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Abstract

In 2005 it was discovered that an oil droplet placed on a vibrating bath of the same
oil would bounce along the surface of the oil indefinitely, propelled by the waves it
created [2]. This “walker” exhibits many behaviors analogous to those observed in
quantum systems, such as single particle double slit diffraction [3], quantized orbits
[4], and among others [1], tunneling [5]. Tunneling occurs when a droplet interacts
with a submerged barrier; the droplet either passes over or reflects off of the barrier.
In experiments described here, we study the dependence of the tunneling probability
on the height of a barrier of width e = 3.0 mm. It was determined that tunneling
occurred for barriers where the depth of the oil on top of the barrier h was greater
than 1 mm, and showed “quantum-like” probabilistic behavior at an oil depth of
h = 1.25 mm. It was also observed that droplets with higher momentum are more
likely to tunnel.





Introduction

“While the founding fathers agonized over the question ‘particle’ or ‘wave’,
de Broglie in 1925 proposed the obvious answer ‘particle’ and ‘wave’...
[t]his idea seems to me so natural and simple, to resolve the wave-particle
dilemma in such a clear and ordinary way, that it is a great mystery to
me that it was so generally ignored.” -J. S. Bell

Quantum mechanics is perhaps one of the most counter-intuitive scientific theories
in the history of the scientific method. At the atomic level, where quantum effects
dominate, the laws that seem to govern our everyday world are no longer relevant. De-
terminism, the idea that every effect has a cause, is replaced with the idea that every
action is probabilistic. A particle cannot be described by precise coordinates; instead,
it is described using a wavefunction which provides a range of possible locations with
associated probabilities. This probabilistic interpretation of quantum mechanics is
known as the Copenhagen interpretation, and represents the most common form of
rationalizing the radical, experimental observations of quantum mechanics.

In 2005, Couder et al. showed that oil drops bouncing on a vertically vibrated
fluid bath exhibit properties analogous to the paradoxical properties previously seen
only at the quantum scale [6]. The system operates at the macroscale, meaning that
it is governed by the more “intuitive” classical laws, but still behaves like a quan-
tum system. The accessibility of this experiment allows us to observe fundamental,
“quantum”-like phenomena in a way that is impossible at the nanoscale. For exam-
ple, in quantum mechanics, one can never know the position and the velocity of a
particle, simply because it can never have a perfectly defined position and velocity.
In this experiment, however, the “particle” can be easily seen at all times, so both its
position and velocity can be easily tracked.

The behavior of the droplet system seems to agree with a theory of quantum
mechanics proposed by Louis de Broglie in 1923 known as pilot-wave theory [7, 8].
Unlike the probabilistic viewpoint subscribed to by adherents of the Copenhagen
interpretation, de Broglie’s model asserts that the particle has a precise location, and
that the particle is pushed by a guiding or “pilot” wave. The theory was extended by
David Bohm in 1952 [9, 10], but never caught on because it gained “realism” (the
idea that a particle is well defined at all times) at the expense of “locality” (the idea
of a universal speed limit where nothing, including information, can travel faster than
the speed of light required by special relativity); a trade that is generally considered
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unfavorable by physicists.1

De Broglie’s original theory is underdeveloped, having remained relatively obscure
for the better part of the last century. Since the predictions of the Copenhagen
interpretation and de Broglie’s theory are similar, experiments have done little to
clarify the debate. As a result, the more developed Copenhagen school of thought
holds its place as the interpretation of quantum phenomena.

After taking a course in quantum mechanics, I found it difficult to truly believe
some of the associated implications of the Copenhagen interpretation. I was seduced
by some of the more obscure quantum methodologies that promised salvation from
indeterminism and non-realism (such as Bohm or de Broglie’s theories), and it was
difficult from me to resist the opportunity to investigate analogs of these method-
ologies in an experimental setting. The bouncing droplet system, which serves as a
hydrodynamic quantum analog and forms the backbone of this thesis, is introduced
below.

Bouncing Droplets

Though it had been observed for at least a century, the phenomena of droplets bounc-
ing on a fluid bath was first explained by Jearl Walker in 1978 [11]. The investigations
began with a simple droplet of water falling onto a bath of water and remaining just
a second too long before coalescence.2 Walker discovered that by adding detergent
to the water and vibrating the bath, he could extend the lifetime of the droplets
from fractions of a second to several minutes. These droplets bounce at frequencies
of around 50 Hz (50 bounces per second) and are very small, with a diameters of
a millimeter or less. These two factors make it difficult to observe even the main
mechanisms that drive the behavior. A key insight by Walker was that by flashing a
strobe light at a frequency slightly slower than the rate of vibration of the bath, he
could observe the droplet bouncing as if in slow motion.

