportion of tails chosen. Then

s = 0, t = 0, and s+ t = 1. (7.4.1)

Against each of Player A’s choices, B must expect to pay the following amounts:

−s + t if A chooses heads

s− t if A chooses tails.

Denote the largest of these sums by h so that

− s+ t ≤ hs− t ≤ h (7.4.2)

We wish to assume that h is positive. In general this can be accomplished by making
all terms in the payoff matrix nonnegative by adding a fixed constant k to each. For each
strategy, including the optimal one, this would increase the expected payoff by k, but would
not alter the strategy. Considering this, we add 1 to each entry in the payoff matrix and
obtain
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ñ

0 2
2 0

ô

.

Now B’s greatest expected loss is h, and of course, B would like to minimize h. This can

be done by maximizing M =
1

h
. Let

u = sh, v = th, and M =
1

h
=

s+ t

h
= u+ v (7.4.3)

Then using the new payoff matrix, 7.4.1 and 7.4.2 become

M = u+ v

u ≥ 0

v ≥ 0

2v ≤ 1

2u ≤ 1.

SOLVING USING LP METHODS

To solve our original problem, we must solve the following LP problem:

Maximize M = u+ v
Subject to u, v ≥ 0

2v ≤ 1
2u ≤ 1.

We add slack variables and write the augmented matrix







0 2 1 0 1
2 0 0 1 1
−1 −1 0 0 0





 .

Using the simplex method we obtain the following matrix after two pivots:



















0 1
1

2
0

1

2

1 0 0
1

2

1

2

0 0
1

2

1

2
1



















.

The maximum value of M is thus 1, and it is obtained when u = v =
1

2
. Using 7.4.3 we get

h =
1

M
= 1,

s = uh =
1

2
,
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t = vh =
1

2
.

It follows that the optimal strategy is

Ç

1

2
,
1

2

å

and that B’s expected maximum loss is

h− 1 = 0 (since we added 1 to each entry in the payoff matrix).
A similar procedure can be used to find the optimal strategy for A: Recall that the

original payoff matrix showed Player A’s (that is, the row player’s) gain. If we change signs,
the matrix then gives Player A’s loss. Thus

ñ

1 −1
−1 1

ô

is the payoff matrix giving A’s loss. As before, let (s1, t1) be a strategy for A and add 1 to
each entry in the matrix to make all entries non-negative. We get

ñ

2 0
0 2

ô

and so for the two possible choices of player B, the corresponding losses for A are

2s1 and 2t1.

We let h be the largest of these and obtain

s1 ≤ h

2t1 ≤ h.

As before, we minimize h by maximizing
1

h
and solve the LP problem

Maximize M = u1 + v1
Subject to 2u1 ≤ 1

2v1 ≤ 1
u1, v1 ≥ 0,

where u1 =
s1
h

and v1 =
t1
h
. The augmented matrix for this LP problem is







2 0 1 0 1
0 2 0 1 1
1 1 0 0 0





 .

Applying the simplex method, we get



















1 0
1

2
0

1

2

0 1 0
1

2

1

2

0 0
1

2

1

2
1



















.
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It follows that the optimal strategy for player A is

s1 =
1

2

t1 =
1

2

and A’s maximum expected loss is h− 1 =
1

M
− 1 = 0 (since we added a 1 to each entry in

the payoff matrix).
While we will not present the details here, it is not difficult to see how the above situation

can be generalized. Anym×n matrix [aij ] can be thought of as the payoff matrix of a “two-
person, zero-sum matrix game.” The row player, player A, chooses a number i, 1 ≤ i ≤ m,
and the column player, player B, chooses a number j, 1 ≤ j ≤ n. The payoff matrix [aij ]
records player A’s gain. If aij > 0, A wins that amount from player B, and if aij < 0, player
A pays player B the negative of that amount. Whatever A loses, B gains.

A strategy for the row player or player A is an m-tuple P = (p1, . . . , pm) and a strategy
for the column player or player B is an n-tuple Q = (q1, . . . , qn), where p1 + . . . + pm = 1
and q1 + . . .+ qn = 1. Optimal strategies can be found for each player by using a procedure
similar to that above. One obtains an LP problem and solves it using the simplex algorithm.

Section 7.4 Exercises

1. A certain zero-sum, two-person game has payoff matrix

ñ −1 2
3 −2

ô

. What happens

if the row player chooses 2 and the column player 1? What happens if the row player
chooses 1 and the column player 1?

2. A certain zero-sum, two-person game has payoff matrix

ñ −1 2 −2
2 −1 3

ô

. Describe

what happens when the row player chooses 2.

3. Suppose that the payoff matrix for a certain game contains only non-negative numbers.
Which player wins?

4. For the game described in Exercise 1, find an optimal strategy for the column player
by setting up and solving the correct LP problem. Can this player expect to win or
lose? How much?

5. For the game described in Exercise 2, find an optimal strategy for the column player
by setting up and solving the correct LP problem. Can this player expect to win or
lose? How much?

If a game has payoff matrix [aij ], then for every pair of strategies there is an expected
value of the game for the row player. This expected value is the average amount that
the row player expects to win per round if the assumed strategies are followed. If we
assume that (p1, . . . , pm) is the row player’s strategy and (q1, . . . , qn) is the column
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player’s strategy, then the expected value is given by
m
∑

i=1

n
∑

j=1

aijpiqj, and this equals the

matrix product

î

p1 . . . pm
ó













a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn





















q1
...
qn









.

6. What does the row player expect to win in the matching pennies game if she uses the
strategy (0.3, 0.7) and the column player uses the strategy (0.4, 0.6)?

7. What is the expected value of the game in Exercise 1 if each player makes choices with
equal probability?

8. What is the expected value of the game in Exercise 2 if the row player chooses rows
with equal probability, but the column player uses the strategy (0.3, 0.4, 0.3)?

9. What is the expected value of the game in Exercise 1 if each player uses optimal
strategy?



Appendix A

Sets

A basic concept in mathematics is that of a set. We won’t give a precise definition to
the notion of a set, but we will use the term set (class, collection) to mean a well-defined
collection of objects. The objects that make up the set are called elements and we think
of the elements of a set as “being” in the set, or belonging to the set.

Sets are often denoted by capital letters A,B, . . . and the elements of sets are often
denoted by lower case letters, a, b, x, y, . . .. If a is an element of the set A, we write a ∈ A.

The number systems of mathematics provide us with our first examples of sets. The set
of integers is the set consisting of the counting numbers 1, 2, 3, . . . along with their negatives
−1,−2,−3, . . . , and 0. The set of integers is denoted by Z. The set Q of rational numbers
is the set consisting of all fractions a/b where a, b ∈ Z and b 6= 0. The reader is probably
already familiar with the set R of real numbers. The elements of R can be thought of as
those numbers that can be represented by (not necessarily terminating) decimals. Finally,
C, the set of complex numbers, is the set of all numbers of the form a+ bi, where a, b ∈ R
and where i is the so-called imaginary unit, and satisfies i2 = −1.

A set A is a subset of set B if each element of A is an element of B. If this is the case
we write A ⊆ B. We say A equals B and write A = B if A ⊆ B and B ⊆ A; that is, A = B
if A and B have exactly the same elements. If we identify the integer n with the fraction
n/1, the rational number n/m with its decimal expansion and the real number r with the
complex number r + 0i, then we have

Z ⊆ Q ⊆ R ⊆ C.

DEFINING SETS

There are several ways of specifying sets. The first method is to list the elements between
braces. For example, the set A consisting of the integers 1, 2, 3 is written A = {1, 2, 3}. The
set B of even positive integers is written as B = {2, 4, 6, . . .} where the ellipses “. . .” indicate
that the list is to be continued in the obvious manner. An alternate method is demonstrated
by the following examples.

A = {x ∈ Z|0 < x < 4},
B = {x|x is a positive even integer}

289
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Figure A.1: Vectors ~OC and ~AB

The first brace { is read “the set of all” and the vertical bar | is read “such that.” Thus
{x ∈ Z|0 < x < 4} is read “the set of all x in Z such that 0 is less than x and x is less than
4.”

To negate a symbol mathematicians often put a slash / through it. For example, x /∈ A
means x is not an element of A, A 6⊆ B means A is not a subset of B, and so on.

It is convenient to include the possibility of a set not having any elements. This set is
called the empty set and is denoted by the symbol ∅. This set arises naturally as for example
the set of all solutions of an equation that has no solutions, for example, in |x| + 1 = 0. Of
course we are most often concerned about sets that have at least one element; such sets are
called nonempty.

As a final example of a set, we consider the set R2 of 2-dimensional vectors. The reader
is probably already familiar with vectors from the study of calculus or elementary physics.
By a two-dimensional vector, we mean a directed line segment ~AB, where A and B are two
points in a certain fixed plane. Picture this fixed plane as having a coordinate system as in
Figure A below.

Vectors having the same direction and the same magnitude are identified; that is, assumed
to be equal. It follows that the vector ~AB can be identified with the vector ~OC. If the point
C has coordinates (x0, y0) then the vector is determined by (x0, y0), and so we will think of
2-dimensional vectors as pairs of real numbers (x0, y0). We define

R2 = {(x, y)|x, y ∈ R}.
Note that equality of pairs defined by (x, y) = (x′, y′) if and only if x = x′ and y = y′.

This is a natural definition since it simply means that in a fixed coordinate system, both
pairs describe the same point.

For two sets A and B, new sets can be defined from the elements of these sets. The union
of A and B is the set {x|x ∈ A or x ∈ B} and is denoted by A ∩ B. The intersection
of A and B is the set A ∩ B = {x|x ∈ Aandx ∈ B}, and, finally, the complement of B
in A is the set A − B = {x|x ∈ Aandx /∈ B}. In other words, the union of two sets is the
set containing all of the elements from the two sets, the intersection is the set of elements
common to the two sets, and the complement is the set of all elements in the one set that
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are not in the other set.
Suppose that A = {1, 2, 3, 4} and B = {2, 4, 6}. Then A ∪ B = {1, 2, 3, 4, 6}, A ∩ B =

{2, 4}, and A− B = {1, 3}. Notice that B −A = {6} 6= A− B.

Appendix A Exercises

1. List the elements of the following sets:

(a) {x ∈ Z|x+ 1 = 2}
(b) {x ∈ Z|0 < x < 6}
(c) {x ∈ C|x2 = −1}
(d) {x ∈ R||x| − 3 = 2}

2. Prove the following: If A,B, and C are sets and A ⊆ B and B ⊆ C, then A ⊆ C.

3. Let: A = {2, 3, 4}, B = {6/2, 2, 22}, C = {x ∈ Z|x > 1}, D = {x|x = 2orx = 3}, and
E = {x ∈ Z|1 < x < 5}.

(a) Which of the above sets are equal?

(b) Which of the above are subsets of another of the sets?

4. Let A = {2, 3, 4}, B = {1, 2, 3, 5}. List the elements of the sets A ∪ B, A − B, and
A ∩ B.

5. Prove the following statement or disprove it by giving an example: If A,B, and C are
any three sets, then A ∪B ⊆ C implies A ⊆ C.

6. Prove the following statement or disprove it by giving an example: If A,B, and C are
any three sets, then A ∩B ⊆ C implies A ⊆ C.
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Appendix B

Functions

Much of mathematics is concerned with the study of special correspondences between the
elements of various sets. These special correspondences are called “functions” and defined
as follows:

Definition B.1. Let A and B be sets. A function from A to B is a correspondence that
associates with each element x in the set A a unique element y in B.

Since the element y ∈ B is uniquely determined by x, it is convenient to give the function
a name, say f , and to write y = f(x) (read f of x). To indicate that f is a function from
the set A to the set B, we write f : A → B. We say that y or f(x) is the image of x under
the function f . The image of f is defined to be the set ℑ(f) = {f(x)|x ∈ A}.

It is important to note that in the definition of a function f from a set A into a set B each
element x of A must have a corresponding value y in the set B. That is, f must be defined
on all elements in A. It is also important to note that f must be “well-defined.” This part
comes from the word “unique” in the definition of a function. For example, suppose that we
try to define f : R → R by f(x) =

√
x. Then, since

√
−2 is not defined, f is not defined on

all of the set R, and so f is not a function from R into R. If we attempt to define a function

f : Q → Q by f
Åm

n

ã

=
1

n
, then f is not well-defined since

1

2
=

2

4
, but f

Ç

1

2

å

=
1

2
and

f

Ç

2

4

å

=
1

4
.

Example B.1. (a) Let A = {x ∈ R|0 < x} be the set of positive real numbers. Let B = R.
Define f : A → B by f(x) = 1/x. Then f is a function from A to B.

(b) The operations on the sets of numbers Z,Q,R,C provide us with different examples
of functions. We can think of addition of real numbers as a function A : R2 → R

defined by A((a, b)) = a + b. Similarly multiplication may be thought of as a function
M : R2 → R.

(c) Addition of vectors is defined as follows: Let ~OA and ~OB be the 2-dimensional vectors
with endpoints (a1, a2) and (b1, b2). The sum of the two vectors is taken to be the

diagonal of the completed parallelogram as in Figure 3. That is, ~OA+ ~OB = ~OC.

Now in this function, each pair of vectors is associated with a unique new vector - the
sum of the two. Knowing that addition is a function allows certain manipulations on
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Figure B.1: The parallelogram law of vector addition
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Figure B.2: Scalar multiplication

vectors. If we know that two vectors are equal, then a vector can be added to each
and the results will be equal, since the addition is well-defined.

(d) Scalar multiplication furnishes an example of a function that associates with each pair

(r, ~OC), where r is a real number and ~OC is a 2-dimensional vector, a unique vector

r ~OC that is defined as follows: If r > 0, then r ~OC is defined to be the vector in the
direction of ~OC that has length equal to r times the length of ~OC. If r < 0, then
r ~OC is defined to be the vector that has the same length as (−r) ~OC but points in the
opposite direction.

(e) Many of the functions considered in this text are correspondences between sets of
vectors. For example, consider the function

T : R2 → R2

defined by T (x, y) = (x + y, x− y). This is an example of a special function called a
linear transformation.
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(f) Finally, on any set A we have the identity function on A. This function is denoted
by 1A and is defined by 1A(x) = x for all x in the set A.

�

If we have two functions f and g both defined on the same sets, say f : A → B and
g : A → B, then we say that f equals g, and write f = g, if f(x) = g(x) for all x in the set
A. We see that equality of functions means identity.

If f : A → B is a function from the set A into the set B, we say that f is onto if each
element of B corresponds to some element in A, and we say that f is one-to-one (1-1) if
each element of B corresponds to at most one element of A. These definitions need some
explanation: to say that f is onto means that given an element y ∈ B, then there is an
element x ∈ A with y = f(x). In order that f be 1-1, it must be the case that no two
different elements in A correspond to the same element in B. We see that for a one-to-one
function, if f(x) = f(x′), then x = x′.

Let us consider some examples.

Example B.2. If f : R → R is defined by f(x) = x2, then f is not onto since f(x) = −1 is
never possible and f is not 1-1 since f(2) = 4 = f(−2). The function f(x) = 3x+ 1 is both
1-1 (if 3x+1 = 3x′ +1, then x = x′) and onto (for any real number r there is a real number
x such that 3x+ 1 = r). The function f(x) = x(x+ 1)(x− 1) is not 1-1, but it is onto; the
function f(x) = ex is 1-1 but not onto. (Why?)

�

If A,B, and C are sets and f : A → B and g : B → C are functions, we may define
a new function g ◦ f : A → C by g ◦ f(x) = g(f(x)). This new function g ◦ f is indeed a
function from A to C and it is called the composite of f and g. Notice how the composite
appears to come out backwards. We have

A
f→ B

g→ C,

but the composite is g ◦ f . This phenomenon arises as a consequence of writing the function
name to the left of the variable name: f(x) instead of (x)f . Notice that if f : A → B is any
function, then f ◦ 1A(x) = f(1A(x)) = f(x), so that f ◦ 1A = f , and 1B ◦ f(x) = 1B(f(x)) =
f(x), so that 1B ◦ f = f. We see that the identity function behaves as an identity relative to
the operation of composition of functions.

We state without proof two important theorems about general functions:

Theorem B.1. Let A,B,C, and D be nonempty sets, and let f : A → B, g : B → C,
and h : C → D be functions. Then h◦(g◦f) = (h◦g)◦f (Composition of functions is associative.)

Theorem B.2. Let f : A → B be a function. Then f is 1-1 and onto if and
only if there is a function g : B → A with g ◦ f = 1A and f ◦ g = 1B.
(A function has an inverse if and only if it is 1-1 and onto.)
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The function g in the above theorem is called the inverse of f and is denoted by f−1.
The −1 is a superscript only, however; it is not an exponent.

Appendix B Exercises

1. Let f : R → R be defined by f(x) = 2x + 1. Calculate f(5), f(−2). Is f 1-1? Is f
onto?

2. Let g : R → R be defined by g(x) = x2+1. Calculate g(2), g(−2). Is g 1-1? Is g onto?

3. Let f and g be as in Exercises 1 and 2 above. Calculate f ◦ g(2) and g ◦ f(2).

4. Let f : R → R be defined by f(x) = 3x− 2. Show that f is 1-1 and onto and find the
inverse function f−1.

5. Let T be the function in Example B.1 (e). Show that

T ((x1, y1) + (x2, y2)) = T (x1, y1) + T (x2, y2) and T (r(x, y)) = rT (x, y).

6. Prove Theorem B.1.

7. Prove Theorem B.2.



Appendix C

Fields

The reader is probably familiar with the rational, real, and complex number systems that
are studied in traditional algebra and calculus courses. Recall that Q is used to denote the
set of rational numbers, R denotes the set of real numbers, and C is the collection of complex
numbers. According to our conventions,

Q ⊆ R ⊆ C.

These number systems have, along with a certain set of elements, two operations - ad-
dition and multiplication. Properties of these operations allow one to manipulate algebraic
expressions and solve equations. We wish to establish results and develop methods that are
as general as possible in that they apply to many different number systems. For this reason
(not to make things more difficult) we introduce the definition of a “field.”

In general, a field is an algebraic system that has the arithmetic properties common to the
rational, real, and complex number systems and in order to simplify matters, the reader may
assume that any field discussed is one of these three fields. This assumption will, however,
carry with it a resulting loss in generality of the results and methods that are presented.

By an operation (also called a “binary operation”) on a set F we mean a function
that associates with each pair (a, b) of elements of F some unique element of F . If we name
this function ⊗, it is common practice to denote the element of F that is associated with the
pair (a, b) by a ⊗ b - using the so-called “infix” notation rather than the more customary
“prefix” notation ⊗(a, b). The fields mentioned above have addition and multiplication
operations and we will assume that every field has such operations.

With these comments we then make the following definition:
A field is a nonempty set F along with an operation of addition (+) and an operation

of multiplication (·) that satisfy the following:

(A1) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F .

(A2) a+ b = b+ a for all a, b ∈ F.

(A3) There is an element 0 ∈ F satisfying a+ 0 = a for all a ∈ F .

(A4) For each a ∈ F there is an element −a ∈ F with a + (−a) = 0.

297
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(M1) (a · b) · c = a · (b · c) for all a, b, c ∈ F .

(M2) a · b = b · a for all a, b ∈ F .

(M3) There is an element 1 ∈ F with 1 · a = afor all a ∈ F.

(M4) For each a ∈ F, a 6= 0, there is an element a−1 ∈ F satisfying a · a−1 = 1.

(D) For all a, b, c ∈ F, a · (b+ c) = (a · b) + (a · c).

The above properties are well-known properties of the systems of rational, real, and
complex number systems along with the usual operations of addition and multiplication. It
follows that Q,R, and C are examples of fields.

Example C.1. For a much different example of a field, let Z2 = {0, 1} and define + and
· by

0 + 0 = 0 0 · 1 = 1 · 0 = 0
0 + 1 = 1 + 0 = 1 0 · 0 = 0
1 + 1 = 0 1 · 1 = 1.

Then Z2 along with + and · satisfies the hypotheses above and so Z2 is a field, called
the field of integers modulo 2.

(a) We can find a field with 3 elements. Let Z3 = {0, 1, 2}. We define addition and
multiplication operations by the following tables:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Under these operations Z3 is a field: the integers modulo 3.

�

A field can be thought of as an environment in which a certain amount of algebra can
be done. In the system of integers, any equation of the form x+ a = b can be solved, where
a and b are integers and x is some unknown. To solve an equation of the form ax + b = c
for the unknown x requires the capability of dividing by the coefficient a, or multiplying by
its reciprocal. This is not in general possible in the system of integers, but property (M4)
guarantees that this operation may be done in any field, provided that a 6= 0.

Let us solve the equation ax+ b = c carefully assuming that a, b, and c are elements of a
field F , and of course that a 6= 0. We list each step and the associated field property which
permits it:
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ax+ b = c given
(ax+ b) + (−b) = c+ (−b) (A4)
ax+ (b+ (−b)) = c+ (−b) (A1)

ax+ (0) = c+ (−b) (A4)
ax = c+ (−b) (A3)

a− 1(ax) = a− 1(c+ (−b)) (M4)
(a− 1a)x = a− 1(c+ (−b)) (M1)

1x = a− 1(c+ (−b)) (M4)
x = a− 1(c+ (−b)) (M3)

In the second step above, −b was added to both sides of the equation. This is permitted
by the assumption that addition is a function and therefore well-defined. In effect, the
assumption that elements have unique images under a functional correspondence produces
the familiar rule: Equals added to equals, sums equal. We see that the properties of a field
are exactly what we need to be sure that we can solve linear equations. Notice that the
equation x2 = 2 cannot be solved over the field Q, but it does have a solution in the field R

– but that’s another story.
Some of the familiar properties of addition and multiplication of the real and complex

numbers are not listed as hypotheses for a field, but it turns out that they can be proved
assuming only these hypotheses. We list them in the following theorem, the proof of which
is left as an exercise.

Theorem C.1. Let F be a field. Then for all a, b, c ∈ F, the following hold:

(a) If a + b = a + c, then b = c. (The cancellation law of addition.)

(b) If a · b = a · c and a 6= 0, then b = c. (The cancellation law of multiplication.)

(c) 0 · a = a · 0 = 0. (Zero times any element is zero.)

(d) −a = (−1) · a (−a is −1 times a.)

(e) −(−a) = a (The additive inverse of −a is a.)

(f) (a−1)−1 = a if a 6= 0 (The multiplicative inverse of a−1 is a.)

(g) If a · b = 0, then a = 0 or b = 0. (There are no nonzero zero divisors.)

(h) If a · b 6= 0, then (a · b)−1 = b−1 · a−1. (The inverse of a product is the product of the inverses.)

Appendix C Exercises

1. Prove Theorem C.1.

2. Let F be a field and a, b ∈ F. Prove the following: If (x− a)(x− b) = 0, then x = a or
x = b.
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3. We define subtraction on a field F by a − b = a + (−b) for any a, b ∈ F . Prove the
following for a, b, c ∈ F :

(a) a− (−b) = a+ b

(b) a− (b+ c) = (a− b)− c

(c) (a− b)(a + b) = a · a− b · b

4. For elements a and b in a field F , we define a/b by a/b = a · b−1 provided b 6= 0. Show
the following for a, b, c, d ∈ F, b 6= 0, d 6= 0.

(a) (a/b) · (c/d) = (a · c)/(b · d)
(b) a/b+ c/d = (ad+ bc)/(bd)

(c) (a/b)/(c/d) = (ad)/(bc)

5. Find a field with four elements. (Hint: Let F = 0, 1, a, b, where 0 and 1 satisfy the
obvious conditions. Define addition and multiplication so that the properties of a field
are satisfied).
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Facts about polynomials

A few facts about polynomials are helpful in finding the roots of the characteristic polynomial
of a matrix. Recall that a polynomial over a field F is an expression of the form p(x) =
a0 + a1x+ . . .+ anxn, where a0, . . . , an ∈ F , and that the set of an ∈ F , and that the set of
all polynomials over F is denoted by F [x]. If q(x) = b0 + . . .+ bmxm is another polynomial
over F , the product p(x)q(x) is defined to be the polynomial

c0 + c1x+ . . .+ cn+mx
n+m,

where

ck =
∑

i+j=k

aibj .

If p(x) = a0 + . . . + anxn and an 6= 0, then we say that p has degree n and write deg
p(x) = n. Note that in the above product p(x)q(x), cn+m = anbm and it follows that deg
p(x)q(x) = deg p(x)+deg q(x), provided that neither of p(x) or q(x) is the zero polynomial.

If a ∈ F and p(x) is as shown, we define p(a) by p(a) = a0 + a1a + . . . + ana
n. We say

that a ∈ F is a root of p(x) (or a solution of the equation p(x) = 0) if p(a) = 0.
In elementary high school algebra one learns “long hand division” of a polynomial by

another. This is formalized as follows:

Theorem D.1 (The Division Algorithm). If p(x), s(x) ∈ F [x] and s(x) is not the zero
polynomial, then there exist polynomials q(x), r(x) ∈ F [x] with p(x) = s(x)q(x) + r(x)
and r(x) = 0 or deg r(x) < deg s(x). (Long hand division works with polynomials.)

Applying the division algorithm to the polynomials p(x) and s(x) = x− a, we get

p(x) = (x− a)q(x) + r(x)

where deg r(x) < 1 or r(x) = 0. Substituting a for x, we get p(a) = r(a). But since
deg r(x) = 0, r(x) is a constant polynomial and so r(x) = p(a). From this observation, the
following two theorems follow easily.
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Theorem D.2 (The Factor Theorem). x − a is a factor of p(x) (that is, p(x) =
(x− a)q(x) for some q(x)) if and only if a is a root of p(x). (x− a is a factor iff a is a root.)

Theorem D.3 (The Remainder Theorem). If one divides x−a into p(x), the remain-
der is p(a). (The remainder on dividing by x - a is p(a).)

A polynomial of positive degree is called prime if it cannot be factored as a product of
polynomials of positive degree. Each polynomial of degree one (called a linear polynomial) is
prime and the following important theorem tells us that these are the only prime polynomials
over the complex numbers.

Theorem D.4 (The Fundamental Theorem of Algebra). Every polynomial over the
complex numbers has a root in the set of complex numbers. (Every polynomial has a root in C.)

From this theorem it follows that if p(x) = a0 + . . . + anxn is a polynomial over the
complex numbers of degree n, then there are complex numbers c1, . . . , cn (not necessarily
distinct) such that p(x) = an(x − c1) . . . (x − cn). In general, if p(x) is a polynomial over a
field F , we say that p(x) factors completely (over F ) if there exist a, a1, . . . , an ∈ F such
that p(x) = a(x−a1) . . . (x−an). Using this terminology, then, we say that each polynomial
over C, the field of complex numbers, factors completely over C.

In the polynomial p(x) = a0 + . . . + anxn, the coefficient an is called the leading coef-
ficient. The polynomial is called monic if the leading coefficient is 1; that is, if an = 1. A
monic polynomial p(x) factors in the form

p(x) = (x− c1) . . . (x− cn).

Recall that for a complex number z = a+ bi, the conjugate of z is the complex number
denoted by z and defined by z = a − bi. The following facts about polynomials are easily
verified:

1. If p(x) is a polynomial with real coefficients and z is a complex number with p(z) = 0,
then p(z) = 0.

2. (x − z)(x − z) = x2 − (z + z)x + zz is a polynomial with real coefficients (for any
complex number z).

3. Any polynomial with real coefficients can be factored as a product of real polynomials
of degree 1 and 2.

4. A polynomial of odd degree with real coefficients has a real root.

We can use the above facts to help us factor polynomials, if it is possible to do so.
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D.1 Factoring Polynomials

In Chapters 5 and 6, the assumption that the characteristic polynomial factors completely
is frequently made. The above remarks indicate that every polynomial (of positive degree)
factors completely (that is, into linear factors) over the field of complex numbers, but over
the field of real numbers, it can only be shown that every polynomial (of positive degree)
factors as a product of linear and quadratic polynomials. This theory is, of course, very
nice, but in order to solve problems one must actually factor a polynomial completely - not
just know that such a factorization exists. Unfortunately, no foolproof plan exists for finding
such a factorization. The reader may have already encountered this situation in calculus:
In integrating rational functions using the method of partial fractions, it is necessary to
factor the polynomial in the denominator before the partial fraction decomposition can be
accomplished.

The following hints and comments should be of help:

1. In some situations the polynomial can be factored before it is “multiplied out.” Factor
before collecting terms, if possible.

2. If a root a is found, divide x − a into a polynomial, say p(x), and obtain p(x) =
(x − a)p1(x). Now p1(x) is of smaller degree than p and the remaining roots of p(x)
are all roots of p1(x), so try to factor p1(x).

3. Hope for a “nice” root, that is, an integer or a rational number. These can sometimes
be found using the following:

Theorem D.1 (The Rational Root Test). Let p(x) = a0 + . . . + anxn, be a
polynomial with integral coefficients (that is, a0, . . . , an are integers). If r/s is a
rational number with r and s integers having no common divisors and p(r/s) = 0,
then r divides a0 and s divides an.
(The only possible rational roots are a factor of the constant term over a factor of the leading coefficient.)

To find the rational roots of a polynomial one need only check all of the quotients r/s
where r divides a0 and s divides an.

4. When the polynomial has been sufficiently factored that only a quadratic polynomial
remains unfactored, apply the quadratic formula to obtain the remaining roots and
corresponding factors.

Example D.1. (a) Suppose we wish to factor

p(x) = x3 − 8x2 + 17x− 6.

Applying the rational root test we see that, since the polynomial is monic, the only
possible rational roots are ±1,±2,±3,±6.

We use synthetic division (see a high school or college algebra text) to check:
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1 1 −8 17 −6
1 −7 10

1 −7 10 4

We see that x = 1 is not a root since the remainder is 4. Now we try x = 3 :

3 1 −8 17 −6
3 −15 6

1 −5 2 0

Since the remainder is 0, x = 3 is a root. We also see that the quotient has the
coefficients 1,−5, and 2, and so the polynomial factors as

x3 − 8x2 + 17x− 6 = (x− 3)(x2 − 5x+ 2).

Using the quadratic formula to solve the remaining quadratic we obtain roots:

r1 =
5 +

√
17

2
,

r2 =
5−

√
17

2

The complete factorization is

x3 − 8x2 + 17x− 6 = (x− 3)

(

x− 5 +
√
17

2

)(

x− 5 +
√
17

2

)

.

(b) Consider the polynomial:

p(x) = x4 + 1.

Since x4 + 1 > 0 for all real numbers x, we can see that p has no real roots and so the
factorization will be into a product of two quadratics. We use a trick:

p(x) = x4 + 1 = x4 − (i2).

We see that p is a difference of two squares and so can be factored in that manner:

p(x) = (x2 − i)(x2 + i).

We can apply the trick again:

p(x) = (x−
√
i)(x+

√
i)(x−

√
−i)(x+

√
−i),

and using
√
i =

1√
2
+

1√
2
i and

√
−i =

1√
2
− 1√

2
i, we get
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p(x) =
Ç

x−
Ç

1√
2
+

1√
2
i

ååÇ

x+
1√
2
+

1√
2
i

åÇ

x−
Ç

1√
2
− 1√

2
i

ååÇ

x+
1√
2
− 1√

2
i

å

.

Notice that

(x− z)(x − z) = x2 − (z + z)x+ zz),

and so grouping factors involving roots that are conjugates produces a quadratic with
real coefficients since z + z is a real number. We get

p(x) = (x2 − (2/
√
2)x+ 1)(x2 + (2/

√
2)x+ 1),

the factorization of p(x) over the real numbers.

�

One final definition: If a is a root of the polynomial p(x), the multiplicity of a is the
integer k such that p(x) = (x− a)kp1(x) for some p1(x), but p(x) 6= (x− a)k+1p2(x) for any
p2(x). We might say that a is a root of p(x) “k times”. For example, 2 is a root of x2−4x+4
of multiplicity 2; 1 is a root of x3 − 2x2+x of multiplicity 2 and 0 is a root of multiplicity 1.

Appendix D Exercises

In Exercises 1 - 3, factor the polynomials into prime factors over the real numbers.

1. x3 − 5x2 − 8x+ 12

2. x3 + 9x2 + 9x+ 8

3. x4 − 2x3 + 2x2 − 2x+ 1

In Exercises 4-6, factor the polynomials into into a product of linear factors over the
complex numbers.

4. x3 − 5x2 − 8x+ 12

5. x3 + 9x2 + 9x+ 8

6. x4 − 2x3 + 2x2 − 2x+ 1

7. Find a polynomial with real coefficients that has 1 + i as a root.

8. Does the polynomial x3 − 7x2 + 2x+ 1 have a rational root? A real root?
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Appendix E

Mathematical Induction

The Principle of Mathematical Induction gives us an important method of proof. Since
we shall be using induction in proofs, it is appropriate that it be stated here. The method of
induction is based on a property of the integers and it may be regarded as a theorem about
the integers. The integers, Z, form an “ordered system” in that we have the order relation <
defined on the integers and we have the notion of “positive integer.” The set of all positive
integers is denoted by Z+. Of course, the rational numbers Q and the real numbers R are
also ordered, but the integers have an additional property not shared by these systems.

Theorem E.1 (TheWell-Ordering Property). Every nonempty subset of the set of pos-
itive integers has a least element. (A set of integers with positive elements has a least positive element)

The well-ordering property is one of the axioms for the system of integers, that is, it is
assumed to be true along with the other assumptions about the integers. If we think of the
set of positive real numbers, we can see that this set has no least element and so the reals
fail to have the well-ordering property.

Now suppose that we have a subset S of the set of positive integers and suppose that S
has two properties: 1) 1 ∈ S, 2) If k ∈ S then k + 1 ∈ S. It is not hard to see that S must
be exactly the set of positive integers: If S is not the set of positive integers, then there is
a positive integer not in S. Since there is one such positive integer, there must be a least
positive integer which is not in S. The integer that comes before this least one must be in S
(the least one couldn’t have been 1 by property 1)), but then by 2) the next integer is also
in S. This gives a contradiction and so, S = Z+.

The Principle of Mathematical Induction is simply an application of the result stated in
the above paragraph. Suppose that for each n ∈ Z+, Sn is a statement; that is, Sn is either
true or false. Let S be defined by S = {n ∈ Z+|Sn is true}. If S has the properties 1) and
2) described above, then S = Z+. But S = Z+ is equivalent to the statement Sn is true
for all n ∈ Z+. Interpreted in this context, 1) states that S1 is true, and 2) is equivalent to
the statement, “If Sk is true for some positive integer k, then Sk+1 is true. Thus, using the
well-ordering property, we have proved the following theorem.
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Theorem E.2 (The Principle of Mathematical Induction). Let Sn be a statement for
each positive integer n. Assume that the following two statements are true:

1. S1 is true.

2. If Sk is true for some positive integer k, then Sk+1 is true.

Then Sn is true for all positive integers n.

Example E.1. (a) Let Sn represent the statement

12 + 22 + . . .+ n2 =
n(n + 1)(2n+ 1)

6
.

Then S1 is true since 12 =
1 · 2 · 3

6
. Now assume that Sk is true for some integer k.

Then

12 + 22 + . . .+ k2 =
k(k + 1)(2k + 1)

6
.

Adding (k + 1)2 to both sides, we see that

12 + 22 + . . .+ k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

= (k + 1)
k(2k + 1) + 6k + 6

6

= (k + 1)
2k2 + 7k + 6

6

= (k + 1)
(k + 2)(2k + 3)

6
.

We were to show that 12+22+ . . .+k2+(k+1)2 =
(k + 1)(k + 1 + 1)(2(k + 1) + 1)

6
=

(k + 1)(k + 2)(2k + 3)

6
, so Sk+1 is true and by induction we know that Sn is true for

all positive integers n.

(b) Induction can be used to make definitions. Let A be a k × k matrix and for a positive
integer n, define An as follows:

(a) Define A1 to be A.

(b) If Ak is defined for some positive integer k, define Ak+1 by Ak+1 = AkA.

It is not hard to see that the statement “An is defined” can be proved true for all
positive integers n.
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(c) Using the above definition we can prove that AmAn = Am+n for all positive integers m
and n. While the proof is left as an exercise, we will give a strong hint: Think of m as
being a fixed integer and let Sn represent the statement, “AmAn = Am+n. Notice that

AmAn+1 = AmAnA = Am+nA = Am+n+1.

(d) If a1, . . . , an is any list of scalars, we define
k
∑

i=1

ai inductively by the following: We

define
1
∑

i=1

ai = a1. If
k
∑

i=1

ai is defined, we define
k+1
∑

i=1

ai =

(

k
∑

i=1

ai

)

+ ak+1. In Exercise 6,

the reader is asked to prove the distributive property:
k
∑

i=1

ai =
k
∑

i=1

(aai).

�

Appendix E Exercises

1. Prove that for any positive integer n,

1 + 2 + . . .+ n =
n(n+ 1)

2
.

2. Prove that for any positive integer n,

13 + 23 + . . .+ n3 =
n2(n+ 1)2

4
.

3. Prove that for any integer n > 0 and any real number r 6= 1,

1 + r + r2 + . . .+ rn =
1− rn+1

1− r
.

4. Complete the proof outlined in part (c) of the example above.

5. Let A be a k × k matrix. Prove that for all positive integers n and m, Amn = (Am)n.

6. Prove the distributive property:
k
∑

i=1

ai =
k
∑

i=1

(aai), where a1, . . . , an is any list of scalars.

(See Example E.1(d).)
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Appendix F

Additional Proofs

In this appendix we include several proofs that were omitted earlier. In general, these proofs
are of greater complexity, greater length, and of less interest from a computational point of
view. We include them for completeness.

In Section 1.5 we omitted the proof of the uniqueness of the reduced echelon form. Recall
the definition: An m × n matrix A = [aij ] is said to be in reduced echelon form if and
only if it satisfies the following three conditions:

1. For some integer r, the first r rows contain nonzero entries and the remaining n − r
rows contain only zeros.

2. For i = 1, . . . , r, the first nonzero entry in row i is a 1 in column ji and it is the only
nonzero entry in column ji.

3. j1 < j2 < . . . < jr.

The proof of the uniqueness of the reduced echelon form is simplified with the use of
facts about rank and the row space of a matrix that were introduced in Sections 2.5 and 2.8.
We will assume that we have these facts available, but it is important to note that the part
of the theorem that we are about to prove was not used in establishing any of these later
results.

The proof will be by induction on the rank r of a matrix and will make heavy use of the
row space of the matrix; that is, the span of the row vectors of the matrix. Recall that (by
2.5.2) row equivalent matrices have the same row space and so the same rank. Recall also
that for any m × n matrix M,Mi denotes the i-th row vector of M . The row space of the
matrix M is then given by R (M) = span{M1, . . . ,Mm}.

Theorem F.1 (Theorem 1.5.1). Any m × n matrix A is row equivalent to one and
only one m × n matrix B that is in reduced echelon form. B is called the reduced
echelon form of A. (Every matrix has a unique reduced echelon form.)

Proof. (Uniqueness) Assume that the matrix A is similar to two matrices in reduced echelon
form. Then these two matrices will themselves be row equivalent. Let B and C be m × n
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matrices and assume that B is row equivalent to C. We must prove that B = C. Note that
B and C have the same rank, r, and R (B) = R (C). We can state the result we need in a
slightly different form: If B and C are matrices in reduced echelon form andR (B) = R (C),
then B = C. It is this result that we will prove by induction on the dimension of the row
space.

If r = 1, then span{B1} = span{C1}, so B1 = aC1 for some scalar a. Since the first
nonzero entry in each of the vectors is a 1, it must be that a = 1. It follows that B1 = C1

and so, B = C. This proves the theorem for matrices of rank 1.
Assume now that the theorem is true for matrices of rank r − 1 and let B and C be

row equivalent matrices in reduced echelon form that have rank r. Now span{B1, . . . , Br} =
span{C1, . . . , Cr}. Let the constants associated with B be r, j1, . . . , jr and let those for C
be k1, . . . , kr. Assume that kr = jr. Since Br ∈ span{C1, . . . , Cr}, Br = b1C1+ . . .+ brCr, for
some scalars b1, . . . , br. Then since k1, . . . , kr−1 < jr, we see that b1, . . . , br−1 must all equal
zero (these are the entries in columns k1, . . . , kr−1 of the linear combination b1C1+ . . .+ brCr

and the vector Br has zeros there). So, Br = brCr and since both Br and Cr have 1 as their
first nonzero entries, we have that br = 1, and so Br = Cr.