Droplet
Air

Fluid Bath

Droplet

Droplet

Fluid BathFluid Bath

Air Air

Air Pocket

a) b) c)

Figure 1: A depiction of a droplet bouncing on a bath of the same fluid. (a) A droplet
falls onto a fluid bath. (b) A film of air gets trapped underneath the droplet. (c) The
droplet bounces back up off of the cushion of air leaving behind waves that propagate
radially.

Walker found that a trapped film of air kept the droplet and the bath from touch-
ing, as shown in Fig. 3. That is, the droplet is bouncing on a layer of air that is being
pushed out from under the droplet, but because the bounce happens so quickly, the

1The Copenhagen interpretation of quantum mechanics, by the way, is non-realist and non-local.
2It is often reported that this occurs in coffeemakers, as the coffee drips into the pot.
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fluid droplet and the fluid bath never touch. Walker concluded that the leakage rate
of this trapped pocket of air depends on three factors: the surface tension of the fluid
in the bath, the viscosity of the droplet and the fluid bath, and the viscosity of air.
He found that the bath must be of uniform surface tension and free from floating
particulate matter, since both could lead to coalescence. Higher viscosity fluids led
to longer droplet lifetimes, since more viscous fluids make it more difficult for air to
escape the gap between the drop and the bath. Finally, adjusting the frequency and
the amplitudes of the vibrations also affected droplet lifetime.3

More recent research showed that droplets of fluids like silicone oil can bounce
indefinitely on a vibrating bath [2]. The long lifetime occurs not only because silicone
oil has a high viscosity, but also because it has a low surface tension. A low surface
tension is beneficial because it makes the oil bath relatively immune to surfactants
(e.g. detergent) or contamination that would otherwise make the surface tension
nonuniform and lead the drop to coalescence.

Faraday Waves

The behavior of a fluid in a vertically vibrated bath can be controlled by adjusting
the amplitude or the frequency of the vibration. Depending on a variety of factors
(size of bath, fluid in bath, etc.) each system has a specific amplitude (given a specific
frequency), which if surpassed, will produce standing surface waves called Faraday
waves [12].4 5 A vibrating bath below this critical amplitude, also known as the
Faraday threshold, will have a quiescent surface. A bath driven at an amplitude
greater than the Faraday threshold will have a turbulent surface with ripples and
waves. An example of Faraday waves is shown in Fig. 2. Adjusting the frequency
above the Faraday threshold will change the size and shape of the Faraday waves.
Note that Faraday waves can be created either by increasing the driving amplitude
above a critical level, or adjusting frequency.

Walking Droplets

A bouncing droplet will bounce differently depending on the frequency and amplitude
of the vertical vibrations. If the parameters are set just below the Faraday instability,
a curious motion arises: the droplet seems to “walk” across the surface of the oil. The
droplet is being pushed by its own ripples, a dual effort in which neither can exist
without the other. In essence, the walker is both a particle and a wave; a conjunction
reminiscent of the quantum scale.

3Reedie Andrew Case (’92) wrote his thesis “Oil on Troubled Water: The Extension of Floating
Drop Lifetimes Due to Interface Vibration” where he looked at droplet lifetime as a function of
vibrational frequency.

4Faraday waves were not actually discovered by Michael Faraday; in the footnotes of his paper
he cites that they were first observed by Oersted, Wheatstone, Weber, and others. Faraday was just
the first to study their behavior in detail.

5Another Reed thesis, this one titled “Good Vibrations: A Visual Exploration of Faraday Waves”
by Alison Saunders empirically tested the mathematical Faraday wave model.
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Figure 2: A picture of Faraday waves in a dish of water at 80 Hz.

Droplet

Fluid Bath

Air

Air Pocket

Figure 3: A depiction of a droplet walking across a bath of the same fluid.

Overview

Recently, two main groups have been investigating the properties of this unique sys-
tem. A group at Laboratoire Matière et Systèmes Complexes (MSC) in Paris, France,
headed by Yves Couder was the first to uncover some of the inherently “quantum”-
like behavior of bouncing droplets, in 2005 [6]. Since 2010, John Bush’s group at
MIT have created a mathematical model and performed their own investigations of
the walker system. Couder, Bush, and others have shown that this system can repro-
duce double-slit single-particle interference [3], tunneling [5], quantized orbits [4],
and many other “quantum”-like effects [1].

This thesis documents an experimental investigation into the “tunneling” behavior
of this bouncing droplet system. In this setting, tunneling occurs when the droplet
interacts with a submerged barrier. Only one other study looks at this aspect [5], but
falls short of completely examining the tunneling behavior, focusing on the effect of
barrier width and not examining barrier height. I hope to add to the body of work
in this subfield by studying how barrier height affects probability of tunneling.