We have shown that the last nonzero rows in B and C are equal. It is not hard to see
(see Exercise 1) that span{B1, . . . , Br−1} = span{C1, . . . , Cr−1} and applying the induction
assumption, we see that









B1
...

Br−1









=









C1
...

Cr−1









.

We have shown that B = C, and so by induction, the statement holds for matrices of
any rank.

Two cumbersome proofs on determinants were omitted. We include them here.

Theorem F.2 (Theorem 4.1.1). Let A = [aij] be an n× n matrix. Then:

|A| =
n
∑

j=1

aijAij (expansion along row i), and

|A| =
n
∑

i=1

aijAij (expansion down column j).

(Expansion along any row or column gives the determinant.)

Proof. We know that this theorem is true for 1 × 1 and 2 × 2 matrices by Exercise 11. We
will prove the theorem by mathematical induction and assume that the theorem is true for
(n−1)× (n−1) matrices and prove it for n×n. Let A = [aij ] be an n×n matrix and recall
that Mij is the determinant of the (n− 1)× (n− 1) matrix obtained by removing row i and
column j of A. Mij is called the minor of aij . By (Mij)kh we will mean the determinant
of the (n − 2) × (n − 2) matrix obtained by removing rows i and k and columns j and h
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of A. Note that these row and column numbers refer to the matrix A. Recall also that the
cofactors of A are given by Aij = (−1)i+j |Mij|.

We will first show that the expansion of |A| along row 1 equals that down column 1.
First, we will write the expansion using row 1 and then expand the minors using column 1,
and then we will expand down column 1 with the minors expanded along row 1. Consider:

(*)
n
∑

j=1

a1jA1j : expand A1j = (−1)1+j |M1j | down column 1

(**)
n
∑

i=1

ai1Ai1: expand Ai1 = (−1)1+i|Mi1| across row 1

Using the induction assumption, the minors, since they are (n−1)×(n−1) determinants,
can be expanded along any row or column and the results will be the same. Note that the
term a11A11 is common to both of the above expansions. We will match the other terms in
these expansions to show that they are the same. Consider:

(*) a1j(−1)1+jai1(−1)1+i−1(M1j)i1

(**) ai1(−1)1+ia1j(−1)1+j−1(Mi1)1j

The terms i − 1 and j − 1 come from the fact that the minor has one less row and one
less column than A has. The expansions of each of the terms a1jA1j and ai1Ai1 involve a
single term with the entries a1j , and ai1. Comparing these terms in the expansions (*) and
(**) we see that they are equal. It follows that expansion along row 1 gives the same value
as expansion down column 1.

We will next show that expansion along row 1 gives the same result as expansion along
another row, say i. The method is basically the same, but slightly more complicated. As
above we will consider two different expansions and compare terms.

(*) expand A1j = (−1)1+jM1j across row i

(**) expand Aik = (−1)i+kMik across row 1

As before, the minors are (n−1)×(n−1) determinants and so they can be expanded along
any row or column and the results will be the same. We will match terms, remembering that
the column number in the minors might not agree with the column number in the matrix A
since a column has been removed from A.

(*) a1j(−1)1+jaik(−1)i+h(M1j)ik, where h =

®

k if k < j
k − 1 if k > j

(**) aik(−1)i+ka1j(−1)1+h(Mik)1j, where h =

®

j if k < j
j − 1 if k > j
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Let us compute the exponent of the term −1 above: if k < j we get i+ k+1+ j in each
case, and if k > j, we get i+ k + j in each case. We see that the terms agree and so we see
that expansion along row 1 produces the same result as expansion along row i.

The proof above could easily be modified to prove that expansion down any column gives
the same result as expansion down column 1. Thus, by induction, the theorem is proved.

Theorem F.3 (Theorem 4.1.2). Let A be an n × n matrix and let B be the matrix
obtained from A by interchanging two of the rows (or columns) of A. Then |B| = −|A|.
(Switching rows or columns changes the sign of the determinant.)

Proof. We will prove the part of the theorem involving the switching of rows. Using the
theorem above, a similar proof can be constructed for columns switches. We will prove the
theorem by induction on n, the order of the matrix. For n = 1, there is not much to prove,
and for n = 2, the result is proved in Exercise 11. Let us assume that the theorem is true
for all (n − 1) × (n − 1) matrices and let A = [aij ] be an n × n matrix, where n = 3. Let
B be the result of switching rows i and j in A, that is B = RijA. Let k denote a row of A
different from i or j, and expand the determinant of B along row k. We get

|B| =
n
∑

h=1

akhBkh,

since row k in B is the same as row k in A. Now note that the determinant in the cofactor
Bkh is the same as that in Akh except that two rows have been switched. This matrix is
(n− 1)× (n− 1) and so by the induction assumption, Bkh = −Akh. It follows that

|RijA| = |B| =
n
∑

h=1

akhBkh =
n
∑

h=1

akh(−Akh) = −
n
∑

h=1

akhAkh = −|A|,

and so by induction, |RijA| = −|A| for any n× n matrix A.

The proof of the existence and uniqueness of the Jordan Canonical Form was omitted
earlier. Here we will outline the proof of the existence. Recall the theorem:

Theorem F.4 (Jordan Canonical Form). Let A be an n× n matrix and assume that
pA(λ) factors completely. Then A is similar to a matrix J of the form

J =









J1 · · · 0
...

. . .
...

0 · · · Jk









,

where J1, . . . , Jk are Jordan blocks. The matrix J is unique except for the order of the
blocks J1, . . . , Jk, which can occur in any order.
(If the characteristic polynomial factors completely, the matrix is similar to a matrix in Jordan form.)
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Figure F.1: Effect of a similarity transformation

Proof. Assume that A is as in the statement of the above theorem. We know that A is sim-
ilar (in fact orthogonally similar) to an upper triangular matrix U = [uij] by Theorem 5.5.2,
Schur’s Theorem. The diagonal of U contains the eigenvalues of A; recall that these eigenval-
ues may occur in any desired order. Suppose that the distinct eigenvalues are λ1, . . . , λm, and
let us assume that these eigenvalues come in order λ1’s first, λ2’s next, etc. Then U = [Uij ]
is of the form

U =













U11 U12 . . . U1m

0 U22 . . . U2m
...

...
. . .

...
0 0 . . . Umn













.

Let us try to make a zero above the diagonal. Let row i and column j be some position
above the diagonal (j > i). We wish to perform the column operation Cij[a] in a similarity
transformation. Note that Cij[a]

−1 = Cij [−a] = Rji[−a]. Thus, we can perform the similarity
transformation Rji[−a]UCij [a]. The entry in row i and column j becomes uij − aujj + auii.
We would like this expression to be zero. We can solve to find such an a exactly when
ujj − uii 6= 0. Remember that ujj and uii are eigenvalues and so this difference will be
nonzero when these entries lie in different blocks on the diagonal. We see that if the row
lies in one block and the column in a different block, we can make a zero in that row and
column.

Now consider the effect of the above similarity transformation. We see that only the
entries above and to the left of the entry in row i and column j are affected. The picture
below shows the situation.

What can be accomplished with such similarity transformations? If we start at the first
of the “notches” between the diagonal blocks, we can make zeros in these regions. See the
picture below. If we begin with region 1, we can make zeros along the bottom of the region,
then along the next higher row, etc. Eventually, region 1 can be filled with zeros. Then
proceed to do the same with region 2, 3, . . . .

The result of this sequence of similarity transformations is that U has been transformed
into a matrix of the form
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2

3

1

 

Figure F.2: Sequence of similarity transformations









U11 · · · 0
...

. . .
...

0 · · · Umm









,

where each of the blocks Uii on the diagonal contains a single eigenvalue. If we could
find matrices Si such that S−1

i UiiSi was in Jordan Form, then the block diagonal matrix
diag(S1, . . . , Sm) would transform U into Jordan Form. So, to finish the proof we need only
show that an upper triangular matrix with a single eigenvalue occurring on the diagonal can
be reduced to Jordan Form. We will omit this final, difficult step.

Appendix F Exercises

1. Prove the following: If B and C are m × n matrices in reduced echelon form with
span{B1, . . . , Br} = span{C1, . . . , Cr} and Br = Cr then

span{B1, . . . , Br−1} = span{C1, . . . , Cr−1}.

2. Show by example that the statement in Exercise 1 is false if the assumption that the
matrices are in reduced echelon form is replaced by the assumption that the nonzero
rows are linearly independent.

In Exercises 3 - 5, reduce the given matrix to block diagonal form as described above.

3.







1 3 2
0 1 2
0 0 2







4.







2 1 3
0 1 2
0 0 1









317

5.











2 1 3 1
0 2 2 1
0 0 1 3
0 0 0 1










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Hints, Comments, and Solutions for
Selected Exercises

Chapter 1

Section 1.1

1. (a) x = 2.5, y = 0.5

(b) x = 0, y = 1.5

2. (a) x = 4.57142857, y = −1.71428571

(b) x = 2, y = −1

3. x = 6, y = 2, z = −4

4. There is no solution.

5. w = 2.5, x = 1.5, y = 2.5, z = −3.5

6. I1 = 2.6666667, I2 = 0.6666667, I3 = 2.0

7. I1 = 8/11, I2 = 3/11, I3 = 5/11

8. x = −0.57142857, z = 6.42857143, y = 0.71428571, z = −0.28571429

9. There is no solution when a = 1/2, otherwise there is a unique solution.

10. There is a unique solution when a 6= 1, no solution when a = 1.

11. 15, 5, 12

12. 10, 6

Section 1.2

In Exercises 1.-4., the augmented matrices are given. To obtain the coefficient matrix, remove
the last column.

1.

ñ

2 3 1
2 −4 8

ô

2.

ñ

1 1 −1 3
2 1 −3 2

ô

3.







−2 3 0 2
1 1 1 3
−1 2 6 4





 4.

ñ

2 −3 0 2
1 −1 −1 0

ô

319
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5.

ñ

2 3
2 −4

ô ñ

x
y

ô

=

ñ

1
8

ô

6.

ñ

1 1 −1
2 1 −3

ô







x
y
z





 =

ñ

3
2

ô

7.







−2 3 0
1 1 1
−1 2 6













x
y
z





 =







2
3
4







8.

ñ

2 −3 0
1 −1 −1

ô







x
y
z





 =

ñ

2
0

ô

9.

ñ −1 3
0 4

ô

10.

ñ

1 4 −1
8 6 −1

ô

11.

ñ −2 6
2 −4

ô

12.

ñ

6 5 −2
11 1 1

ô

13.
î

1 14
ó

14.

ñ

2 3 −5
1 3 −7

ô

15.

ñ

13 −9
−16 15

ô

16.

ñ −6 −11 21
−1 −5 13

ô

17. AB,BC,CB,CA

18. B + AB

19.

ñ

1 2
−1 1

ô

5.







2 1
−1 3
4 −2







5. m = n

5. n = m′, m = n′

Section 1.3

1. 2A+ 3A = (2 + 3)A by the distributive property
= 5A by addition of real numbers.

4. Solve for C:

(−1)A+ (A+ C) = (−1)A +B Theorem 1.3.1 e)
((−1)A+ A) + C = (−1)A +B Theorem 1.3.2 b)

0 + C = (−1)A +B Theorem 1.3.6 d)
C = (−1)A +B Theorem 1.3.6 a)

C =

ñ

3 −1
−1 −2

ô

Computation

5. (a) Clearly, aij = aij for all i, j, and so A = A.

(b) If A = B then aij = bij for all i, j, so bij = aij for all i, j; it follows that B = A.

(c) Let A = [aij ], B = [bij ], C = [cij], and D = [dij]. then A = B and C = D imply
that aij = bij and cij = dij for all i, j. Adding we get that aij + cij = bij + dij for
all i, j, and so [aij + cij ] = [bij + dij]. Hence A+ C = B +D.

6. (a) Let A = [aij ] and B = [bij ]. Then A+B = [aij ] + [bij ] = [aij + bij ] = [bij + aij] =
[bij ] + [aij] = B + A, Where the second and fourth equality follow from the defi-
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nition of matrix addition, and the third equality follows from the commutativity
of addition of scalars and the definition of equality of matrices.

7. Choose any A,B with AB 6= BA, say A =

ñ

0 1
0 0

ô

and B =

ñ

1 1
0 0

ô

.

8. (a) Let A = [aij] and let a and b be scalars. Then a(bA) = a[baij ] = [a(baij)] =
[(ab)aij ] = (ab)[aij ] = (ab)A, where the third equality follows from the associativ-
ity of multiplication of scalars and the first, second, and fourth equalities follow
from the definition of scalar multiplication.

9. (a) −1 (b) 6 (c) 5

10. (b) Let A = [aij], B = [bij ], and let a be a scalar. Assume that AB is the m × r

matrix [cij ], where cij =
n
∑

k=1

aikbkj. Notice that acij =
n
∑

k=1

aikbkj =
n
∑

k=1

a(aikbkj) =

n
∑

k=1

(aaikbkj =
n
∑

k=1

aik(abkj). The quantity acij is the entry in row i and column j of the

matrix a(AB) = a[cij ]. The sum is the entry in row i and column j of the matrix
(aA)B, and is the entry in row i and column j of the matrix A(aB). Since these three
expressions are equal, we see that a(AB) = (aA)B = A(aB).

11. (a) The zero matrix (b) the zero scalar c) the zero matrix d) Statement
is ambiguous

12. Let A = [aij ] be an m× n matrix, and let [zij ] represent the m× n zero matrix. Then

(a) 0 + A = [zij ] + [aij ] = [zij + aij ] = [0 + aij ] = [aij ] = A. Likewise A + 0 = A.

(b) 0A = 0[aij] = [0aij] = [zij ] = 0.

(c) A+ (−1)A = [aij ] + (−1)[aij ] = [aij ] + [(−1)aij ] = [aij ] + [−aij ] = [aij + (−aij)] =
[zij ] = 0. Likewise, (−1)A + A = 0.

13. Step 1) Theorem 1.3.1 (d), Step 2) Theorem 1.3.2 (b), Step 3) Theorem 1.3.6 (c) and
the definition of −A, Step 4) Theorem 1.3.6 (a).

14. (b) Let A = [aij ] be m × n and let In = [δij ] be the n × n identity matrix. Then

AIn = [aij ][dij ] = [cij ], where cij =
n
∑

k=1

aikδkj = aij since δkj = 0 unless k = j, in which

case δjj = 1.

15. Assume that

ñ

1 −2
−2 4

ô ñ

a b
c d

ô

=

ñ

1 0
0 1

ô

. Then a − 2c = 1 and −2a + 4c = 0.

Divide the second equation by −2 and get a− 2c = 0, a contradiction.

16. Assume that







1 2 −1
3 1 1
3 −1 2













a b c
d e f
g h i





 =







1 0 0
0 1 0
0 0 1





. Show that the resulting

system of equations is inconsistent.
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17. The inverse is

ñ

1/3 1/3
−2/3 1/3

ô

.

18. This exercise can be a challenge. Assume that A and B are some general 2×2 matrices,

say A =

ñ

a b
c d

ô

and B =

ñ

u v
x y

ô

. Using the assumption that AB = I, try to prove

that BA = I. We will see later, in Chapter 4, that the result of this exercise is true for
any n× n matrices. Consider trying to prove it!

Section 1.4

1. Equivalent, x = y = 1 is the unique solution of each system.

2. Not equivalent, x = 1, y = 2 is not a solution of the first system.

3. Not equivalent, x = 1, y = z = 0 is a solution of the first system, but not the second.

4. Equivalent, x = 3y = 2, z = 1 is the unique solution each system.

5. (b) Consider a linear equation a1x1+a2x2+. . .+anxn = h, and suppose that (c1, . . . , cn)
is a solution. Then a1c1 + a2c2 + . . . + ancn = h, and so multiplying by c we see
that ca1c1 + ca2c2 + . . . + cancn = ch. Thus, (c1, . . . , cn) is a solution of the equation
ca1x1+ca2x2+. . .+canxn = ch. To see that solutions of ca1x1+ca2x2+. . .+canxn = ch
are solutions of a1x1 + a2x2 + . . . + anxn = h, notice that dividing both sides of
ca1x1 + ca2x2 + . . . + canxn = ch by c (it is here that we need the fact that c 6= 0)
produces a1c1 + a2c2 + . . .+ ancn = h.

6. 1) Notice that in the product RikA, multiplying A by row i of Rik produces the same
result as multiplying A by row k of I. That is, row i of RikA is the same as row k of
IA, but of course, this is row k of A. Similarly, row k of RikA is row i of A. Thus
in RikA rows i and k of A are switched. Since the other rows of Rik are equal to the
corresponding rows in I, the remainder of A is unchanged.

2) Since the rows of Ri[a] are identical to the rows of the identity matrix except for
row i, Ri[a]A is the same as A except for row i. In row i there is an a on the diagonal
in the matrix Ri[a] and 0’s elsewhere. Thus, in Ri[a]A row i is row i of A multiplied
by a.

7.







0 1 0
1 0 0
0 −1 3







8.







0 0 2
0 1 0
1 −2 0







9.







1 0 0
0 1 0
0 0 1







10.







1 0 0
0 1 0
0 0 1







11.







1 −2 0
0 1 0
4 0 1







12.







0 1 0
−2 2 2
8 2 −7







13. (a) Not elementary. (b) R12(1). (c) R12. (d) Not elementary.

14. The product is I. Thus the inverse of A is A.
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15. Take B = Ri(1/c).

16. Take B = Rik(−c).

Section 1.5

1.

ñ

1 0
0 1

ô

2.

ñ

1 −1.5
0 0

ô

3.

ñ

1 0 0 −4.5
0 1 0 4

ô

4.







0 1 1 0 0
0 0 0 1 0
0 0 0 0 1







5.







1 0 0
0 1 0
0 0 1







6.







1 0 6/10 2/10
0 1 −8/10 14/10
0 0 0 0







7.

ñ

1 0 3
0 1 −1

ô

8.

ñ

1 0 7/3 17/3
0 1 −4/3 −5/3

ô

9.







1 0 0 13/3
0 1 0 −7/3
0 0 1 0







10.







1 2 0 1 3
0 0 1 3 2
0 0 0 0 0







11.











1 0 1 0 3
0 1 1 0 1
0 0 0 1 2
0 0 0 0 0











12.







1 0 5/3 −1/3
0 1 −2/3 7/3
0 0 0 0







13.







1 0 6/10 2/10
0 1 −8/10 14/10
0 0 0 1







14. jr ≤ n

15. n− r

Section 1.6

1.

ñ

1 0 2 −1
0 1 −1 2

ô

, Xp = (−1, 2, 0)t, Xh = (−2x3, x3, x3)
t

2.

ñ

1 0 −1 3
0 1 1 6

ô

, Xp = (3, 6, 0)t, Xh = (x3,−x3, x3)
t

3.

ñ

1 0 1 1
0 1 2 3

ô

, Xp = (1, 3, 0)t, Xh = (−x3,−2x3, x3)
t

4.

ñ

1 1 0 1 2
0 0 1 −3 −1

ô

, Xp = (2, 0,−1, 0)t, Xh = (−x2 − x4, x2, 3x4, x4)
t

5.







1 0 0 1
0 1 0 −2
0 0 1 −2





 , Xp = (1,−2,−2)t, Xh = (0, 0, 0)t

6.







1 0 0 −3/2 1
0 1 0 −4 −1
0 0 1 −9/2 −4





 , Xp = (1,−1,−4, 0)t, Xh = (1.5x4, 4x4, 4.5x4, x4)
t

7. Xh = (−2x3, x3, x3)
t = x3(−2, 1, 1)t

8. Xh = (x3,−x3, x3)
t = x3(1,−1, 1)t
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9. Xh = (−x3,−2x3, x3)
t = x3(−1,−2, 1)t

10. Xh = (−x2 − x4, x2, 3x4, x4)
t = x2(−1, 1, 0, 0)t + x4(−1, 0, 3, 1)t

11. Xh = (0, 0, 0)t

12. Xh = (1.5x4, 4x4, 4.5x4, x4)
t = x4(1.5, 4, 4.5, 1)

t

13. This is one of those results that is easier to see than to explain. Let the constants
associated with B be r and j1, . . . , jr. Note that for each of the matrices A and [A|0],
the three conditions in the definition of echelon form are true: 1) The nonzero rows in
A and [A|0] are at the top and the number of nonzero rows may be either r or r − 1.
2) the first nonzero entry in each of the first rows of A and [A|0] is a 1 (for row i it
occurs in column ji) and it is the only nonzero entry in that column. 3) j1 ≤ j2 ≤ . . . .