This thesis is divided into three main chapters. Chapter 1 describes the hydrody-
namic quantum analog along with a brief survey of the relevant literature. Chapter 2
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describes the experimental design and explains the setup and the data acquisition
procedures. Chapter 3 presents the data from my experiments. Finally, the Con-
clusion highlights the results, summarizes the limitations, and suggests avenues for
future study.





Chapter 1

Pilot-Wave Hydrodynamics

In this chapter I will present a brief survey of the literature describing hydrodynamic
quantum analogs, and discuss in more detail the tunneling experiments relevant to
my investigation. Because the system was discovered in 2005, most of the literature
examining this topic was written within the last decade.

1.1 Oil Droplet System

Consider a fluid of density ρ, viscosity ν, and surface tension σ in a bath of depth
H. The bath is sinusoidally driven vertically with an amplitude A0 at a frequency
f = ω/2π. By defining γ = A0ω

2, the effective gravity in the frame of reference of the
bath is g + γ sin(ωt). The surface of fluid in the shaking tray remains quiescent for
lower values of γ. However, if γ is increased above a certain threshold (by increasing
A0 or f), the surface becomes unstable leading to the appearance of standing surface
waves called Faraday waves. We define this threshold as the Faraday threshold,
γF. The value of γF changes depending on the size and shape of the tray, the amount
of fluid in the tray, as well as the properties of the fluid.

Shaker

Tray

Fluid

Droplet

Figure 1.1: A droplet bounces on a vertically vibrating fluid bath. The tray vibrates
with an amplitude A0 at frequency f .

If we take a toothpick and break the surface of the vibrating oil bath, we form
a droplet of oil of diameter D as shown in Fig. 1.1 that bounces on the surface for
hours. The droplet bounces on a pocket of air, which is trapped beneath the droplet
and the bath [11]. As the oil droplet bounces, it creates radially traveling waves that
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propagate outwards on an otherwise flat surface. The droplet will continue bouncing
for a specific range of values of γ. For small γ, the forcing is not enough to sustain
the droplet, and it quickly coalesces. Increasing γ above the threshold for coalescence
leads to a variety of different bouncing regimes until at γ = γF where Faraday waves
emerge. Below γF, the value of γ also affects the range of the radial waves; for low
γ, these waves quickly dissipate, but as γ approaches γF, they are sustained longer.
We are interested in studying the region below the appearance of Faraday waves but
above the region of coalescence. The range of the various parameters which allow for
the existence of bouncing droplets are outlined in Table 1.1.

Table 1.1: Approximate limits for bouncing drop behavior. The value g = 9.81 m/s2

is the standard acceleration due to gravity. Adapted from [1].

Parameter Lower Limit Upper Limit

Viscocity ν (cSt) 10 100
Bath Depth H (mm) 4 10
Frequency f (Hz) 20 150

Amplitude A0 (mm) 0.1 1
Drop Diameter D (mm) 0.6 1.0

Forcing Acceleration γ (ms−2) 0.5g γF ≈ 4.2g

1.1.1 Faraday Waves

Driving a fluid-filled tray with forcing acceleration γ = γF we see the appearance
of standing surface waves known as Faraday waves. These waves oscillate with a
frequency fF = f/2 and an angular frequency ωF = 2πfF = πf . For a fluid bath of
density ρ, surface tension σ, and depth H, the standing wave and water dispersion
relation:

ω2
F =

(

gkF +
σk3

F

ρ

)

tanh(kFH), (1.1)

can be used to find the wavelengths of standing waves at the Faraday threshold.
This relates the angular Faraday frequency ωF to the Faraday wavenumber kF, where
g is the gravitational constant [13]. From the wavenumber, we can calculate the
wavelength λF of the Faraday waves by the relation λF = 2π/kF. Though we are
interested in investigating the region γ < γF for which there are no standing surface
waves, Eq. (1.1) provides an estimate of the wavelength and frequency of the localized
waves surrounding the droplet for the bouncing behavior.

1.1.2 Vibration Number

In an experiment of this nature, one usually pours a specific volume of oil in the
tray, fixing the values of ν, σ, and H. One is then left with the option to adjust γ
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which produces a range of droplet motions, including a slew of different stationary
bouncing modes and linear or chaotic “walking” trajectories (which are discussed in
Section 1.1.3). To categorize the various bouncing behaviors, we use the vibration
number Vi, which takes into account many of the parameters of the experiment [14].
The vibration number is the ratio of the forcing frequency and the droplet’s natural
oscillation frequency ωD and is given by:

Vi =
ω

ωD.
(1.2)

where ωD represents the oscillation frequency of a fluid droplet. Rather than remain
a perfect sphere, the droplet stretches and contracts vertically as it bounces, and ωD

describes the frequency of this motion. The oscillation frequency of a fluid droplet is
defined as:

ωD = 2

√

2σ

ρD3
, (1.3)

where σ is the surface tension, ρ the density, and D the diameter of the droplet [15].
Combining Eqs. 1.2 and 1.3 we arrive at:

Vi =
ω

2

√

ρD3

2σ
, (1.4)

a dimensionless parameter that captures the effects of the fluid’s material properties,
the tray’s vibration, and the droplet’s diameter. Depending on the vibration number
Vi and the driving strength γ/g, the droplets switch between different bouncing states
as shown in Fig. 1.2. If we hold the working fluid and the driving frequency constant
(σ, ρ, and ω), then we can think of increasing Vi as increasing droplet diameter D.

The various modes seen in Fig. 1.2 can be described by a pair of numbers m and
n, where n is the number of times the droplet contacts the surface over a time span
m/f . For example, in the (1,1) “bounce” mode, the droplet hits the oil bath once
per up-and-down motion of the tray. In the (2,2) mode, the drop makes two bounces
of differing heights for two driving periods. The “chaos” regimes indicate that the
bouncing of the droplet is chaotic and does not exhibit a periodic bouncing motion.
The “walk” regime describes a very particular kind of behavior in which the droplet
moves forward as it bounces, seemingly walking across the surface. Like bouncing,
walking also comes either the (2,1), (4,2), or chaotic modes. Finally, the “coalescence”
region demarcates the values for which the droplet coalesces with the bath.

The phase diagram shown in Fig. 1.2 provides a valuable starting place for an
experiment since it outlines the many possible states of the system, and where we
can expect to find particular behaviors. We will now narrow our focus to only the
walking regime, which is the focus of this thesis.

1.1.3 Walking

A walking droplet is a very specific type of bouncing droplet that arises between
γW < γ < γF, where γW the the walking threshold. As the droplet bounces vertically
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Figure 1.2: The different bouncing regimes for the oil drops of 20 cSt silicone oil
at f = ω/2π = 80 Hz, characterized by the non-dimensional forcing amplitude γ/g
and the vibration number Vi. The solid colors represent the modes predicted by a
theoretical model [14], and the various points represent experimentally measured
limits. The parameters (m,n)i describe a droplet that bounces n times in m forcing
periods, where i distinguishes modes with different mechanical energy. The Faraday
threshold is γF = 4.2. Adapted from J. W. M. Bush, Annu. Rev. Fluid Mech. 47,
273 (2015).

on the vibrating fluid bath, the interaction with the wave it generated during its
previous bounce gives it a slight horizontal motion. Thus, for every bounce, the
droplet follows a parabolic trajectory. But because these droplets are bouncing at
40 times per second (or more) and the parabolic motion is periodic, the vertical
oscillations are difficult to see. The apparent behavior that emerges is that of the
droplet moving in a straight line along the surface of the fluid bath.

The horizontal component of the walking motion is due to the droplet landing
slightly off center from the radial wave it produced in the previous bounce, as shown
in Fig. 1.3. At such close proximity to the Faraday threshold, the waves surrounding
the droplet are not just regular ripples, but rather are like localized Faraday waves
temporarily sustained by the vibrations before decaying away. The kinetic energy
from the falling droplet is enough to perturb the unstable surface such that the waves
appear, and then the energy introduced by the vertical forcing of the tray keeps these
waves from damping out completely, as they would in an un-forced system. The value
of γ determines how long these local Faraday waves are sustained. As these waves
interfere with one another they create an overall wave field that guides the droplet.
This overall wave field is referred to as the guiding wave or the pilot wave. A
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Figure 1.3: The series of pictures (a) - (f) show a walker over two forcing periods.
The droplet bounces off of the slope of the localized wave, launching into the air, and
then falls again on a new wave slope. This periodic process happens multiple times
per second, giving the droplet the appearance of walking across the surface. Figure
from S. Protiere et al., J. Fluid Mech. 554, 93 (2006).

walker is defined as a self-propelling droplet and its guiding wave, since they are
mutually interdependent; the droplet creates the guiding wave, and the guiding wave
moves the droplet. The unique combination of the two components can result in novel
interactions such as bound or scattering states.

Bound States

A periodic damped wave allows for two bouncers to form a bound state: a con-
figuration in which the droplets remain a fixed distance apart [16]. Starting far
away from one another, two droplets drift towards one another until a fixed dis-
tance dbd0 . Increasing driving acceleration γ decreases their separation distance dbd0
(Fig. 1.4). These bound bouncers can form triangular lattices, although their peri-
odicity is highly sensitive to the mass of the droplets. If the masses of the droplets
differ, these configurations drift slowly and rotate because the waves produced by the
larger droplet create an imbalanced wave field [17]. Finally, the droplets can bounce
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Figure 1.4: In (a), the trio of droplets organize themselves into a triangular lattice
separated by distance dbd0 . The forcing acceleration has been increased in (b), and the
droplets are more spread out with a larger dbd0 value. Bound states can include a large
number of bouncing droplets, as demonstrated by the 7 bouncing droplets shown in
(c). Figure from S. Protiere et al., J. Phys.: Condens. Matter 17, S3532 (2005).

in phase with one another (they both land at the same time and reach their peaks at
the same time) or completely out of phase with one another (as one lands, the other
reaches its peak).