15. (a) All vectors are solutions - 3-dimensional space.

(b) Two intersecting planes - solution set is a line through the origin.

(c) No nonzero solutions - solution set consists only of the origin.

Section 1.7

1. U =

ñ

2 1
0 1/2

ô

, L =

ñ

1 0
3/2 1

ô

2. U =

ñ −1 2
0 5

ô

, L =

ñ

1 0
1 1

ô

3. U =







2 1 3
0 0 −1
0 0 3





 , L =







1 0 0
−2 1 0
−1 0 1







4. U =







1 0 2
0 −1 1
0 0 1





 , L =







1 0 0
2 1 0
1 −2 1







5. U =







2 1 3 4
0 4 0 −3
0 0 −5 −10





 ,

L =







1 0 0
−1 1 0
−3 0 1







6. U =

ñ

1 0 2 2
0 5 7 8

ô

, L =

ñ

1 0
−3 1

ô

7. U =











2 −1 0 2
0 2 −1 3
0 0 1 3
0 0 0 4











, L =











1 0 0 0
1 1 0 0
1 −2 1 0
2 1 3 1











, A =











2 −1 0 2
2 1 −1 5
2 −5 3 −1
4 0 2 20











8. x = 3.25, y = −1.5

9. x = −0.5, y = −0.5

10. x = 1, y = 1, z = 0



325

11. Hint: Let A = [aij ] be an m × n matrix and let B = [bij ] be an n × r matrix. Let

C = [cij ] be the product of A and B. Then cij =
n
∑

k=1

aikbkj . Suppose that A and B are

upper triangular. Then aij = bij = 0 when i > j. In the sum above, for any given k ,
either i > k or k > j so that either aik = 0 or bkj = 0. If i = j, the sum contains only
one nonzero term aiibii.

12. Hint: If A is lower triangular with nonzero entries on the diagonal, then row operations
of the form Ri(a

−1
ii ) will put ones on the diagonal, and row operations of the form

Rik(−aik), for i < k, will make zeros below the diagonal. The result will be the identity
matrix and the product of these row elementary matrices will be lower triangular and
will have the inverses, a−1

ii , on the diagonal.

Section 1.8

1. I1 = 55/9 amps, I2 = 10/9 amps, I3 = 5 amps.

2. I1 = 3 amps, I2 = 0.5 amps, I3 = 2.5 amps.

3. I1 = 0.06300053 amps, I2 = 0.03096636 amps, I3 = 0.03203417 amps, I4 = 0.00032034
amps, I5 = 0.03128671 amps, I6 = 0.03171383 amps

4. I1 = 0.00360656 amps, I2 = 0.00163934 amps, I3 = 0.00196721 amps,
I4 = −0.00065574 amps, I5 = 0.00098361 amps, I6 = 0.00262295 amps

5. A = 45 volts, B = 30 volts.

6. I1 = 0.36363636 amps, I2 = 0.18181818 amps, I3 = 0.18181818 amps

7. I1 = 0.84507042 amps, I2 = 0.56338028 amps, I3 = 0.28169014 amps

8. I1 = 0.46296296 amps, I2 = 0.09259259 amps, I3 = 0.37037037 amps

Section 1.9

1. a), b), e) are stochastic; c), d) are not stochastic

2. There is not a unique answer. Fill in the blanks with numbers between 0 and 1 in any
manner such that the sum of the entries in each column is 1.

3. X4 = (0.5750, 0.2428, 0.1822)t, X5 = (0.5875, 0.2336, 0.1789)t,
X6 = (0.5938, 0.2292, 0.1770)t, X20 = (0.6000, 0.2250, 0.1750)t

4. X1 = (0.4000, 0.6000)t, X2 = (0.4400, 0.5600)t, X3 = (0.4640, 0.5360)t

X4 = (0.4784, 0.5216)t, X5 = (0.4870, 0.5130)t, X6 = (0.4922, 0.5078)t,
X7 = (0.4953, 0.5047)t, X8 = (0.4972, 0.5028)t
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5. X2 = (0.2400, 0.4000, 0.3600)t, X3 = (0.2960, 0.3360, 0.3680)t,
X4 = (0.3184, 0.3200, 0.3616)t, X5 = (0.3274, 0.3194, 0.3533)t,
X6 = (0.3309, 0.3226, 0.3465)t, X7 = (0.3324, 0.3259, 0.3417)t

6. P = X1 = (0.9000, 0.1000)t, X2 = (0.7800, 0.2200)t, X3 = (0.7560, 0.2440)t, X4 =
(0.7512, 0.2488)t, X5 = (0.7502, 0.2498)t, X6 = (0.7500, 0.2500)t. Observations are
made at intervals of one generation.

7. Use mathematical induction. Note that P nX = P (P n−1X).

8. p22 must be 1. The entries in column 1 may be any numbers between 0 and 1 whose
sum is 1.

9.

ñ

0.9 1
0.1 0

ô

10. The matrix is

ñ

0.8 0.2
0.2 0.8

ô

11. Sure, consider

ñ

0.5 0.5
0.5 0.5

ô

.

Chapter 2

Section 2.1

1. (−2, 5)

2. (−2, 1)

3. (10,−18)

4. (−2, 1)

5. θ = arctan(2/3), r =
√
13

6. θ = arctan(−3), r =
√
10

7. θ = arctan(3), r =
√
10

8. θ = arctan(−1), r =
√
8

9. x =
√
3, y = 1

10. x = y = 3/
√
2

11. x = −5
√
3/2, y = −5/2

12. x = 4/
√
2, y = −4/

√
2

13. Argue geometrically. Draw figures like Figures 2.2 and 2.3, and use similar and congru-
ent triangles to prove the result. You will need to assume a given coordinate system.

14. θ = 176.989◦, time = 1.922 hours

15. 4.7636◦

16. Write the forces as ordered pairs: F1 = (5
√
3, 5) ≈ (8.66, 5), F2 = (0, 20), F3 =

(−15/
√
2,−15/

√
2) ≈ (−10.61,−10.61). Then add coordinates: F1 + F2 + F3 ≈

(−1.94, 14.39) (Note: ≈ is used to mean approximately equal.)
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17. Use the fact that addition of pairs is given by (a, b)+(c, d) = (a+ c, b+d) and the fact
that addition of real numbers is commutative. We can then see that (a, b) + (c, d) =
(a+ c, b+ d) = (c+ a, d+ b) = (c, d) + (a, b).

Section 2.2

1. Let (x, y) and (x′, y′) be in V, and let r be a real number. Then x = 2y and x′ = 2y′.
Now add: (x, y) + (x′, y′) = (x + x′, y + y′), and this vector is in V since adding
corresponding sides of the equalities x = 2y and x′ = 2y′ produces x+ x′ = 2y+2y′ =
2(y + y′). A similar argument shows closure under scalar multiplication.

2. The argument here is similar to that in in Exercise 1. Take two vectors in V and a
real number and show that the sum and scalar product satisfy the two equations which
determine membership in V.

3. Observe that (1, 0) and (0, 1) are in V, but the sum (1, 0) + (0, 1) = (1, 1) is not. Also
2(1, 0) = (2, 0) is not in V.

4. Find examples as in Exercise 3.

5. Argue geometrically that this set must contain the lines through the vectors (1, 1) and
(1, 2) and that any vector may be expressed as a sum of two vectors, one lying on each
of these nonparallel lines.

6. Let V be the line containing the vector (−2, 1), that is, V = {(x, y)|y = −2x}

7. Note that, by definition, (X − Y ) + (−(X − Y )) = 0. Also, using the definition of
difference, (X−Y )+(−X+Y ) = (X+(−Y ))+(−X+Y ) = (X+(−X))+(−Y +Y ) =
0+ 0 = 0. Thus, we have (X − Y ) + (−(X − Y )) = (X − Y ) + (−X + Y ), and we can
cancel the term (X − Y ) to obtain −(X − Y ) = −X + Y .

8. b) Assume that a 6= 0 and that aX + Y = Z. Add −Y to both sides to obtain
aX = Z − Y . Now multiply both sides by (1/a) to show that X = (1/a)(Z − Y ).

9. To show closure under addition, let r = s = 1 and apply the condition to show
that X + Y = rX + sY ∈ V. For closure under scalar multiplication, let Y = 0.
Then rX + sY = rX + 0 = rX ∈ V. Hence V is closed under addition and scalar
multiplication.

10. X = (−7/2,−1/2)

11. X = (−13/3, 8)

12. Here’s one example: {(x, y)|x > 1 and y > 1}

13. In R2, two nonparallel lines through the origin will have this property, for example:
{(x, y)|x = 0 or y = 0}. Try something similar for R3.
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Section 2.3

1.
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x2 + x+ 1 (a)(b) a2 + 3a− 1 (c) 5

2. (a) 2 (b)
3√
2

(c)
1−

√
3

2

3. (c), (d)

4. Note that z is a constant function and so it is continuous, that is z ∈ C[a, b]. We
must show that z + f = f or that z(x) + f(x) = f(x) for all x in [a, b]. This is easy;
z(x) + f(x) = 0 + f(x) = f(x) for any x in [a, b], and so z + f = f.

5. As above, we note that −f ∈ C[a, b] and that f(x)+ (−f)(x) = f(x)+ (−f(x)) = 0 =
z(x). Hence A4) holds.

6. Let f ∈ C[a, b] and let r and s be scalars. Then for any x in [a, b], ((r + s)f)(x) =
(r + s)f(x) = rf(x) + sf(x) = (rf + sf)(x). Hence (r + s)f = rf + sf and so M1)
holds.

7. 5 + 12x+ 9x2

8. This is a direct application of the definition of equality. Notice that the definition
says that two polynomials are equal if corresponding coefficients are equal and those
coefficients that “don’t correspond” are zero. Because of this result, whenever one
chooses two arbitrary polynomials, it may be assumed that the highest degree term is
the same in each case. Of course, it may not be assumed that the coefficient is nonzero.

9. If p(x) = a0 + a1x + . . . + anx
n then z(x) + p(x) = (a0 + 0) + a1x + . . . + anx

n =
a0 + a1x+ . . .+ anx

n = p(x).

10. Using the hint, note that f(x)+(−f)(x) = (a0+a1x+. . .+anxn)+((−a0)+(−a1)x+. . .+
(−an)xn) = (a0+(−a0))+(a1+(−a1))x+. . .+(an+(−an))xn) = 0+0x+. . .+0xn = z(x).
This shows that A4) holds.

11. This is laborious, but not too difficult. Apply the definitions of the operations: Let
f(x) = a0 + a1x+ . . .+ anxn and g(x) = b0 + b1x+ . . .+ bnxn be two polynomials and
let r be a scalar. Then

r(f(x) + g(x)) = r((a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)x
n)

= r(a0 + b0) + r(a1 + b1)x+ . . .+ r(an + bn)x
n

= (ra0 + rb0) + (ra1 + rb1)x+ . . .+ (ran + rbn)x
n

= (ra0 + ra1x+ . . .+ ranxn) + (rb0 + rb1x+ . . .+ rbnx
n)

= rf(x) + rg(x).

12. (d) This uses a familiar trick. Notice that 0X = (0+ 0)X = 0X +0X , and so we see
that 0X + 0 = 0X + 0X . Applying cancellation (part (a)), we see that 0X = 0.

(e) By definition, X + (−X) = 0. Also X + (−1)X = 1X + (−1)X = (1+ (−1))X =
0X = 0. Thus, we see that X + (−X) = X + (−1)X , and by cancellation,
−X = (−1)X.
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(f) Assume that rX = 0. If r = 0, the conclusion is true. If r 6= 0, then r−1 exists
and we can multiply, obtaining: 0 = r−10 = r−1(rX) = (r−1r)X = 1X = X.

13. Since R ⊆ C, scalar multiplication is clearly defined and it is not hard to see that the
properties of a vector space relating to scalars hold true when one considers elements
only from R. It follows that a vector space over C is naturally also a vector space over
R.

14. The integers do not form a field, and so there are no vector spaces “over Z.”

15. f(0) = 0 + 0 · 0 = 0, and f(1) = 1 + 1 · 1 = 1 + 1 = 0, so f(x) = g(x) for all x in Z2.

16. Over an arbitrary field, which definition of equality implies the other - equality as
polynomials implies equality as functions or conversely?

Section 2.4

1. We must show that V is closed under addition and scalar multiplication and that V
is nonempty. V is nonempty since (2, 1) is in V. Let (a, b) and (c, d) be two vectors in
V and let r be a scalar. Then a = 2b and c = 2d, and so (a, b) + (c, d) = (a+ c, b+ d)
is in V since a + c = 2b + 2d = 2(b + d). Likewise, r(a, b) = (ra, rb) is in V since
ra = r(2b) = 2(rb). Thus, V is closed under addition and scalar multiplication, so V
is a subspace of R2.

2. The proof here is almost identical to the one above. The fact that no condition is made
regarding the coordinate z is not a problem.

3. We can show that this set V is not closed by giving an example. Notice that (2, 1, 0)
and (2, 0, 2) are inV, but (2, 1, 0)+(2, 0, 2) = (4, 1, 2) is not inV since neither condition
holds (x 6= 2y and x 6= z).

4. Find an example as in Exercise 3. You will be able to show that this set is not closed
under scalar multiplication.

5. Since (0, 0) is in V, (0, 0, 0) is in W, so W is not the empty set. Let (x, y, z) and
(u, v, w) be two vectors in W, and let r be a scalar. Then (x, y, z) + (u, v, w) =
(x+u, y+v, z+w) ∈ W since z+w = 0 and (x, y) and (u, v) in V imply (x+u, y+v) is
in V. Likewise (x, y) in V implies r(x, y) = (rx, ry) in V, and so r(x, y, z) = (rx, ry, 0)
is in W.

6. Yes, V can be shown to be nonempty and closed.

7. No, since 0 ∈ U and 0 ∈ W the intersection of these sets cannot be empty.

8. U ∩W is a subspace of V. By Exercise 7, this set is nonempty, and it can be shown
to be closed under addition and scalar multiplication. U ∪ W is not, in general, a
subspace of V. To prove this, give a counterexample. Find two subspaces of R2 whose
union is not a subspace. What about two nonparallel lines through the origin?
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9. The set is nonempty since 0 = 0X1+0X2 is in the set. To show closure, let aX1+ bX2

and cX1 + dX2 be two members of span{X1, X2}. Then (aX1 + bX2) + (cX1 + dX2) =
(a+c)X1+(b+d)X2 is in span{X1, X2}, and likewise r(aX1+bX2) = r(aX1)+(rb)X2 is
in span{X1, X2}. Hence span{X1, X2} is closed and nonempty and therefore a subspace
of V.

10. It is clear that the zero function is in W, and so W 6= ∅. Assume y1, y2 ∈ W, and
let r be a scalar. Then y′1 − y1 = 0, and y′2 − y2 = 0. Now (y1 + y2)

′ − (y1 + y2) =
y′1−y1+y′2−y2 = 0+0 = 0, and so y1+y2 ∈ W. Also, (ry1)

′−ry1 = r(y′1−y1) = r·0 = 0,
and so ry1 ∈ W. Hence, W is a subspace of C1[a, b].

ex is a nonzero function in W. From differential equations we know that the solution
set of this differential equation is W = {rex|r is real}.

11. (a) Show closure by using properties of the derivative as in Exercise 10, above.

(b) The functions sin x and cosx will work.

(c) The theory from differential equations will show that every solution is of the form
c1 sin x+ c2 cos x.

12. This line is either the y-axis, {(x, y)|x = 0}, or a set of the form {(x, y)|y = mx}.
Show that these sets are closed under addition and scalar multiplication.

13. See Figures 2.2-2.2 in Section 2.2. Argue informally as follows: Suppose that U is a
subspace of R2. Certainly, if U = {0} then U is a subspace. Suppose that U 6= {0}
and say X is a nonzero vector in U. Since U is closed under scalar multiplication,
{rX|r a scalar} ⊆ U. If {rX|r a scalar} = U then U is a subspace as in Exercise
11. If U 6= {rX|r a scalar}, then there is a vector Y which is in U, but not in
{rX|r a scalar}. Now we claim, as in Figure 2.2 of Section 2.2, that U must be R2.

14. Use Exercise 13. If U = {0}, take X = Y = 0. If U is a line through the origin, take
X and Y to be any nonzero vectors lying along that line. If U = R2, let X = (1, 0)
and Y = (0, 1).

15. The operations inU andW are the restrictions of the operations inV, so the operations
inU are the same as those inW. SinceU is a subspace ofV,U is closed under addition
and scalar multiplication. Thus, U is a subspace of W.

16. W is nonempty since U is nonempty. Let Y1, Y2 ∈ W. Then Y1 = PX1 and Y2 = PX2

for some X1, X2 ∈ U. Now U is a subspace, so X1 + X2 ∈ U, and so Y1 + Y2 =
PX1 + PX2 = P (X1 + X2) ∈ W. Likewise, from rX1 ∈ U it follows that rY1 =
rPX1 = P (rX1) ∈ W. Hence W is a subspace of V.

Section 2.5

1. We must prove that the two sets, span{(1,−1), (2, 2)} and R2, are equal. It is clear
that span{(1,−1), (2, 2)} ∈ R2. We must show the set containment in the reverse
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order. Let (x, y) ∈ R2. Then we see that (after a lot of work on scratch paper)

(x, y) =
x− y

2
(1,−1) +

x+ y

4
. Hence, (x, y) ∈ span{(1,−1), (2, 2)}.

2. Try X = (1, 0, 0). Show that X 6= a(1,−1, 2) + b(2, 2, 1) for any a, b.

3. (1,−2, 1) /∈ span{(1, 3, 1), (1, 0,−1)}. Show that (1,−2, 1) = a(1, 3, 1)+ b(1, 0,−1) has
no solution.

4. Note that (2,−4) = 2(1,−2) and (−1, 2) = −1(1,−2). From this it follows that
(1,−2) ∈ span{(2,−4), (−1, 2)} and (2,−4), (−1, 2) ∈ span{(1,−2)}. Applying Theo-
rem 2.5.1, we see that span{(2,−4), (−1, 2)} = span{(1,−2)}.

5. (5, 1, 6) ∈ span{(1, 2, 3), (−1, 1, 0)} since (5, 1, 6) = 2(1, 2, 3) + (−3)(−1, 1, 0).

6. R (A) = span{(1,−1), (2, 0)}. It is not hard to show that this set spans R2.

7. By Theorem 2.5.2, we see that R (A) = R (B).

8. (c) Let X ∈ span(S). By part (b), we know that span(S) ∈ span(S ∪{X}). We must
show the reverse containment. Assume that X = a1X1 + . . . + anXn for some
X1, . . . , Xn ∈ S, and let Y ∈ span(S ∪ {X}). Assume that for some Y1, . . . , Yn ∈
S, Y = b1Y1+ . . .+ bmYm + aX. Then Y = b1Y1+ . . .+ bmYm + aX = b1Y1+ . . .+
bmYm + a(a1X1 + . . .+ anXn) ∈ span(S). Hence, span(S) = span(S ∪ {X}).
If span(S) = span(S ∪ {X}), then we see that X ∈ span(S ∪ {X}) = span(S), so
X ∈ span(S).

(d) IfW is a subspace ofV, thenW is closed under addition and scalar multiplication.
If S ⊆ W, then all linear combinations of elements of S must lie in W. Hence,
span(S) ⊆ W.

9. The row vectors of Rik[a]A are A1, . . . , Ai, . . . , Ak + aAi, . . . , An. All of these vectors
lie in span{A1, . . . , An} = R (A). Thus, by Theorem 2.5.1, span{A1, . . . , Ai, . . . , Ak +
aAi, . . . , An} = R (Rik[a]A) ⊆ R (A).

10. The statement “span(S) is the smallest subspace of V containing S” means that:

(a) span(S) is a subspace of V containing S, and

(b) If W is any subspace of V containing S, then span(S) is contained in W. We will
see that span(S) satisfies (a) and (b) by Theorem 2.5.1, parts a) and d).

11. Geometrically, this is clear, span{X} is the line through the origin determined by
X . We can approach the problem algebraically as follows: Let X = (x, y). If R2 =
span{X}, then (1, 0) = a(x, y) and (0, 1) = b(x, y) for some a and b. From the first
we see that a 6= 0 and y = 0 and from the second we see that b 6= 0 and x = 0. This
means that x = y = 0 and this is clearly a contradiction.

13. Let A be an m × n matrix and let B be the echelon form of A. Let r be the number
of nonzero rows in B. Then R (A) = R (B) = span{B1, . . . , Br} and r is the least
number with this property.
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14. Assume that R (A) = R (B) where both A and B are 2× 2 and in echelon form. We
must consider cases: If A has two nonzero rows, then A = I, the identity matrix. In
this case, we can see that B cannot have a just one nonzero row so B = I, and A = B.
If A has only one nonzero row, then A1 = rB1 for some scalar r, and since the first
nonzero entry in each is a 1, we see that r = 1. This implies that A = B.

15. A proof using mathematical induction is given in Appendix F in the completion of the
proof of Theorem 1.5.1.

Section 2.6

1. (1, 2) = 4(1, 1) + (−1)(3, 2). Theorem 2.6.5 applies since R2 = span{(1, 0), (0, 1)}.

2. Assume that a(1, 0, 0) + b(1, 1, 0) + c(1, 0, 1) = (0, 0, 0). Then a+ b+ c = 0, b = 0, and
c = 0. Thus, a = b = c = 0 and so the vectors are linearly independent.

3. It is clear that span{E1, . . . , En} ⊆ Rn. To prove the reverse containment, we note
that (a1, . . . , an) = a1E1 + . . . + anEn, proving that an arbitrary vector in Rn lies in
span{E1, . . . , En}.

4. Assume that a(1, 2,−1, 0) + b(1, 0,−1, 0) + c(0, 1, 0, 1) = (0, 0, 0, 0). Then a + b =
0, 2a+ c = 0,−a− b = 0, and c = 0. We solve and see that a = b = c = 0. Hence the
vectors are linearly independent.

5. Linearly dependent: −2(1, 1, 2) + 1(2,−1, 1) + 1(0, 3, 3) = (0, 0, 0).

6. Use Theorem 2.6.2. Form the matrix







1 2 −1 2
3 1 1 1
−4 2 −4 2





 and reduce to echelon form.

We get







1 0 6/10 0
0 1 −8/10 1
0 0 0 0





 . We see that the rows of A are linearly dependent since

the echelon form contains a row of zeros.

7. By Theorem 2.6.5, X1, . . . , X4 must be linearly dependent since we know that R3 is
spanned by three vectors. Thus, there is a linear combination a1X1 + . . . + a4X4 = 0
with a nonzero coefficient. Now write X = a1X1 + a2X2 = −a3X3 − a4X4. Since one
of the coefficients is nonzero, X 6= 0. Clearly, X ∈span{X1, X2}∩span{X3, X4}.

8. 1Z = 0, but 1 6= 0, so {Z} is a linearly dependent set.

10. (a) Assume that S ′ is linearly independent. If we have a linear combination of ele-
ments of S that is zero, we have a linearly combination of elements of S ′ that is
zero. Since S ′ is linearly independent, all of the coefficients must be zero. Hence,
S is linearly independent.
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(b) If S is linearly dependent, then there exists a linear combination of elements of
S (with at least one nonzero coefficient) that is equal to zero. Since S ⊆ S ′, this
linear combination is also a linear combination of elements of S ′. Hence, S ′ is
linearly dependent.

Note that these statements are contrapositives of one another. Since contrapositives
are logically equivalent, we didn’t have to prove both statements.

11. Assume that Xn+1 /∈ span{X1, . . . , Xn}, and assume that we have a linear combi-
nation of the n + 1 vectors that is zero, say a1X1 + . . . + anXn + an+1Xn+1 = 0.
If an+1 6= 0, we can solve for Xn+1 in terms of X1, . . . , Xn which will show that
Xn+1 ∈span{X1, . . . , Xn}. Thus, an+1 = 0, and so a1X1 + . . . + anXn = 0. But
X1, . . . , Xn are linearly independent, so a1 = . . . = an = 0, and it follows that all n+1
vectors are linearly independent.

12. If X1 = X2, then 1X1 + (−1)X2 + 0X3 + . . . + 0Xn = 0. This shows that X1, . . . , Xn

are linearly dependent.

13. No, they would be linearly independent by Theorem 2.6.7, but R2 can contain at most
two independent vectors by Theorem 2.6.5.

14. Let X1 and X2 be linearly independent vectors in R2. If X /∈span{X1, X2}, then
X1, X2, X are linearly independent by Theorem 2.6.7. Since this is not possible by
Theorem 2.6.5, X ∈ span{X1, X2}.

15. If X1 and X2 are linearly dependent, then X2 ∈ span{X1}. It follows that R2 =
span{X1} and this implies that any two vectors in R2 are linearly dependent, which is
a contradiction. Hence, X1 and X2 are linearly independent.

16. Assume that X1, . . . , Xn are linearly independent. If a1PX1 + . . .+ anPXn = 0, then
P (a1X1+ . . .+ anXn) = 0. Since P is nonsingular, we can multiply both sides by P−1,
obtaining a1X1 + . . .+ anXn = 0. But X1, . . . , Xn are linearly independent so we must
have a1 = . . . = an = 0. It follows that PX1, . . . , PXn are linearly independent.

Now assume that PX1, . . . , PXn are linearly independent. If a1X1 + . . . + anXn = 0,
then multiplying both sides by P , we see that P (a1X1 + . . .+ anXn) = a1PX1 + . . .+
anPXn = 0. Since PX1, . . . , PXn are linearly independent, we must have a1 = . . . =
an = 0. Thus, X1, . . . , Xn are linearly independent. (Note: We have proved a more
general result in the second part of this proof. What is the statement of this result?)

Section 2.7

1. These vectors are linearly independent since a(1, 0, 0) + b(1, 1, 0) + c(1, 1, 1) = (0, 0, 0)
implies that c = 0, b+ c = 0, and a+ b+ c = 0, and so a = b = c = 0. To see that these
vectors span R3, note that if X ∈ R3 then X /∈ span{(1, 0, 0), (1, 1, 0), (1, 1, 1)} implies
that all four vectors are linearly independent by Theorem 2.6.7. Hence, (1, 0, 0), (1, 1, 0),
(1, 1, 1) form a basis for R3.

2. (1,−1, 2)(0, 1, 0), (0, 0, 1) is one possibility.
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3. Since (2, 1, 1) = (1, 0, 1)+(1, 1, 0), the vectors are not linearly independent and cannot
form a basis.

4. (1, 3), (1, 0) works.

5. Since Y 6= 0, {Y } is a linearly independent set. Since X 6= kY,X /∈ span{Y }. By
Theorem 2.6.7, {X, Y } is a linearly independent set. {X, Y } must span R2, for oth-
erwise we could find a vector Z /∈ span{X, Y } and this would produce a set of three
independent vectors in R2. Hence {X, Y } is a basis for R2.

6. We must prove that span{X1, . . . , Xn} = V. Clearly, span{X1, . . . , Xn} ⊆ V. If X ∈
V, then X ∈ span{X1, . . . , Xn}, for otherwise, X1, . . . , Xn, X are linearly independent
and this contradicts the assumption dim V = n. Thus, V ⊆ span{X1, . . . , Xn} and so
X1, . . . , Xn forms a basis for V.

7. Because of Exercise 6, we need only prove that the vectors are linearly independent.
Assume that b1E1 + . . . + bk−1Ek−1 + bkX + bk+1Ek+1 + . . . + bnEn = 0. Using the
representations for X and the Ei’s, we see that (b1+bka1, . . . , bk−1+bkak−1, bkak, bk+1+
bkak+1, . . . , bn + bkan) = (0, . . . , 0). Now bkak = 0 and ak 6= 0 imply that bk = 0, and
given this we see that bi = 0 for all i 6= k as well. It follows that the vectors are linearly
independent.

8. (0, 0, 1) and (1,−1, 0) are in W and they are linearly independent. Since W 6= R3,
these vectors must form a basis for W. dim W = 2.

9. (1, 1, 0, 0), (0, 0, 2, 1) form a basis for U since for any vector in

U, (x, y, z, t) = (x, x, 2t, t) = x(1, 1, 0, 0) + t(0, 0, 2, 1).

Clearly, dim U = 2. The vectors (1, 0, 0, 0) and (0, 0, 0, 1) will extend this basis for U
to a basis for R4.

10. Assume that X1, . . . , Xn are linearly dependent. Then by Theorem 2.6.1, one of the
vectors is in the span of the others, say X1 ∈ span{X2, . . . , Xn}. But then dim V =
n− 1, which is a contradiction. Thus, X1, . . . , Xn are linearly independent.

11. Let X1, . . . , Xn be a basis for V with X1, . . . , Xk a basis for U. This is possible by
Theorem 2.7.6. Show that X1 + Xn, . . . , Xk + Xn, Xk+1, . . .Xn is a basis with the
desired property. (There are many other possibilities, as well.)

12. The polynomials 1, x, x2, . . . , xn, . . . form a basis for R[x].

13. Assume that a sin x + b cosx = 0. Choosing x = 0, we see that b = 0 and, similarly,
x = π/2 shows that a = 0. Hence these functions are linearly independent and so their
span must have dimension 2.

14. By Exercise 2.4.16, V is a subspace. If X1, . . . , Xn is a basis for U, then by Exercise
2.6.16, PX1, . . . , PXn are linearly independent. To see that these vectors span V, note
that P (a1X1 + . . .+ anXn) = a1PX1 + . . .+ anPXn.
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15. ( =⇒ ) Assume that X1, . . . , Xn forms a basis for V. Then since a basis is a spanning
set, every vector X ∈ V is a linear combination of the vectors X1, . . . , Xn. Assume that
X is expressible in two different ways, say X = a1X1+ . . .+anXn = b1X1+ . . .+ bnXn.
Then subtracting, we see that 0 = (a1−b1)X1+ . . .+(an−bn)Xn and so a1−b1 = . . . =
(an − bn) = 0 since X1, . . . , Xn are linearly independent. Thus, a1 = b1, . . . , an = bn
and the coefficients are unique.

(⇐) Assume that every vector X ∈ V can be expressed as a linear combination of
X1, . . . , Xn in one and only one way. Clearly, then X1, . . . , Xn span V. To show that
the vectors are linearly independent, assume that a1X1 + . . . + anXn = 0. Note that
0 = 0X1+ . . .+0Xn. Since the expression of the zero vector as a linear combination of
the vectors X1, . . . , Xn is unique we must have a1 = 0, . . . , an = 0. Hence X1, . . . , Xn

are linearly independent.

16. By Theorem 2.6.4, the nonzero rows of B,B1, . . . , Br, are linearly independent. Since
A is row equivalent to B,R (A) = R (B). Since R (B) is spanned by B1, . . . , Br, it is
clear that B1, . . . , Br form a basis for V.

17. Assume that B is m× n and let j1, . . . , jr be the constants associated with B. Notice
that columns j1, . . . , jr are linearly independent; in fact, these columns are the trans-
poses of the first r standard basis basis vectors in Rm. Since the rows of B below row
r are all zeros, we know that C (B) has dimension less than or equal to r. Since we
have r independent vectors in C (B) we know that these vectors form a basis.

Section 2.8

1. Echelon form is







1 0 2
0 1 −1
0 0 0





, so rank = 2.

2. Echelon form is







1 0 −2 −3
0 1 1 1
0 0 0 0





, so rank = 2.

3. Echelon form is







1 0
0 1
0 0





, so rank = 2.

4. Echelon form is







1 0 −2/3 1 0
0 1 −5/6 1 0
0 0 0 0 1





, so rank of coefficient matrix is 2, but augmented

matrix has rank 3. Thus, system is inconsistent.

5. Echelon form is







1 0 0 0 −0.88
0 1 −1 0 2.38
0 0 0 1 0.25





, augmented and coefficient matrices have

same rank (3), therefore system is consistent.
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6. Echelon form is











1 0 0 0 2.50
0 1 0 0 −0.50
0 0 1 0 −0.50
0 0 0 1 −0.50











. Consistent as above.

7. Form the augmented matrix







1 −3 2 4
2 1 −1 1
3 −2 1 α





 and reduce to echelon form.

8. Let H =







a
b
c





. The system will have a solution when c− b− a = 0.

9. Echelon form is







1 0 0 1
0 1 0 1
0 0 1 −3





, so this matrix has rank 3, while the matrix in Ex-

ercise 2 has rank 2. The matrices cannot be equivalent since equivalent matrices have
the same rank.

10. No. For example,

ñ

1 1
0 0

ô

and

ñ

1 0
0 0

ô

are two matrices in echelon form with rank

1, but we can see that they are not equivalent since they are not equal (using the
uniqueness of the echelon form).

11. Since row operations do not change the row space, we may assume that both A and
B are in echelon form. If A and B are in echelon form and R (A) = R (B), it can be
shown that A = B. See the proof of Theorem 1.5.1 in Appendix F.

12. No. Consider the echelon form of the matrix. If the rank is r, then there are columns
j1, . . . , jr containing the first nonzero entries in rows 1, . . . , r. Since this matrix has
only two columns, r = 2.

13. 0 = rank(A) = min{n,m}.

14. AX = H has a unique solution when no variables can be arbitrarily chosen. The
number of arbitrarily chosen variables is n− r. Thus, there is a unique solution when
n− r = 0.

15. If A is m × n and r is the rank of is the rank of A then we must have r = n. This
implies that the nonzero rows of A look like the identity matrix, and so B is of the
form

























1 0 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
























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Section 2.9

1. n− r = 4− 2 = 2

2. 0

3. x = 2y, y arbitrary. Solution space has dimension 1. {(2, 1)} is a basis.

4. x = y = 0. The solution space is {(0, 0)} and has dimension 0. The empty set (∅) is,
by convention, the basis.

5. The dimension is 1 and {(−3, 2, 1)} is a basis.

6. The dimension is 3. The following vectors will form a basis:

(1, 1, 0, 0, 0, 0), (−3, 0, 2,−3, 1, 0), (0, 0,−1, 2, 0, 1).

7. General solution: x2 = −2x3 − 2x5, x4 = −x5 with x1, x3, x5 arbitrary. Basis:
(1, 0, 0, 0, 0), (0,−2, 1, 0, 0), (0,−2, 0,−1, 1).

8. x1 = −(3/2)x4, x2 = (1/2)x4, x3 = −3x4, basis: (−3/2, 1/2,−3, 1).

9. Yes, r = 3, and so n − r = 4 − 3 = 1. Thus, the dimension of the solution space is
greater than or equal to one. This means that nonzero solutions may be found.

10. r = 4, and so n− r = 7−4 = 3, so the solution space must have dimension 3, or more.

11. This is clear since the solution must have dimension two (= 6− 4) or more.

12. The dimension lies between 0 and 4.

13. They are the same.

14. Assume that x(a, e, b) + y(c, f, d) = 0. Then (xa+ yc, xe+ yf, xb+ yd) = (0, 0, 0), but
then (xa + yc, xb + yd) = x(a, b) + y(c, d) = (0, 0). Since (a, b) and (c, d) are linearly
independent vectors, x = y = 0. It follows that the vectors are linearly independent.

15. (a, b, e) and (f, c, d) needn’t be linearly independent: Consider (a, b) = (1, 0) and
(c, d) = (0, 1). Let e = f = 1. Then (a, b, e) and (f, c, d) are both equal to (1, 0, 1),
so they are not linearly independent. The vectors (a, b, e) and (c, d, f) will be linearly
independent as in Exercise 14 above.

Chapter 3

Section 3.1

1. T (1, 2) = (−1, 7), T (1, 0) = (1, 1), T (0, 2) = (−2, 6), T (1, 0) + T (0, 2) = (−1, 7)

2. T (2, 3) = (8, 1), T (2, 0) = (2, 4), T (0, 3) = (6,−3), T (2, 0) + T (0, 3) = (8, 1)
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3. T (2, 1, 1) = (3, 0), T (2, 3, 1) = (5, 4)

4. T (3, 2, 1) = (4, 1), T (1, 3, 1) = (2, 2)

5. The vector (0, 0, 1) works - so does (0, 0, 2).

6. It’s not possible. If T (x, y) = (0, 0) then x− y = 0 and x+ 3y = 0. The only possible
solution is x = y = 0.

7. T (1, 2, 3) = (−1,−4,−1)

8. Yes, (1, 0) and (0, 1) form a basis for R2, so the method of Example 3.1.1 (j) may be
applied.

9. No. If T is a linear transformation satisfying the first two conditions given, then
T (1, 1) = T (1, 0) + T (0, 1) = (2, 3) + (−1, 2) = (1, 5) 6= (2, 0), so the third condition
cannot be satisfied.

10. Let X be any vector in U. Then for some scalars a1, . . . , an, X =
n
∑

i=1

aiXi. Now

T (X) = T

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

aiT (Xi) =
n
∑

i=1

aiS(Xi) = S

(

n
∑

i=1

aiXi

)

= S(X).

Hence S = T.

11. Here are the tricks: T (0) = T (0+0) = T (0)+T (0), but T (0) = T (0)+0, so T (0)+0 =
T (0) + T (0). Now cancel T (0) and get T (0) = 0. Cancellation is permitted since the
equality is an equality of vectors. For the second, note that 40 = T(0) = T(X + (-X))
= T(X) + T(-X)4. Add −T (X) to both sides to obtain −T (X) = T (−X).

12. Since IU(X) = X for all X in U, TIU(X) = T (IU(X)) = T (X). For the second, note
that T (X) is a vector in V, so IV(T (X)) = T (X).

13. We will prove the statement T

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

aiT (Xi) by induction on n. For n =

1, The statement says that T (a1X1) = a1T (X1), which is true since T is a linear
transformation.

Assume that the statement is true for some number n. Using this assumption we must

prove that the statement is true for n + 1. Note that
n
∑

i=1

aiXi =
n−1
∑

i=1

aiXi + anXn, and

so
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T

(

n
∑

i=1

aiXi

)

= T

(

n−1
∑

i=1

aiXi + anXn

)

= T

(

n−1
∑

i=1

aiXi

)

+ T (anXn)

=
n−1
∑

i=1

aiT (Xi) + anT (Xn)

=
n
∑

i=1

aiT (Xi).

Thus, using the truth of the statement for n− 1, we have proved the statement for n,
and so by mathematical induction, the statement is true for all positive integers n.

14. Let Z = X − Y . Then by Exercise 11 above, T (Z) = T (X − Y ) = T (X)− T (Y ) = 0
since T (X) = T (Y ).

15. If (a, b) is any vector in R2, then T (a, b) = aT (1, 0)+bT (0, 1). Thus, for any vector X in
R2, T (X) ∈ span{T (1, 0), T (0, 1)}. By the results of Chapter 2, span{T (1, 0), T (0, 1)}
6= R3, so there is a vector Y in R3 with T (X) 6= Y for all X in R2.

Section 3.2

1. Set T (x, y) = (2,−1) and attempt to solve. You’ll find T (0, 1) = (2,−1), and so
(2,−1) ∈ Im(T ).

2. As above, T (1, 0) = (1, 1, 2).

3. Set T (x, y, z) = (0, 0) and attempt to solve. There are many solutions, but (1, 1,−1)
is one.

4. As in 3, (−2, 1,−4/3).

5. null(T ) = {0}, Im(T ) = R2, rank(T ) = 2, nullity(T ) = 0.

6. null(T ) = {0}, Im(T ) = span{(1, 1, 2), (2, 0,−1)}, rank(T ) = 2, nullity(T ) = 0.

7. If T (x, y, z) = (0, 0, 0) then 2x+y = 0, z = 0, 2y = 0. It follows that x = y = z = 0 and
so nullity(T ) = 0. This implies that rank(T ) = 3 and it follows that T is nonsingular.
To find T−1, set (u, v, w) = T (x, y, z) = (2x+ y, z, 2y) and solve for x, y, z in terms of
u, v, w. We get x = u/2−w/4, y = w/2, z = v. Now T−1(u, v, w) = (u/2−w/4, w/2, v).