Walkers can also form bound states. Two walkers of the same size that are ap-
proaching one another can form an orbit around their center of mass as shown in
Fig. 1.5. Between the two droplets is the fixed distance dorbn given by

dorbn = (n− ǫ0)λF (1.5)

where λF is the wavelength of the localized Faraday waves estimated by Eq. (1.1), ǫ0
is a fixed distance which is the same for all orbitals of these walkers (usually in the
range 0.15 < ǫ0 < 0.25 depending on droplet diameter), and n = 1, 2, 3, ... for drops
that are in phase or n = 1/2, 3/2, 5/2, ... for drops out of phase. Orbiting periods are
approximately proportional to dorbn , which ends up meaning that the velocity of the
orbiting walkers is a little less than the velocity of a free walker [18].

Scattering States

Two identical walkers headed towards each other can form fixed orbits, or they can
scatter. Scattering describes an interaction in which droplets are deflected through
their wave fields, and never actually make contact with one another. Most of the
interactions of a walker are scattering of some form. For example, if a single walker
approaches the wall of the tray, it will never actually touch the wall. Instead, the
guiding wave reflects off of the wall and modifies the wave field in such a way that
the droplet will scatter in the opposite direction.
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Figure 1.5: The figures show two droplets of equal size orbiting their center of mass.
In (a) the droplets bounce out of phase with n = 0.5 and dorbn = 1.65 mm whereas
in (b) the droplets bounce in phase with n = 1 and dorbn = 3.7 mm. Figure adapted
from S. Protiere et al., J. Fluid Mech. 554, 101 (2006).

1.1.4 Path Memory

The system’s proximity to the Faraday threshold is captured by a parameter called
path memory. This captures the importance of damping in the system [19]. Every
time the droplet impacts the bath, it creates a radial traveling wave. Over the course
of many bounces, a guiding wave field composed of a superposition of the many
waves arises. In this way the wave field “remembers” previous interactions, but is at
the same time being periodically “updated” with every new bounce of the droplet.
Because droplet motion is influenced by the wave field, controlling the damping of
the wave field influences the path of the walker.

For a bouncing droplet in which the guiding waves decay relatively quickly, the
droplet can only be influenced by relatively recent waves. This kind of behavior is
characterized as having a low memory. Conversely, a high memory system is one in
which waves do not decay quickly; they propagate outwards and reflect off of the
surfaces of the tray and interfere with the other waves produced by the droplet. As
one gets closer to the Faraday threshold, one achieves higher and higher memory
because waves last longer. The quantum-like features described here arise in the
high-memory limit.

The non-dimensional memory parameter is formally defined as:

Me =
Td

TF(1− γ/γF)
,

where Td is the decay time of waves in the absence of vibration and TF is the period of
the Faraday waves (TF = 1/fF) [20]. It will suffice to discuss memory as a fraction of
the Faraday threshold γ/γF , since the fraction and Me are monotonically related. As
the value of γ/γF increases, we get closer to the Faraday threshold and Me increases.
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Eventually as γ/γF approaches 1, the memory parameter approaches + ∞. Thus,
higher forcing γ goes hand in hand with higher memory Me.

In practice, walking arises above a value of γ/γF = 0.94, with more quantum-like
phenomena arise at values of γ/γF = 0.97 and above [4]. Deviations in memory γ/γF
as small as ± 0.01 have been shown to have drastic differences in both long term and
short term droplet behaviors [20].

1.2 Bouncing Droplets as a Pilot-Wave Analog

The bouncing droplet system discussed above has remarkable similarities to a the-
oretical model of quantum mechanics. We start by introducing classical mechanics,
which seeks to mathematically describe the motion of relatively large scale objects
under action of forces. It was, until the late 19th century, physics. Physicists in the
early 20th century, after a series of very puzzling experimental results, slowly began
to realize that matter at the small scale behaved very differently than what they had
been studying in the macroscale world. Quantum mechanics was developed, from
the ground up, with the aim of mathematically describing this brave new world. As
with any new behavior, a variety of theoretical explanations with mathematically
different foundations were tossed around, until, at the 1927 Solvay conference, the
Copenhagen interpretation of quantum mechanics emerged. The Copenhagen inter-
pretation was spearheaded by Niels Bohr and Werner Heisenberg, and provides a way
of interpreting the mathematics of quantum mechanics. This interpretation is fun-
damentally probabalistic. In the modern day, most physicists teach and preach the
Copenhagen interpretation of quantum mechanics because it is in excellent agreement
with experiment and it also is more developed than other interpretations.

The oil droplet system is classical, but it is unique in that it is a classical system
that behaves like a quantum system. Experimentally, it exhibits a variety of counter-
intuitive interactions similar to those seen in quantum mechanical systems [21].
These include single particle double slit diffraction [3], quantized orbits, tunneling
(discussed in Section 1.2.2) [5], and others [1]. These unique features stem from
the particle-wave duality, a central concept in quantum mechanics: the idea that
a particle can behave like a particle in some circumstances and like a wave in others.
In the hydrodynamic pilot-wave system, this is represented by the walker which is
both a droplet and a wave.

The oil droplet system is slightly different than the actual quantum conception
since the walker is a droplet and a wave, while the Copenhagen interpretation de-
scribes an electron (for example) as a particle or a wave. In this sense the oil droplet
system is not analogous to the Copenhagen interpretation of quantum mechanics.
However, it bears remarkable resemblance to a theory proposed by L. de Broglie
in 1923, the so-called “double solution” theory [7]. De Broglie proposed that the
particle is guided by two waves: a pilot wave created by internal particle oscilla-
tions that affects the immediate behavior of the droplet (i.e. the localized Faraday
waves) and evolves according to the Klein-Gordon equation, and a wave outlined
by the Schrödinger equation that describes the long term statistical behavior of the
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droplet’s location over time (discussed in Section 1.2.1) [8]. The second statistical
wave describing the long term motion of the particle in de Broglie’s theory is the
very same wave that describes the particle’s probable location using the Copenhagen
interpretation, but because of de Broglie’s extra pilot wave, the same wave is inter-
preted differently. Unfortunately, because de Broglie could never find the equation
of the pilot wave, he could not proceed with his theory and it fell into obscurity. His
theory was picked up and modified by David Bohm in 1952 [9, 10], who combined
the statistical wave and the guiding wave into a single wave. By combining the two
waves, Bohm’s formulation loses its relevance to the bouncing droplet system.

It is worth noting that there are a few differences between the hydrodynamic
system and an actual quantum system. First of all is the scale; the bouncing droplet
system moves under the laws of the macroscopic world. Secondly, the hydrodynamic
system is dissipative (waves are damped) and sustained only through continuous
energy input (constantly being vibrated), so it is not a conservative system. With
that said, it is still worth comparing the two since they appear similar in many other
respects.

Despite these differences, it is worth investigating the hydrodynamic pilot-wave
analogs in greater detail. We will narrow our focus once again, and investigate the
tunneling behavior of this system, which describes the droplet’s interaction with sub-
surface barriers. The following section explains tunneling in quantum mechanics, and
the analogous behavior in the droplet system.

1.2.1 Long Term Droplet Behavior

Constraining a walker to a circular region, Harris et al. tracked the motion of the
walker over a long period of time [20]. In the high-memory, chaotic motion regime,
the droplet was allowed to walk freely while its position was tracked (Fig. 1.6(a)) and
translated into the histogram (Fig. 1.6(b)). The histogram provides the probability
of finding the walker at a specific location within the corral, and recovers the shape
of the Faraday wave that occurs at the Faraday threshold. This histogram serves the
same purpose as de Broglie’s statistical wave described by the Schrödinger equation.
In the Copenhagen interpretation of quantum mechanics, however, this statistical
wave (called the wavefunction) fully defines the particle.

1.2.2 Tunneling

Tunneling in Quantum Mechanics

Among the various phenomena associated with quantum mechanics, tunneling is one
of the most surprising. At the classical level, we can take the example of a basketball
thrown at a brick wall: the ball will hit the wall and bounce back every time we try it.
When we shift to the quantum scale, if we have a particle headed towards a barrier
of a given potential energy, it will not necessarily bounce back. Depending on the
characteristics of this potential, there will be a few times in which the particle will
tunnel through the barrier, shooting out on the other side. It is not completely fair
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Figure 1.6: The figures show the motion of a single chaotic walker in a confined circular
geometry. In (a) the path of the moving droplet is traced, where color indicates the
velocity of the droplet. In (b) a histogram shows the droplet’s position within the
circular corral over a span of time. A clear pattern emerges: the droplet appears
to be contained within a statistical wave of wavelength λF. Adapted from J. W. M.
Bush, Annu. Rev. Fluid Mech. 47, 275 (2015).

to use the basketball/wall example as an analogy for the particle/barrier interaction
because the “effective potential energy” of the brick wall is almost infinite, while that
of the quantum potential barrier that allows tunneling, is not. For a high enough
potential, the particle will also (almost) always bounce back. The point is that
probabilistic tunneling cannot be seen at a classical scale in the way that is at the
quantum scale, at least not until the discovery of the bouncing droplet system.