8. Let Y1 and Y2 be in Im(T ), and let r be a scalar. Then Y1 = T (X1) and Y2 = T (X2)
for some X1, X2 ∈ U. Now Y1 + Y2 = T (X1) + T (X2) = T (X1 + X2) ∈ Im(T ) since
X1 +X2 ∈ U. Also, rY1 = rT (X1) = T (rX1) ∈ Im(T ) since rX1 ∈ U. It is clear that
Im(T ) 6= ∅ since T (0) = 0 ∈ Im(T ). It follows that Im(T ) is a subspace of V. To show
that null(T ) is a subspace, show that it is also closed and non empty.
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9. Assume that dim(U) = n. Since null(T ) = {0}, nullity(T ) = 0. From Theorem 3.2.2,
rank(T ) = n, so Im(T ) = U. Hence T is nonsingular.

10. Assume that Y1 = T (X1) and Y2 = T (X2) so that S(Y1) = X1 and S(Y2) = X2. Then
Y1+Y2 = T (X1)+T (X2) = T (X1+X2) and so S(Y1+Y1) = X1+X2 = S(Y1)+S(Y1).
Likewise we can show that S(rY ) = rS(Y ) for a scalar r. If Y = T (X) (so that
S(Y ) = X), then S(T (X)) = S(Y ) = X, and T (S(Y )) = T (X) = Y . It follows that
TS = IV and ST = IU.

11. Since Im(T ) is a subspace of R2, rank(T ) = 2. By Theorem 3.2.2, nullity(T ) =
3− rank(T ) = 1. It follows that null(T ) 6= {0} and that T is singular.

14. By Theorem 3.2.3, a transformation T is nonsingular if and only if there is a trans-
formation S with the property that both composite transformations TS and ST are
identity transformations. Now consider the transformation S. We see that there is a
transformation, T , with the property that TS and ST are identity transformations. It
follows that S also satisfies this condition and so S is nonsingular. Now S is denoted by
T−1 and from the later comment, S−1 is T (here we invoke Theorem 3.2.4: T behaves
like the inverse of S, so it must be the inverse of S). Thus, S−1 = (T−1)−1 = T .

15. First note that for X in U, (T−1S−1)(ST )(X) = T−1(S−1(S(T (X)))) =
T−1(IV(T (X))) = T−1(T (X)) = IU(X) = X . Likewise, (ST )(T−1S−1)(X) = X .
Applying Theorems 3.2.3 and 3.2.4, we see that (ST )− 1 = T−1S−1.

Section 3.3

1.

ñ

1 1
1 −1

ô

2.

ñ

2 −1
1 3

ô

3.







1 1 1
1 −1 0
0 0 2







4.

ñ

1 1 0
1 1 −2

ô

5. [T : B,E] =

ñ

1 2
2 1

ô

, [T : E,B] = −1

3

ñ

1 −2
−2 1

ô

, [T : B,C] =

ñ −1/2 1/2
3/2 3/2

ô

6. [T : E,E] =

ñ

1 −1
1 2

ô

, [T : E,E1] =

ñ

1 2
1 −1

ô

, [T : E,E2] =

ñ

1 −1
1/2 1

ô

,

[T : E,E3] =

ñ

0 −3
1 2

ô
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7. [T : E,E] =

ñ

2 1
0 3

ô

, [S : E,E] =

ñ

1 1
1 −1

ô

, [TS : E,E] =

ñ

3 1
3 −3

ô

= [T : E,E][S : E,E]

8. T (1, 0) = (1, 2), T (0, 1) = (−1, 3), T (−2, 3) = (−5, 5)

9. B = {(−1, 0), (−1, 1)} (don’t forget that the order is important)

10. Let B = {(a, b), (c, d)}. Then [I : B,E] =

ñ

a c
b d

ô

.

11. [T : B,E] = [I : B,E][T : B,B] =

ñ

1 −1
1 2

ô

[T : B,B].

12. [IV : B,B] = In, where n = dimV.

13. [T : B,C]−1 = [T−1 : C,B]

14. Note that [I : B,C][I : C,B] = [I : C,C] = In = [I : B,B] = [I : C,B][I : B,C]. It
follows that [I : B,C]−1 = [I : C,B].

Section 3.4

1. Product is:







0 −1 2 1
1 0 1 −5
0 1 1 2







2. Product is:







5 1 11 −7
1 3 1 −5
2 12 4 −4







3. Product is:

ñ

2 1
2 −2

ô

4. Product is:

ñ

2 12
4 −4

ô

5. Product is:

ñ

0 −1
0 1

ô

6. Product is:

ñ

3 −1
5 5

ô

7. Let A = [aij ], B = [bij ], and AB = [cij ], where aii = ai, bii = bi, aij = bij = 0 for i 6= j

and cij =
n
∑

k=1

aikbkj . Then, since aij = bij = 0 for i 6= j, cij = 0 for i 6= j, and cii = aibi.

8. Inverse is:

ñ −1 2
1 −1

ô
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9. Inverse is:

ñ

1 1/2
0 −1/2

ô

10. Echelon form is:

ñ

1 −2
0 0

ô

11. Nonsingular, inverse is:

ñ −1 1
1 0

ô

12. Inverse is: [I : B,A] =

ñ −1 0
2 2

ô

13. This exercise appeared in Section 1.3. If you didn’t get it there, here’s another chance.
Can the result be generalized to n× n matrices?

Section 3.5

Remember our convention wherein (x1, . . . , xn)
t =





x1
...xn



 .

1. (3/2, 1/2)t

2. (1,−2)t

3. (−1,−1, 2)t

4. (−1, 4,−1)t

5. (−3, 2)t

6. We see that X = (x, y) = x(1, 0) + y(0, 1), so XE = (x, y)t.

7. [I : B,D] =

ñ

1 0
−1 1

ô

, [T : B,D] =

ñ

1 −1
1 1

ô

, [I : D,B] =

ñ

1 0
1 1

ô

, [T : D,D] =
ñ

0 −1
2 1

ô

.

8. P = Q = [I : B,C] =

ñ

0 1
1 −2

ô

9. [T : C,B] =







0 −1 2
1 1 −1
0 0 2





 , P = Q = [I : B,C] =







−2 1 1
2 0 −1
1 0 0







10. [T : C,B] =







−3 1 4
2 −1 0
1 0 −1





 , P = Q = [I : B,C] =







1 1 2
0 1 −2
0 0 1









344 HINTS, COMMENTS, AND SOLUTIONS FOR SELECTED EXERCISES

11. A =







1 1 −2
−2 0 2
0 0 1





 , XB =







y
x
z





 , AXB =







y + x− 2z
−2y + 2z

z





 = (x− y, z, 2y)C = T (X)C

since (y + x− 2z)(1, 0, 0) + (−2y + 2z)(1, 0,−1) + z(0, 1, 2) = (x− y, z, 2y) = T (X).

12. Assume that A is nonsingular. Let P = A−1 and let Q = In. Then PAQ = A−1AIn =
In, and thus A is equivalent to In.

13. Assume that A is similar to In, say S−1AS = In. Then AS = SIn, and so A =
SInS

−1 = In. Thus, A = In.

Section 3.6

1. Product is:

ñ −2 5
1 −3

ô

2. Product is:







−3 0 0
2 0 1
−2 1 0







3. Product is:

ñ

3 −8
1 −2

ô

4. Product is:







0 −1 2
0 0 1
1 −3 0







5. a) C12 b) C2(1/2) c) C12(−1) d) C21(2)

6. a) R12 b) R2(−1) c) R21(2) d) R12(−2)

7. a) R13 b) R1(−3) c) R32(−2) d) R21(3)

8. a) R12 b) R2(2) c) R21(1) d) R12(−2)

9. a) C12 b) C2(−1) c) C12(−2) d) C21(2)

10. a) C13 b) C1(−1/3) c) C23(2) d) C12(−3)

11. The n × n identity matrix In has rank n, and performing row operations on a matrix
does not change the rank of a matrix. Left multiplication of a matrix by an elementary
matrix perform the corresponding row operation on the matrix, thus P = PIn =
E1 . . . EmIn is a matrix of rank n.

12. Proof. Assume that B has the given conditions and let r, j1, . . . , jr be the constants
associated with B. Now we are given that r = n and 1 = j1 < . . . < jn = n. This can
only happen when j1 = 1, j2 = 2, . . . , jn = n, and this implies that B = In.

13. Inverse is:

ñ

3/5 −2/5
1/5 1/5

ô

14. Matrix equals: R12(−1)R2(5)R21(2)

15. Matrix equals: R31R1(2)R12(1)R2(1/2)R21(−1/2)R3(2)R31(1)R32(−1)

Inverse is:







−1/2 1 0
1/2 2 −1
1/2 0 0






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16. By Theorem 3.4.1, the inverse of a nonsingular matrix is unique. Since AA−1 =
A−1A = In, it must be the case that A−1 is nonsingular and that its inverse is A. That
is, (A−1)−1 = A.

Chapter 4

Section 4.1

1. 7

2. 7

3. -52

4. 86

5. 50

6. -10

7. -36

8. 10

9. determinant is 22, cofactor is 0

10. |A| = 5, A11 = 3, A21 = −2, A12 = 1, A22 = 1.

11. Assume that you are given a general 2 × 2 matrix, say

ñ

a b
c d

ô

. To prove Theorem

4.1.1, compute the expansions of the determinant of the matrix expanding along row
2 and columns 1 and 2. Compare with the expansion along row 1. For Theorem 4.1.2,
switch rows, compute the determinant and compare the result with the determinant
of the unchanged matrix.

12. |A| = −3, |B| = −4, |AB| = 12, |BA| = 12.

13. Assume that the determinant of a matrix equals the determinant of its transpose for
all (n − 1) × (n − 1) matrices, and let A = [aij ] be n × n. Let Mik be the minor of
the entry in row 1 and column k of A, and let Nk1 be the minor of the entry in row k
and column 1 of At. We see that the matrices in these minors are transposes of each
other. By the induction assumption, their determinants are equal; that is, Mik = Nk1.

Expanding |A| along row 1, we get |A| =
n
∑

k=1

a1k(−1)1+kM1k, and expanding |At| down

column 1, we get |At| =
n
∑

k=1

a1k(−1)1+kNk1. Since Mik = Nk1 for all k, we see that

|A| = |At|. By induction, the theorem must be true for all positive integers n.

14. Observe that expanding |D| along row 1 yields |D| = a1|diag(a2, . . . , an)|. This allows
induction on the size of the matrix.

16. Let A = [aij ] and B = [bij ] and assume that At = [cij] and Bt = [dij ], where cij = aji

and dij = bji. Now compute: The ij entry in BtAt is
n
∑

k=1

dikckj =
n
∑

k=1

bkiajk. The ij

entry in (AB)t is the entry in row j and column i in AB. This is
n
∑

k=1

ajkbki =
n
∑

k=1

bkiajk.

Since corresponding entries are equal, the matrices (AB)t and BtAt are equal.
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Section 4.2

1. Adj(A) =

ñ

3 −1
1 2

ô

, AAdj(A) =

ñ

7 0
0 7

ô

, A−1 =
1

7

ñ

3 −1
1 2

ô

2. Adj(A) =

ñ

1 −2
2 3

ô

, AAdj(A) =

ñ

7 0
0 7

ô

, A−1 =
1

7

ñ

1 −2
2 3

ô

3. Adj(A) =







3 0 −2
−7 −5 3
−1 0 −1





 , A−1 =







−3/5 0 2/5
7/5 1 −3/5
1/5 0 1/5







4. Adj(A) =







3 0 2
−7 5 −3
−1 0 1





 , AAdj(A) =







5 0 0
0 5 0
0 0 5







5. Adj(A) =







3 −2 2
0 5 0
−1 −1 1





 , AAdj(A) =







5 0 0
0 5 0
0 0 5







6. |AB| = 2 · 3 = 6.

8. Notice that if one row and one column are canceled from P , the resulting matrix has
the same property; that is, each row and each column contains exactly one 1, and all
other entries are zero. This allows us to prove this result using induction.

9. We know that AB is nonsingular and (AB)−1 = B−1A−1 ( see Exercise 14 of Section

3.4). Using Theorem 4.2.6, (AB)−1 =
1

|AB|Adj(AB), andB−1A−1 =
1

|B|Adj(B)
1

|A|Adj(A).
Since |AB| = |A||B|, we can cancel and obtain Adj(AB) = Adj(B)Adj(A).

10. Assume that A is a singular n × n matrix and let PA be the echelon form of A with
P nonsingular (P = En . . . E1 is the product of elementary matrices corresponding to
the row operations performed in the reduction of A to echelon form - see Section 3.6.)
Since PA is an n× n matrix in echelon form, it must be the case that either PA = I
or PA has a row of zeros. We cannot have PA = I, for then A = E−1

1 . . . E−1
n I would

be a product or nonsingular matrices and hence nonsingular. We see that PA has a
row of zeros. If AB were nonsingular, then there would be a matrix C with ABC = I.
But then, multiplying by P , we see that PABC = PI. Now PA has a row of zeros,
so PABC has a row of zeros. But then PI has a row of zeros, and this is impossible
since PI = P is nonsingular. Hence, AB must be singular.

11. Using Theorem 4.2.4, |AB| = |A||B| = |B||A| = |BA|, where the second equality
follows from the commutativity of scalar multiplication (remember that |A| and |B|
are scalars).

12. If rank(B) = n, then B = I, and so |B| = 1. If rank(B) < n, then B has a row of
zeros and so the determinant will be 0. Thus, |B| = 0.
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13. Let B be the echelon form of the n × n matrix A, say with B = E1 . . . EnA, where
E1, . . . , En are elementary matrices. Then |B| = |E1| . . . |En||A|, so
|A| = |En|−1 . . . |E1|−1|B|. To compute |B|, just multiply the diagonal elements. Ac-
tually, since B is n× n, we see that B is either the identity matrix (|B| = 1) or B has
a row of zeros (—B| = 0) and therefore the entry in the lower right hand corner of B
will be the determinant of B. Evaluating |En|−1 . . . |E1|−1 is also straightforward. One
can compute the product of these elementary matrices as follows. Define a variable
D and start with D = 1. Modify D at each step as follows: if a row operation of the
form Rik is performed, change the sign of D. If a row operation of the form Ri[a] is
performed, multiply D by 1/a. If a row operation of the form Rik[a] is performed, leave
D unchanged. When the row operations E1, . . . , En have been performed, the value of
D will be |En|−1 . . . |E1|−1.

Section 4.3

In Exercises 1 - 4, we give the quotient of the two determinants.

1. x1 = −1/1, x2 = 0/1

2. x1 = 5/18, x2 = −1/18, x3 = 11/18

3. x1 = 1/11, x2 = −7/11

4. x1 = 1/2, x2 = 0, x3 = 1/2

In Exercises 5 – 8, we give the inverse to the coefficient matrix. The solutions are given
in Exercises 1 – 4, above.

5. Inverse =

ñ

3 −1
−2 1

ô

6. Inverse =
1

18







1 −5 7
7 1 −5
−5 7 1







7. Inverse =
1

−11

ñ

2 −5
−3 2

ô

8. Inverse =
1

−8







−8 −2 9
8 4 −14
0 −2 1







9. Echelon form =

ñ

1 0 2/3 1
0 1 −5/3 0

ô

.

(a) z = 1, x = 1/3, y = 5/3

(b) y = 2, x = 1/5, z = 6/5

(c) x = 0, y = 5/2, z = 3/2

12. AX = 0 has a nonzero solution only when A is singular; that is, when |A| = 0. But if
|A| = 0, then |AB| = |A||B| = 0, and so ABX = 0 also has a nonzero solution.

Section 4.4

1. Apply the law of cosines to the triangle formed by the vectors A,B, and the line joining
the endpoints of the vectors. This line can be represented by the vector A − B. We
get:
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||A− B||2 = ||A||2 + ||B||2 − 2||A||||B|| cosθ.

Express each of the magnitudes in terms of the coordinates of the vectors. The squared
terms will cancel, leaving the cross products with a coefficient of −2. The result will
follow.

2. This just involves computation. For example in part (a),

A×B = (AyBz − AzBy)i + (AzBx −AxBz)j+ (AxBy − AyBx)k

and
B × A = (ByAz −BzAy)i+ (BzAx − BxAz)j+ (BxAy − ByAx)k,

so A× B = −(B ×A).

3. x = t+ 1, y = 2t+ 1, z = −t− 1

4. To find the normal, take the cross product of the differences of the vectors: N =
(2, 1, 2). Since the plane passes through (0, 0, 0), an equation is: 2x+ y + 2z = 0.

5. Proceeding as in 4, we get −(x− 1)− (y − 2)− (z + 1) = 0.

6. Find a vector (a, b, c) that is perpendicular to a normal to the plane, say (2, 3,−1).
That is, find a solution to 2a+ 3b− c = 0. We take the solution (0, 1, 3). An equation
of the plane is: (y + 2) + 3(z − 3) = 0.

7. We need to “shift” so that the origin is at the point (−1, 3, 2), so subtract this vector

from the other two. We get Ω =
6√
6
(2,−1,−1) and R = (1,−3,−2). It follows that

V = Ω× R =
√
6(−1, 3,−5).

8. We need only compute the component of the force in the direction of motion: F =
(0, 0, 4) and D = (1, 1, 1), so we divide D by its magnitude and take the dot product.

The result is
4√
3
.

9. Just compute using the components of the vectors. For example:

(b) (rA) · B = (rAx)Bx + (rAy)By + (rAz)Bz = r(AxBx + AyBy + AzBz) = r(A · B).

10. Assume that a linear combination is zero, say aU + bV + cW = 0. To show that a = 0,
form the dot product U · (aU + bV + cW ) = aU ·U + bU ·V + cU ·V = U · 0 = 0. Since
U 6= 0, U · U 6= 0, and so a = 0. Likewise b = c = 0 and it follows that U, V , and W
are linearly independent.

11. By Exercise 10, we know that U, V , and W form a basis for R3, and so A is a linear
combination of these vectors, say A = aU + bV + cW . To find a, take the dot product
with U : A · U = U · (aU + bV + cW ) = aU · U + bU · V + cU · V = aU · U = a · 1 = a.
Therefore, a = A · U . The other coefficients can be found in a similar manner.
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12. Using Exercise 9 parts (b) and (c), we see that U ·U =
A

||A|| ·
A

||A|| =
1

||A||2 (A ·A) = 1.

13. As above, just compute using the components of the vectors. For example:

(a)

A · (B × C) = (Axi+ Ayj + Azk) · ((ByCz −BzCy)i+ (BzCx − BxCz)j

+ (BxCy −ByCx)k)

= Ax(ByCz −BzCy) + Ay(BzCx −BxCz) + Az(BxCy − ByCx)

...

= (AyBz − AzBy)Cx + (AzBx −AxBz)Cy + (AxBy − AyBx)Cz

= (A×B) · C.

Section 4.5

1. (a) Cramer’s Rule: 7.1514× 1035 seconds, Gauss Reduction: 83.7 seconds.

(b) Cramer’s Rule: 1.1919× 1029 seconds, Gauss Reduction: 0.01395 seconds.

(c) Cramer’s Rule: 2.3838× 1025 seconds, Gauss Reduction: 0.00000279 seconds.

2. Cramer’s Rule: 11! · 9 = 359, 251, 200 multiplications, 199,584 seconds. Gauss Reduc-
tion: 1100 multiplications, 0.00061111 seconds.

3. A crude estimate is given by: m(m − 1)n additions + m(mn) multiplications =
mn(2m−1) operations. This estimate assumes that the entire length of each row must
be processed at each step. Actually, in row i only the last n− i entries must be com-
puted. For a 50×50 system, the time required would be 50·50·99/2, 000, 000 = 0.12375
seconds. Try to find a better estimate!

4. (a) Here we must perform calculate n2(n − 1)(n − 1). The required multiplications
would be n2(n− 1)!.

(b) Here we must reduce an n × 2n matrix to echelon form. From Exercise 3, this
would require 2n3 multiplications.

5. If the matrix is n× n, the reduction to echelon form requires 2n3 − n2 operations, as
in Exercise 3. Keeping track of the determinant requires at most 2 operations for each
pivot, and so a total of 2n operations. Thus, 2(n3 − n2 + n) are needed.

6. A is arbitrary: n3 multiplications. A is diagonal: n2 multiplications. A is upper-

triangular: n(n+ (n− 1) + (n− 2) + . . .+ 1) = n
n(n− 1)

2
=

n3 − n2

2
multiplications.
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Chapter 5

Section 5.1

1. X · Y = 4, X · Z = 8

2. Y · Y = 38, Z ·X = 8

3. ||X|| =
√
11, ||Y || =

√
38, ||Z|| =

√
14.