Tunneling in the Bouncing Droplet System

A study performed by Eddi et al. examined tunneling in the bouncing droplet system
[5]. In this setting, tunneling takes the form of the droplet tunneling through (or
being reflected by) a submerged barrier. The droplet never actually travels through
the barrier, since it bounces on the interface, but the analog to quantum tunneling
remains because as the droplet approaches the barrier it is affected by the region of
a different “potential”.

For a different depth of fluid H, a tray will have a different γW. If a tray has
various regions of different depths, then these different regions will behave slightly
differently. This means that when a walker travels from an area of one depth to
an area of another depth, its behavior may change. This effect can be seen when a
walker is pushed back from a submerged step, seemingly without any contact with the
droplet. However, in certain cases, the walker will actually “tunnel” across the step;
that is, it will continue to walk along the surface of the oil bath and pass into the new
region of different depth, without reflection. Adjusting the width of the barrier as well
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Figure 1.7: A diagram of the droplet-barrier interaction. In (a) the walker moves
towards the barrier. As it gets closer (b), the guiding wave is damped. In (c) the
guiding wave is fully damped such that the droplet is no longer a walker but a bouncer.
Guided by the waves the droplet generated as a walker, the bouncer will either be
reflected back from where it came (d), or carry on as shown in (e).

as its height will affect the behavior of the droplet. If we make the barrier of width
e with height such that the depth of the oil above it is h, in a bath that otherwise
has depth H, then we can think of it as a potential barrier. The unpredictability of
the tunneling comes from the complex interaction between the drop and its guiding
wave.

Now say we set γ such that walking occurs in the deeper section, but not in the
more shallow section (i.e. γW(H) < γ < γW(h)). Then, the droplet is simply a
bouncer when in the shallow region, but a walker everywhere else. If the droplet
starts out in the deeper region but crosses over to the shallow barrier, it slows down
since it is no longer generating the self-propelling waves required for the walking
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Figure 1.8: In (a) and (b) we see the path of a droplet traced out over many collisions
with the barrier within rhombus shaped tray. The plot (c) shows the tunneling prob-
ability as a function of walker velocity for different barrier widths. Figures adapted
from A. Eddi et al., Phys. Rev. Lett. 102, 240401 (2009).

motion. Instead, the superposition of previous waves is what guides it either through
or away from the barrier. However, if a droplet were to be created on the barrier, it
would remain motionless. Therefore, we can understand the act of tunneling proceed
as follows: the walker approaches a barrier, crosses the barrier as a bouncer, and
eventually returns to the deeper region as a walker. The process is depicted in Fig. 1.7.

Eddi et al. built a tray with a submerged rhombus shape which forced the walker
across the center of the tray as shown in Fig. 1.8 (a) - (b) [5]. A barrier was then
placed along the diagonal of the rhombus, perpendicular to the direction of travel of
the walker, so that the walker would run directly into the wall. They showed that as
γ/γF approached 1, faster droplets had higher probabilities of tunneling (Fig. 1.8 (c)).
They also discovered that by increasing the barrier width, the tunneling probability
decreased.

The question that lingers, and that is the focus of this thesis, is the following:
How does tunneling probability change as a function of oil depth above
the barrier h? We expect that at large h values the localized Faraday waves will be
less damped, meaning that the walkers will tunnel more frequently. At small values
of h where the localized Faraday waves are heavily damped, it is predicted that there
will be very little tunneling. What is the critical height where we see both behaviors?
An experiment, detailed in the following chapter, was designed to test this question.
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Experimental Design

In the bouncing droplet system we observe a unique interaction between a droplet
and its wave that showcases various novel behaviors under different circumstances.
In the experiments discussed herein, we will look at how features submerged beneath
the surface of the oil affect the motion of the droplet.

A raised object on the floor of the tray (but still underneath the surface of the
oil) can have an effect on height of the surface waves, and thus, on the motion of
the walker [5]. Sometimes a droplet headed towards a raised object will be reflected
backwards, as if from a collision with the object. For this reason, we refer to a
submerged object as a barrier.

Oftentimes however, the droplet slows down, but continues on and crosses over
the barrier without a collision. This is analogous to “transmission” in the quantum
mechanical process of tunneling. For a barrier of a given height and width, there is
a probability of tunneling unique to that barrier. Earlier studies have shown that
increasing barrier width decreases probability of tunneling [5]. This study looks at
how the height of the barrier affects the tunneling probability.

To test the effect of a barrier’s height on the probability of tunneling, I used
a combination of procedures from the investigations of Bush et al. [1], Couder et
al. [2], and specifically, Eddi et al. [5]. These were slightly modified to fit some of the
unique features of my experiment. In this section, I aim to give some of the reasoning
behind the design of the experimental apparatus and data collection techniques, both
of which are not well described in the literature.