4. ||U || = 1

5. X1 ·X2 = −1, ||X2|| =
√
6

6. Z1 =
1√
2
(1,−1, 0), Z2 =

1√
18

(1, 1,−4)

7. X1 · X2 = (1 − i)i + (−i)(1 − i) + 0 = 0, X2 · X3 = −i(1 − i) + (1 + i), X1 · X3 =
(1− i)(1− i) + (−i)1 + 1(3i) = 0

8. Z1 =
1√
2
(1, 0, 1, 0), Z2 = (0, 1, 0, 0), Z3 =

1√
2
(1, 0,−1, 0) is the result of the Gram-

Schmidt Process, but (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) is a more straightforward choice.

9.
1√
5
(1, 2),

1√
5
(2,−1)

10.
1√
13

(−2, 3),
1√
13

(3, 2)

11.
1√
13

(0,−3, 2),
1√
13

(0, 2, 3), (1, 0, 0)

12.
1

3
(−1, 2,−2),

1√
5
(2, 1, 0),

1√
45

(−2, 4, 5)

13. (c) Let z = a + bi and w = c+ di be complex numbers. Then

zw = (ac− bd)− (ad+ bc)i = (a− bi)(c− di) = zw.

14. c) Let X = (x1, . . . , xn), Y = (y1, . . . , yn) and let c be a scalar. Then X · cY =
(x1, . . . , xn) · (cy1, . . . , cyn) = x1cy1 + . . .+ xncyn = c(x1y1 + . . .+ xnyn) = c(X · Y ).

15. See the comments for Exercise 4.4.1.

16. If z = a + bi is a nonzero complex number, then zz = a2 + b2 > 0 since either a or b
is nonzero. Since X ·X is a sum of terms each of which is either zero or positive, and
since at least one is positive, X ·X > 0.

18. Use Exercise 17: ||U || = ||(1/||X||)X|| = (1/||X||)||X|| = 1.
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19. Use Exercise 17 again:
1

||cX||cX =
1

|c|||X||cX =
1

||X||X since c ∈ R+.

20. Let A = [aij ] and B = [bij ]. Assume that AB = [cij ], where cij =
n
∑

k=1

aikbkj . Then using

Theorem 5.1.1, cij =
n
∑

k=1

aijbij, but this is the i, jth entry in the product AB. Hence,

AB = AB.

21 These results follow from straightforward calculations.

22 Refer to Section 5.1.

23 If Z is parallel to Y , then Z = cY for some scalar c. Thus X ·Z = X ·(cY ) = c(X ·Y ) =
c(0) = 0.

24 Suppose that for some v1, . . . , vn ∈ S and a1, . . . , an ∈ F, a1v1 + . . .+ anvn = 0. Then
(a1v1 + . . . + anvn) · vj = 0 · vj = 0 for each j, and thus aj ||vj||2 = 0. Since 0 /∈ S,
||vj|| 6= 0, so aj = 0. Since j was arbitrary, each aj = 0, so S is linearly independent.

25 Use the trigonometric identities cosA cosB =
1

2
(cos(A−B)+cos(A+B)) and sinA sinB =

1

2
(cos(A− B)− cos(A +B)).

26 Use the trigonometric identity sinA cosB =
1

2
(sin(A− B) + sin(A+B)).

27 < f, g >=
∫ −π

−π
x cosxdx = 0, so x and cos(x) are orthogonal in this inner product

space.

28 < f, g >=
∫ −π

−π
x sin xdx = 2π, < f, f >=

∫ π

−π
x2dx =

2

3
π3, and< g, g >=

∫ π

−π
sin2(x)dx =

π, so cos(θ) =
2π

»

(2π3/3)(π)
=

π3
. Therefore θ ≈ 1.4738 radians or 84.4477◦.

29 < f, g >=
∫ 1

0
(4x2 + 3)(7x − 1)dx = 79/6, < f, f >=

∫ 1

0
(4x2 + 3)2dx = 101/5, and

< g, g >=
∫ 1

0
(7x − 1)2dx = 31/3. Therefore, cos θ =

79/6

/

»

(101/5)(31/3) ≈ 0.9113,

so θ ≈ 0.4242 radians or 24.3049◦.

30 cos θ =
< X,X >√

< X,X >< X,X >
=

< X,X >

< X,X >
= 1. Thus θ = 0.

31 Since < 0, X >= 0 for all X ∈ V, 0 ∈ W⊥, so W⊥ 6= ∅. Suppose that X, Y ∈ W⊥

and r ∈ F. If Z ∈ W, then < X + Y, Z >=< X,Z > + < Y,Z >= 0 + 0 = 0, and
< rX,Z >= r < X,Z >= r0 = 0. Therefore, W⊥ is a subspace of V.
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32 (a) For v, w ∈ V,

T (v + w) = (v + w)− ((v + w) · w1)w1 − . . .− ((v + w) · wk)wk

= (v + w)− (v · w1 + w · w1)w1 − . . .− (v · wk + w · wk)wk

= (v − (v · w1)w1 − . . .− (v · wk)wk) + (w − (w · w1)w1 − . . .− (w · wk)wk)

= T (v) + T (w).

(b) Let v ∈ V. Then < T (v), wj >=< v−(v·w1)w1−. . .−(v·wk)wk, wj >= 0, so T (v) ∈
W⊥. On the other hand, if w ∈ W⊥, T (w) = w−(w ·w1)w1− . . .−(w ·wk)wk = w,
so w ∈Im(T ). Therefore, Im(T ) = W⊥.

(c) If w ∈ W, then T (w) = w−(w·w1)w1−. . .−(w·wk)wk. But if w = a1w1+. . .+akwk,
then w · wj = aj , so T (w) = 0. Therefore, W ⊆ ker(T ). On the other hand, if
T (v) = 0, then we must have v = (v · w1)w1 + . . . + (v · wk)wk ∈ W. Therefore,
ker(T ) = W.

(d) dim V = rank(T ) + nullity(T ) = dimIm(T ) + dimker(T ) = dimW⊥ + dimW.

(e) If w ∈ W, v ∈ W⊥, then < v,w >= 0 by definition. Thus < w, v >= 0 as
well, so w ∈ (W⊥)⊥ and W ⊆ (W⊥)⊥. We know that dimW⊥ + dimW = n
and dimW⊥ dim(W⊥)⊥ = n for the same reason, so dim(W⊥)⊥ = dimW. But
W is a subspace of (W⊥)⊥ of the same dimension as (W⊥)⊥, so we must have
W = (W⊥)⊥.

33 Write A =









A1
...
An









=
î

AT
1 · · · AT

n

ó

. Notice that if w ∈ F n, then Aw =





A1w
...Anw



 =









AT
1 · w
...

AT
n · w









. If w ∈ N(A), then this is the zero vector, so each AT
j · w = 0. Thus w

is orthogonal to each AT
j , which means that if we treat A1, . . . , An as vectors in F n

without worrying about whether they are row vectors or column vectors, we have w
orthogonal to the span of A1, . . . , An, which is R(A). Likewise, if w ∈ R(A)⊥, then
AT

j · w = 0 for each j, so Aw = 0 and w ∈ N(A).

Section 5.2

In Exercises 1 - 8, remember that while eigenvalues are unique, corresponding eigenvectors
are not uniquely determined - in fact, any nonzero linear combination of eigenvectors for a
given eigenvalue is an eigenvector.

1. λ1 = 2, λ2 = −2, X1 =

ñ

1
0

ô

, X2 =

ñ

1
4

ô

.

2. λ1 = −1 (multiplicity 2), X1 =

ñ

1
0

ô

.
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3. λ1 = −1, λ2 = 2, X1 =

ñ −1
5

ô

, X2 =

ñ

1
−2

ô

.

4. λ1 = 1 (multiplicity 2), X1 =

ñ

1
1

ô

.

5. λ1 = 1 (multiplicity 2), λ2 = 2, X1 =







1
0
0





 , X2 =







5
3
1





 .

6. λ1 = −2, λ2 = −1, λ3 = 3, X1 =







1
0
0





 , X2 =







3
1
0





 , X3 =







2
2
4





 .

7. λ1 = 1 (multiplicity 2), λ2 = 2, X1 =







1
−1
0





 , X ′
1 =







0
2
−1





 , X2 =







−2
−1
1





 .

8. λ1 = −1, λ2 = 2, λ3 = 1, X1 =







1
1
1





 , X2 =







2
0
1





 , X3 =







1
0
1





 .

9. The first has characteristic polynomial λ2−6λ+1, the second λ2−λ+2. By Theorem
5.2.3 they cannot be similar.

11. pA(A) =

ñ

0 0
0 0

ô

12. Multiply by A:

AX = A(a1X1 + . . .+ akXk)

= Aa1X1 + . . .+ AakXk

= a1AX1 + . . .+ akAXk

= a1λX1 + . . .+ akλXk

= λ(a1X1 + . . .+ akXk)

= λX.

Hence, a1X1 + . . .+ akXk is an eigenvector of A associated with λ.

13.

ñ −1 0
0 3

ô

14.

ñ

1 0
0 1

ô

15.

ñ −1 1
−1 −3

ô

16.

ñ

1 2
−1/2 −1

ô

17.

ñ

1 1
−1 1

ô
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Section 5.3

1. Yes, two distinct eigenvalues, and so, two independent eigenvectors.

2. Yes, two distinct eigenvalues, and so, two independent eigenvectors.

3. No, not similar to a diagonal matrix: 1 is a repeated eigenvalue, but A− 1I has rank
2 and so there is only one independent eigenvector.

4. Yes, similar to a diagonal matrix since the eigenvalues are distinct.

5. Yes, the matrix has a repeated eigenvalue, 1, but A − 1I has rank 1 and so there are
two independent eigenvectors.

6. No. The eigenvalue 1 has multiplicity 3, but A− 1I has rank 1 and so there are only
two independent eigenvectors.

7. S =

ñ

1 1
0 −1

ô

8. S =

ñ

1 1
−1 1

ô

9. S =

ñ

3 0
−2 1

ô

10. S =







1 1 1
0 2 2
0 0 −2







11. S =







−1 0 0
2 1 2
0 0 1







12. S =







0 1 1
1 0 0
0 −1 1







13. 1 is the only eigenvalue, and A− 1I has rank 1, so there is only 1 independent eigen-
vector.

14. The eigenvalue 1 has multiplicity 2, but A− 1I has rank 2, so as above there is only 1
independent eigenvector.

15. The eigenvector 1 has multiplicity 3, but A − 1I has rank 1, so there are only 2
independent eigenvectors.

16. Yes. Since A − 1I has rank 1, there are two independent eigenvectors. The remain-
ing eigenvector (note that it must be real) has an eigenvector, and so, A has three
independent eigenvectors. It follows that A is similar to a diagonal matrix.

19. (a) A is similar to A, since A = I−1AI, where I is the n× n identity matrix.

(b) If A is similar to B, then B = S−1AS for some nonsingular matrix S. Multiplying
on the left by S and on the right by S−1, we obtain A = SBS−1 = (S−1)−1BS−1.
Here we have used the fact that (S−1)−1 = S. Hence, B is similar to A.

(c) If A is similar to B and B is similar to C, then B = S−1AS and C = T−1BT
for some nonsingular matrices S and T . Then C = T−1BT = T−1S−1AST =
(ST )−1A(ST ), and so A is similar to C.
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Section 5.4

1 X = (4/7, 3/7)T

2 X = (0.3028, 0.3267, 0.3705)T

3 A =











0 1/2 1/3 1/2
1/2 0 1/3 0
0 0 0 1/2
1/2 1/2 1/3 0











, PR = (6/19, 4/19, 3/19, 6/19)T

4 A =

















0 1/3 1/3 0 0
1/3 0 1/3 1/2 0
0 0 0 1/2 0
1/3 1/3 0 0 1
1/3 1/3 1/3 0 0

















, X = 1/160(21, 39, 24, 48, 28)T

Section 5.5

In Exercises 1 - 12, note that the orthogonal matrix P and the upper triangular matrix
P tAP are not unique - we give here one solution.

1. P =

ñ

0 1
1 0

ô

2. P =
1√
2

ñ

1 1
−1 1

ô

3. P =

ñ

0 1
1 0

ô

4. P =
1√
2

ñ

1 −1
1 1

ô

5. P =







1 0 0
0 0 1
0 1 0







6. P =







0 0 1
1 0 0
0 1 0







7. P =







0 1 0
0 0 1
1 0 0







8. P =







0 1 0
0 0 1
1 0 0







9. P =
1√
2

ñ

1 1
1 −1

ô

10. P =
1√
2

ñ

1 1
−1 1

ô

11. P =
1√
2







0
√
2 0

1 0 1
−1 0 1







12. P =
1√
2







0 1 1√
2 0 0
0 1 −1







For each of the matrices in Exercises 13 - 16, determine by inspection whether the
matrix is similar to a diagonal matrix, orthogonally similar to a diagonal matrix,
orthogonally similar to an upper triangular matrix, or unitarily similar to an upper
triangular matrix.

13. This matrix has two distinct eigenvalues and so it is similar to a diagonal matrix.
It is not symmetric, so it is not orthogonally similar to a diagonal matrix, but it is
orthogonally similar to an upper triangular matrix.

14. This matrix has three distinct eigenvalues and so it is similar to a diagonal matrix.
It is not symmetric, so it is not orthogonally similar to a diagonal matrix, but it is
orthogonally similar to an upper triangular matrix.
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15. This matrix is symmetric, and so, it is orthogonally similar to a diagonal matrix. Thus,
it is also similar to a diagonal matrix and orthogonally similar to an upper triangular
matrix.

16. This matrix is symmetric and so we make the same conclusion as in Exercise 15.

17. The eigenvalues are −1, i, and −i. Let P1 =
1√
2







0 0
√
2

1 1 0
−1 1 0





 ,

P2 =
1

2







2 0 0

0 1− i −
√
2

0
√
2 1 + i





. If U = P1P2, then U−1AU =







−1 0 0

0 i
√
2 +

√
2i

0 0 −i





.

18.

ñ

1 i
−i 1

ô

19.

ñ

1 i
i 1

ô

20. (a) A formal proof requires induction; we’ll give an informal proof. We know that
for two n × n matrices A and B, (AB)t = BtAt, and if A and B are nonsingular,
(AB)−1 = B−1A−1. Using these properties, we see that if P1, . . . , Pn are orthogonal
matrices, then

(P1 . . . Pn)
−1 = P−1

n . . . P−1
1 = P t

n . . . P
t
1 = (P1 . . . Pn)

−1.

It follows that P1 . . . Pn is an orthogonal matrix.

(b) The proof is similar to that in (a).

21. U =
1√
2

ñ

i i
−1 1

ô

.

Section 5.6

1. A−1 =
1

2
(A2 − 2A− 3I), A4 = 7A2 + 8A+ 4I.

2. A−1 =
1

2
(A2 + 2A− I), A4 = 5A2 − 4I.

3. A−1 = −1

5
(A− 4I), A6 = 44A− 205I.

4. A−1 =
1

2
(−A2 + 2A+ I) =

1

2







2 0 −2
0 −2 3
0 0 1







5. pA(λ) = −λ(λ− 2)(λ− 1), so mA(λ) = −pA(λ) since all linear factors must appear in
mA(λ).

6. pA(λ) = −(λ− 1)3, by trial we see that mA(λ) = −pA(λ).
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8. pA(λ) = −(λ− 1)3(λ− 2)2, mA(λ) = (λ− 1)(λ− 2).

9. pA(λ) = (λ− 1)2 = mA(λ)

10. pA(λ) = −(λ− 1)3 = −mA(λ)

11. mD(λ) = (λ− b1) . . . (λ− bk)

12. If b1, . . . , bk are the distinct entries on the diagonal of the diagonal matrix, then, using
the fact that similar matrices have the same minimum polynomial, we see thatmD(λ) =
(λ− b1) . . . (λ− bk).

Section 5.7

1. The angle of rotation satisfies cot 2α = 3/4, so α ≈ 26.57◦. The substitution is:

x =
1√
5
(2x1 − y1), y =

1√
5
(x1 + 2y1). The new equation is 30x2

1 + 5x2
2 = 45.

2. The translation is given by: x1 = x+ 2, y1 = y− 1, the new equation is 2x2
1 + y22 = 21.

3. The quadratic forms are (a) and (b).

4. q = [xy]

ñ

2 1/2
1/2 −1

ô ñ

x
y

ô

5. q = [xyz]







2 1/2 2
1/2 −1 0
2 0 3













x
y
z







6. q = [x1x2x3]







1 0 0
0 1 1
0 1 1













x1

x2

x3







7. q = [x1x2x3]







3 0 0
0 1 2
0 2 1













x1

x2

x3







8. S =
1√
2







0
√
2 0

1 0 1
−1 0 1







9. S =
1√
2







√
2 0 0
0 1 −1
0 1 1







10. The eigenvalues are 1, 2, 0, so the quadratic form is positive semidefinite.

11. The rotation x =
1√
5
(2x1 + y1), y =

1√
5
(−x1 + 2y1) transforms the equation into the

new equation: 10x2
1 − 15y21 = 20. The curve is a hyperbola.

12. There is a critical point at (0, 0). The matrix of second partials is A =
1

2

ñ

4 1
1 2

ô

, the

eigenvalues are
6±

√
8

2
, and since both are positive, there is a minimum at (0, 0).
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13. There is a critical point at (0, 0, 0). The matrix A is
1

2







2 0 0
0 −4 −1
0 −1 0





, the eigenvalues

are 2 and
−4±

√
20

2
, and since some are positive and some are negative, there is no

maximum or minimum.

Section 5.8

1. R(0) = (1, 0, 0), R(1) = (−1, 0, 1), V (t) = R′(t) = (−π sin πt, π cosπt, 1), A(t) =
R′′(t) = (−π2 cosπt, π2 sin πt, 0). The path is a spiral upward around the cylinder
x2 + y2 = 1.

2. R(0) = (1, 0, 0), R(1) = (−1, 0, 0), V (t) = R′(t) = (−π sin πt, π cosπt, 0), A(t) =
R′′(t) = (−π2 cosπt, π2 sin πt, 0). The path is circular in the x, y−plane, around the
circle x2 + y2 = 1. Ω = (0, 0, π),Ω× R = (−π sin πt, π cosπt, 0).

3. P = mV = 3V = 3(−π sin πt, π cosπt, 0). L = R × P = (0, 0, 3π).

4. IT =







23 3 16
3 37 −2
16 −2 24







5. (−11/9, 5/9, 10/9)

6. IT =







0 0 0
0 30 0
0 0 30





. Since IT is diagonal, the principal axes are the standard basis

vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).

7. IT =







6 −3 0
−3 6 0
0 0 12





. The eigenvalues are 12, 3, and 9. Choosing corresponding

eigenvectors, we obtain the principal axes: (0, 0, 1), (1/
√
2)(1, 1, 0), and

(1/
√
2)(1,−1, 0).

Chapter 6

Section 6.1

1. Similar to a diagonal matrix since the eigenvalues, −1 and 2, are distinct.

2. Similar to a diagonal matrix since the matrix is symmetric.

3. In this matrix, 1 is an eigenvalue of multiplicity 2, but A−1I has rank 1 and so there is
only 1 independent eigenvector. Thus, the matrix is not similar to a diagonal matrix.

4. The characteristic polynomial is −(λ+1)(λ2− 3λ+1). The roots are real and distinct
since 32 − 4 · 1 · 1 > 0 and so the matrix is similar to a diagonal matrix.
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5. This matrix is hermitian and so similar to a real diagonal matrix.

6. (b) and (c) are Jordan blocks, but (a) is not since there are two different eigenvalues,
and (e) fails since the superdiagonal has a 0.

7. The characteristic polynomial is (λ− 2)2, so the Jordan block must be J =

ñ

2 1
0 2

ô

.

8. The characteristic polynomial is −(λ− 1)3, so the Jordan block is J =







1 1 0
0 1 1
0 0 1





 .

9. Take S =

ñ

1 −1
−1 0

ô

; then S−1AS =

ñ

2 1
0 2

ô

.

10. Take S =







0 0 1
1 0 0
0 1 −1





; then S−1AS =







1 1 0
0 1 1
0 0 1





 .

11. It remains to show that the reverse implication holds true. Assume that there are
independent m× 1 column vectors X1, . . . , Xm satisfying

(A− aI)X1 = 0

(A− aI)X2 = X1

(A− aI)X3 = X2

...

(A− aI)Xm = Xm−1.

and let S = [X1 . . . Xm]. Then S is nonsingular and as in the discussion before the
theorem, we can see that AS = SJ ; thus S−1AS = J.

12.

(A− 2I)X1 = 0

(A− 2I)X2 = X1

(A− 2I)X3 = X2.

13.

(A− 2I)X1 = 0

(A− 2I)X2 = X1

(A− 2I)X3 = 0.

Section 6.2

In Exercises 1- 12, we list the Jordan blocks that lie on the diagonal of the Jordan canonical
form of the matrix. Recall that these blocks may occur in any order.
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1.

ñ −2 1
0 −2

ô

, [−2]

2.







2 1 0
0 2 1
0 0 2







3.

ñ

2 1
0 2

ô

, [2]

4.

ñ

2 1
0 2

ô

, [2], [3], [3]

5.

ñ

2 1
0 2

ô

,

ñ

2 1
0 2

ô

,

ñ

3 1
0 3

ô

6.

ñ −2 1
0 −2

ô

,

ñ

1 1
0 1

ô

, [1], [1]

7. [0], [2]

8. [0], [1]

9. [2],

ñ

1 1
0 1

ô

10.







1 1 0
0 1 1
0 0 1







11. [−1],

ñ

3 1
0 3

ô

12.







1 1 0
0 1 1
0 0 1







13. J =







2 0 0
0 1 1
0 0 1





 , S =







0 1 0
0 0 1
1 −1 0







14. J =







1 1 0
0 1 1
0 0 1





 , S =







0 1 −2
1 0 0
0 0 1







15. J =







2 1 0
0 2 0
0 0 2







16. J =







1 1 0
0 1 1
0 0 1







17. The conditions imply that the Jordan form of A must be the identity matrix I. Thus,
there is a nonsingular matrix S with S−1AS = I. It follows that A = I.

Section 6.3

1. y = Ce2t − et, y = 2e2t − et

2. y =

Ç

t

3
− 1

9

å

+ Ce−3t, y =

Ç

t

3
− 1

9

å

− 8

9
e−3t

3. y = −1 + Cet
2/2, y = −1 + et

2/2

4. y =
t3

2
+ Ct, y =

t3

2
− 3

2
t
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5. X =

ñ

x1(t)
x2(t)

ô

, A =

ñ

2 1
0 3

ô

, F (t) =

ñ

et

e2t

ô

6. X =

ñ

x1(t)
x2(t)

ô

, A =

ñ

3 1
2 −2

ô

, F (t) =

ñ

sin t
t

ô

7. x1 =
1

4
et+(Ct+C ′)e−t+ t−1, x2 = et+Ce−t. For the solution of the initial condition,

C = −3

2
, C ′ =

7

4
.

8. x1 = (Ct + C ′)e2t − 1

4
(2t2 + t), x2 = −1

4
(2t+ 1) + Ce2t. For the solution of the initial

condition, C =
1

4
, C ′ = −1.

9. x1 = −1

2
+ e2t

Ç

t+
1

2

å

, x2 = e−2t, x3 = 0.

10. x1 = −et +
e−t

9
+ e2t(C ′t+C ′′)− 1

2
, x2 = e(t+C − 1) +

e−t

9
+ e2t(C ′t+C ′′) +

1

2
, x3 =

e(t+ C)− 2e−t

9
+ e2t(C ′(t+ 1) + C ′′) +

1

2

11. x1 = Cet − C ′e−3t, x2 = 2Cet + 2C ′e−3t

Chapter 7

Section 7.1

4. maximum P = 9000 at either point 3 or 4.

5. maximum P = 6000 at point 3.

6. maximum P = 3225 at point 2.

7. maximum P = 4250 at point 2.

8. maximum P = 19, 800 at x = 120, y = 300.

9. maximum P = 18, 000 at x = 120, y = 300, or at x = 257.1428571, y = 128.5714287

10. A =







1 −1 3 1 0 0
2 1 3 0 1 0
1 3 1 0 0 1





 , X =









x1
...
x6









, C =
î

[2 4 1 0 0 0
ó

, B =







3
4
6





 .

11. A =







1 1 2 1 0 0
2 −1 2 0 1 0
1 3 1 0 0 1





 , X =









x1
...
x6









, C =
î

[2 1 2 0 0 0
ó

, B =







4
6
6





 .
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12. The variable z is essentially unbounded; that is, it may take on arbitrarily large values.
Thus, P has no maximum value.

13. From the last two constraints we see that 2 ≥ x, y, z ≥ 0, and so any point satisfying
the last two constraints must satisfy the first. It follows that the maximum value of P
is 6 when y = 2, and x = y = 0.

14. Substitute the value of a point on the line into the expression for the function z. We
get z = c1x1+ . . .+ cnxn = (c1a1+ . . .+ cnan)+ (1− t)(c1b1+ . . .+ cnbn). Now it is not
hard to see that if c1b1+ . . .+cnbn = 0, the function is constant; if c1b1+ . . .+cnbn > 0,
the function has its maximum when t = 0; and if c1b1 + . . . + cnbn < 0, the function
has its maximum when t = 1.

15. z =
41x

4
≈ 64.03124238 at x =

 

1600

41
≈ 6.246950475, y =

 

2500

41
≈ 7.808688095

Section 7.2

1. The maximum value of P is 14, when x2 = 7, x4 = 4, and x1 = x3 = 0.

2. The maximum value of P is 27, when x1 = 9, x4 = 2, and x2 = x3 = 0.

3. The maximum value of P is 10,000, when x1 = 200, x4 = 800, x5 = 300, and x2 = x3 =
0.

4. The maximum value of P is 16,800, when x2 = 240, x4 = 120, x5 = 660, and x1 = x3 =
0.

5. A pivot on the coefficient of x in the first equation produces the system

x+ (b/a)y = h/a

(d− cb/a)y = k − ch/a

Since h, a > 0, h/a > 0, and since h/a < k/c, ch/a < k and so k − ch/a > 0.

Section 7.3

1. Maximum is 3 when x1 = 1, x2 = 2, x3 = 1, x4 = x5 = x6 = 0.

2. Maximum is 3 when x2 = 5/2, x3 = 1/2, x5 = 1/2, x1 = x4 = x6 = 0.

3. No maximum value - x5 may be made as large as desired..

4. Maximum is 1 when x1 = 1, x3 = 1, x6 = 2, x2 = x4 = x5 = 0.

5. Maximum is 3 when x1 = 1, x4 = 1, x2 = x3 = 0.

6. Maximum is 2 when x2 = 1, x3 = 1, x5 = 1, x1 = x4 = 0.
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7. Maximum z = 2100 when x1 = 15, x2 = 25, x3 = 15, x4 = x5 = 0.

8. Maximum z = 1480 when x1 = 28, x2 = 6, x3 = 36, x4 = x5 = 0.

9. Maximum z = 104 when x1 = 16, x2 = 8, x5 = 2, x3 = x4 = x6 = 0.

10. Maximum z = 220/3 when X = x1 = 216, Y = x2 = 252, x4 = 144, x3 = x5 = 0.

11. Maximum P = $21, 240 when x2 = 20/3, x3 = 40/3, x6 = 20/6, x1 = x4 = x5 = 0.

12. If we let x1 be the number of microscopes and x2 be the number of telescopes, then
solving the problem in the usual fashion we get: P = $250 when x2 = 12.5, x4 =
35, x1 = x3 = x5 = 0. Of course making 12.5 telescopes is difficult. We could change
the time period to two weeks, then the solution would be to manufacture 25 telescopes
for a profit of $500.

Section 7.4

1. The row player gains 3. The row player loses 1.

2. If the column player chooses 1, the row player gains 2. If 2 is chosen by the column
player, the row player loses 1; if column 3 is chosen, the row player gains 3.

3. The row player never loses, and so will be the winner.

4. The optimal strategy is (1/3, 2/3) and the value of h is −1/3.

5. The optimal strategy is (0, 5/8, 3/8) and the value of h is 1/2.

6. −0.08 7. 1/2 8. 1/2

9. Optimal strategy for the column player is (1/3, 2/3) from Exercise 4. For the row
player, the optimal strategy is (5/8, 3/8). The expected value is 1/4.
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addition of vectors, see vector addition
additive identity, see identity, additive
additive inverse, 24, 70, 71, 74, 75, 299

uniqueness, 75
adjoint, 151
algebraic, 54
amps, 54
analysis of algorithms, 171
angle

between vectors, 189
angular

speed, 168
velocity, 168

angular momentum, 229
anti-commutativity, 164
associative property, 164
associative property, 20, 22, 23, 70, 181

of composition, 295
associativity

addition, 68
augmented matrix, 9, see also linear program-

ming

back substitution, 34
basic form, see linear programming
basic solution, see linear programming

basic variables, 37, 158, see also linear pro-
gramming

basis, 95, 110, see also change of basis, see
also orthonormal basis

Jordan, see Jordan basis
binary operation, 297
block multiplication, 122
block-diagonal form, 248
blocks, 122

C, 180, 289, 297
C[a, b], 76
cancellation law, 71, 75, 299
cancellation property, 24
canonical form, 246

Jordan, see Jordan canonical form
capacitance, 54
capacitor, 53
Cauchy-Schwarz inequality, 188
Cayley, Arthur, 216
Cayley-Hamilton Theorem, 240
Cayley-Hamilton theorem, 215
center of mass, 233
change of basis, 128, 130, 131, 134
characteristic equation, 193
characteristic polynomial, 193, 198, 215, 217,

240, 247
charge, 54
closed, 68, 73, 79
closed under addition, 68
closed under scalar multiplication, 68
coefficient, 7
coefficient matrix, 9
coefficients, 8
cofactor, 144
cofactors, 313
C (A), 86, 106
column, 8, 9

365



366 INDEX

column index, 9
column operation, 135

vs. row operation, 136
column player, 283
column space, 86
column vector, 14, 15, 63
column vectors, 69
commutative property, 20, 70, 181
commutativity

addition, 68
complement, 290
complete solution, 34, 38
complex numbers, 180, 289
composite, 111, 295
computational complexity, 171
conditions, 58
conjugate, 180, 182, 302
consistent, 100
constant coefficient linear differential equa-

tions, 255
constants, 8
constants associated with the echelon form,

36
continuous, real-valued function, 74, 76
converse, 30
coordinates, 65
coulombs, 54
Cramer’s Rule, 155, 171, 173
cross product, 163

magnitude of, 165
current, 53, 54

Dantzig, George B., 265
derivative, 228
determinant, 143

of a product, 150
diag(a1, . . . , an), 124
diagonal, 48, 124
diagonal entries, 48
diagonal form, 179, see quadratic form
diagonal matrix, 124, 179, 206
diagonalization, 239
diagonalizing, 200

quadratic forms, 222
symmetric and hermitian matrices, 209

difference, 71
differential equations, 255

first-order linear, 255
general solution, 256

solution, 255
solving, 255

dimension, 95, 96
direction, 63
displacement vector, 66
distribution vector, 58
distributive property, 164
distributive property, 20, 23, 70, 181
division algorithm, 301
dot product, 161, 180
doubly stochastic, 61
downward elimination, 175, 176

echelon form, 36, 92, 93, 99, 138
reduced, see reduced echelon form

efficiency of the simplex method, 281
eigenvalue, 192, 193, 224, 240, 243, 248

finding, 193
eigenvalue, 225
eigenvector, 192, 193, 195, 240, 243

generalized, see generalized eigenvector
elementary column operations, 136
elementary matrix, 31, 32, 134, 137, 138, 145,

154
elementary operation, 121
elementary row operations, 29
elements, 289
empty set, 290
equal, 10
equality, 76
equals, 289, 295
equation

of a line, 160
of a plane, 162

equivalence
matrix, 85, 100, 130

equivalence relation, 202
equivalent, 28
expected value, 287
extension of a basis, 97

Factor Theorem, 302
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factoring polynomials, 303
factors completely, 302
farads, 54
feasible point, see linear programming
field, 297
finding maxima and minima, 225
finding the Jordan form, 249
finite dimensional, 96
first order, 255
FLOPS, 172
forward elimination, 34
Fourier series, 189
free variables, 37, 158
function, 293
Fundamental Theorem of Algebra, 302

game theory, 283
Gauss, Carl Friedrich, 33
Gauss-Jordan, 34–35
Gauss-Jordan reduction, 34, 171, 174, 175
Gaussian elimination, 33–35, 175, 176
general solution, 34, 38
of a system of differential equations, see dif-

ferential equations
general system, 8
generalized eigenvector, 244
gigaflop, 172
Gram-Schmidt Process, 183
Gram-Schmidt process, 186, 208

Hamilton, Sir William Rowan, 216
head to tail, 66
henrys, 54
Hermite, Charles, 196
hermitian, 196, 240
hermitian matrix, 206
homogeneous, 43, 158

i, 180, 289
i-th coordinate, 128
identity

matrix, 25
multiplicative, 25
scalar multiplication, 24, 70

identity function, 295
identity matrix, see identity

identity transformation, 110
ill-conditioned, 158
image, 113, 293

of f , 293
imaginary unit, 289
inconsistent, 3
indefinite

quadratic form, see quadratic form
inductance, 54
inductor, 53, 54
inertia tensor, 228, 230, 232
infinite dimensional, 96
infix, 297
inner product, 180, 186
inner product space, 187
integers, 289
intersection, 290
invariant vector, 192
inverse, 25, 115, 116, 140, 296

of a linear transformation, see also linear
transformation

Jordan basis, 244, 245, 248, 249, 251
Jordan block, 241–244, 247, 250–252
Jordan canonical form, 239, 241, 246, 247,

314
Jordan, Camille, 239
Jordan, Wilhelm, 34

Kantorovich, L. V., 265
Karmarkar algorithm, 281
Karmarkar, N., 281
Kirchhoff’s laws, 4, 53
Kronecker δ, 25

leading coefficient, 217, 302
left nullspace, 106
left-handed system, 167
length, 63, 181
length of a vector, 161
line

equation, see equation of a line
linear form, see linear programming
linear programming

linear constraints, 266
linear combination, 12, 45, 82
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linear constraints, see linear programming
linear equation, 7
linear programming, 265, 267, 271

augmented matrix, 273
basic form, 275
basic solution, 275
basic variables, 275
feasible point, 267, 275
feasible solution, 275
linear constraints, 267
linear form, 266
LP, 267
nondegenerate, 275
objective function, 267
optimal feasible solution, 275
resolution of an LP problem, 276
row operations, 274
slack variables, 268

linear transformation, 109, 110, 294
nonsingular, 115
scalar product, 112
sum, 112

linearly dependent, 87–95
linearly independent, 45, 87–95
lower triangular, 48, 206
LP, see linear programming
LU-factorization, 51

magnitude, 63
Markov chain, 58
mathematical programming, 265
matrix, 8

of a composite, 119
of a linear transformation, 117, 118

matrix addition, 9, 10
matrix equation, 15
matrix multiplication, 9, 10

alternative perspective, 12, 25, 31, 53, 82,
85, 86, 123

matrix product, 11
megaflop, 172
MFLOP, 172
minimum polynomial, see polynomial, 248
minor, 144, 312
moments of inertia, 232

momentum, 229
monic, see polynomial
monic polynomial, see polynomial
Morgenstern, Oskar, 283
multiplicative identity, see identity
multiplicative inverse, 299
multiplicity, 305

n-tuple, 63, 69, 79
negative

quadratic form, see quadratic form
negative definite

quadratic form, see quadratic form
negative semidefinite

quadratic form, see quadratic form
nondegenerate, 275
nonempty, 290
nonhomogeneous, 43
nonsingular, 25, 115, 116, 125, 137, 138, 140,

150, 153, 240
nonsingular linear transformation, see linear

transformation
norm, 187
normalizing, 183
null(A), 106
nullity, 114
nullspace, 80, 104, 113

objective function, see linear programming
Ohm’s Law, 54
ohms, 54
one-to-one, 295
onto, 295
operation, 297
optimal feasible solution, see linear program-

ming
order, 9, 10
order relation, 307
ordered system, 307
orientation, 166
orthogonal, 182, 189, 206
orthogonal complement, 191
orthogonally similar, 207, 239
orthonormal, 182

basis, 183



INDEX 369

orthonormal basis, 186

Page Rank, 202
parallelogram method, 64, 66
partition, 122
payoff matrix, 284, 287
permutation matrix, 153
pivot, 35, 271

on a, 271
pivot operation, 35
polynomial, 76

characteristic, see also characteristic poly-
nomial

minimum, 217, 218, 240
monic, 217, 302
over a field F , 301

position vector, 229
positive

quadratic form, see quadratic form
positive definite

quadratic form, see quadratic form
positive semidefinite

quadratic form, see quadratic form
prefix, 297
prime, 302
principal axes, 228, 233
Principal Axes Theorem, 210, 222, 233, 240
Principal of Mathematical Induction, 307
Principle of Mathematical Induction, 307
probability, 58
product, see matrix product
product of elementary matrices, 154
products of inertia, 232
projection, 110, 188

of a vector, 163

Q, 289, 293, 297
quadratic form, 221

diagonal form, 222
indefinite, 224
negative, 224
negative definite, 224
negative semidefinite, 224
positive, 224
positive definite, 224

positive semidefinite, 224
quaternions, 78

R, 289, 293, 297
R2, 290
random or mixed strategy, 284
rank, 100, 114, 153, 154
rational numbers, 289
Rational Root Test, 303
real numbers, 289
reduced echelon form, 36, 39, 92, 93, 99, 138,

311
reduced row echelon form, 36
redundant, 3
reflexive, 202
reflexive property, 19
Remainder Theorem, 302
resistance, 54
resistor, 53
resolution of an LP problem, see linear pro-

gramming
right-handed system, 167
root, 301
row, 8, 9
row i, 84, 104
row echelon form, 36
row echelon normal form, 36
row equivalent, 29
row index, 9
row matrix, see elementary matrix
row operation, 134, 139

vs. column operation, 136
row operations, see also linear programming
row player, 283
row space, 84, 99
row vector, 15
row vectors, 63, 69
R (A), 84, 106

scalar, 7, 68
scalar multiplication, 9, 10, 64, 74
scalar product, 10, see also linear transforma-

tion
Schur’s Theorem, 208, 240
Schwarz inequality, 181
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set, 289
similar, 130, 179, 192

orthogonally, 207
unitarily, 207

similarity
to a diagonal matrix, 198

simplex algorithm, 277
simplex method, 265, 271

efficiency of, 281
equation form, 272

simultaneous solution, see solution
singular, 25, 115
size, 171
size of a matrix, 9
slack variables, see linear programming
solution, 8, 301

of a system of differential equations, see
differential equations

solution set, 8, 68
solving using LP methods, 285
span, 80–82
span(S), 82
spanned, 80
square, 9
standard basis, 96, 186
states, 58
stochastic, 203

vector, 204
stochastic matrix, 60
strategy, 284, 287
submatrices, 122
subset, 289
subspace, 79
sum, 10
superdiagonal, 242
symmetric, 196, 239, 240
symmetric property, 19
synthetic division, 303

Taylor expansion, 225
Taylor’s Theorem, 226
teraflop, 172
three-dimensional vectors, 160
torque, 229
transition matrix, 59

transition probability, 58
transitive, 202
translate, 44
transpose, 15, 146, 182
triangle inequality, 181, 188
triangular form, 34, 48
triple scalar product, 163, 164, 166
two-dimensional vectors, 63
two-person game, 284

union, 290
unit length, 181
unit vector, 161, 181
unitarily similar, 207, 240
unitary, 206
unknowns, see variables
upper triangular, 48, 206, 239
upper triangularization, 208
upper-triangular, 177
upward elimination, 175, 176

variables, 8
basic, see basic variables
free, see free variables

vector, 74
addition, 64, 74
zero, 74

vector addition, 68
vector space, 68, 74
vectors, 68
velocity vector, 229
voltage, 53, 54
volts, 54
von Neumann, John, 283

well-defined, 68, 293, 294
matrix addition, 19
matrix multiplication, 19
scalar multiplication, 19

well-ordering property, 307
work, 169

Z, 289, 293
Z+, 307
Z2, 298
Z3, 298
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zero divisor, 75, 299
zero matrix, 24
zero transformation, 110
zero vector, see vector, 70, 74
zero-sum, 284
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