2.1 Setup

To guide the discussion of my experimental design, a schematic of the experimental
setup is shown in Fig. 2.1 and a picture of the actual setup is shown in Fig. 2.3(a). In
the experiment, a waveform generator creates a sinusoidal signal which is amplified
and fed into a shaker. This signal drives the shaker, which vertically vibrates the tray
containing the fluid. Both the frequency and the amplitude of the vertical oscillations
can be controlled. An accelerometer records the vertical acceleration of the tray and is
read using an oscilloscope. A CCD camera is used to record the droplet as it bounces
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along the surface of the oil.
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Figure 2.1: The experimental setup. The amplified signal from the wave genera-
tor drives the shaker, which shakes the oil-filled tray. The accelerometer generates
a signal, which is read by the oscilloscope. The shield blocks disturbances to the
experiment, while allowing the camera to document the trials.

2.2 Materials

The key components of this experiment are the shaker, the oil, and the tray. In this
section I will describe the specifics of this holy trinity, as well as some of the additional
components used in data collection.

2.2.1 Tray

The tray’s design, which was based off of the tray in the tunneling experiment of Eddi
et al. [5], naturally guides the droplet into a perpendicular collision with the barrier.
The tray was fabricated from acrylic plastic parts that were cut on the Trotek Rayjet
300 laser cutter in Reed’s machine shop. The manufactured components were then
glued together with Scigrip Weld-On 3 assembly adhesive. A detailed schematic of
the tray is shown in Fig. 2.2.

A thin layer of oil spills over the constraining rhombus shape. As long as the
layer is thin enough, the droplet will remain in the rhombus container, but the waves
will continue to propagate unimpeded. This gives the waves time to decay, meaning
that the droplet’s motion is not affected by reflections of previous waves from the
sidewalls, and is instead guided only by the unreflected waves. The rhombus shape
serves to steer the droplet into a perpendicular collision with the barrier. It does
this by forcing the droplet to pin-ball into the acute corner of the rhombus so that it
shoots out towards the barrier as shown in Fig. 2.3(c).
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Figure 2.2: The specifications of the tray design. The top view (left) highlights the
main elements in the tray. The cross section (right) illustrates the topography of the
tray. The depth of the fluid layer is represented by the shading; darker shading is
shallower.

We designed the experiment to test barriers of three different heights: 2.75 mm,
3.0 mm, and 3.25 mm, measured from the bottom of the rhombus. Thin acrylic
barriers made by the laser cutter have a tendency to bend and warp over time. To
avoid this problem, we made the barriers taller than the specified heights. Then we
created a cut-out in the bottom of the rhombus so the barriers could be inserted
and held in place by the tight fit. The barrier cut-outs were deep enough to exactly
counter the added height of the barrier, so the barriers still had (when measured
from the surface of the rhombus) heights of 2.75 mm, 3.0 mm, and 3.25 mm. This
design also solved the problem of fixing the barriers in place, while allowing them to
be easily removed. The particular heights of the barriers were chosen because they
exhibited both transmission and reflection. Other barriers were also made but these
were either too tall (3.5 and 4.0 mm) and blocked all of the droplets, or too short
(1.0 and 2.0 mm) and did nothing to prevent the droplets from crossing over.

In order to improve contrast, the bottom of the tray was painted black, allowing
the droplet to be more easily tracked by eye and when using a camera.

2.2.2 Silicone Oil

Silicone oil was the ideal choice of fluid for this experiment because it remains clean,
it has a low vapor pressure (so it does not evaporate), and it can be purchased in a
range of specific viscosities. The silicone oil used in this experiment had a viscosity
of 20 centistokes (cSt) (its viscosity is a little closer to water than olive oil) and was
purchased from Clearco Products Co. Inc., Bensalem PA (CAS No: 63148-62-9). 20
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(a)

(c)

(b)

Figure 2.3: (a) The actual experimental setup. (b) The screen of the oscilloscope,
showing the output from the accelerometer. The sine wave is proportional to the
acceleration of the tray and has a frequency of 80.0 Hz and a peak to peak voltage
of 158 mV. (c) The path of a droplet with a diameter of 0.87 mm, highlighted in
red, shows the droplet’s motion as it walks into a corner before shooting out directly
towards the barrier (orange).

cSt silicone oil, like the one used by Bush et al. [1] was chosen because it exhibits
walking behavior over a wider range of parameters [1] than more viscous oil, such as
the 50 cSt viscosity oil used by Couder [2]. Depending on the height of the barrier and
the desired height of oil above the barrier, the tray requires approximately 18.0 mL
of fluid. This volume of oil left a different depth of oil above the barrier, depending
on which barrier was in place. For the shortest barrier of 2.75 mm, the depth of the
oil on top of the barrier was 1.5 mm. The intermediate barrier of height 3.0 mm had
about 1.25 mm of fluid above it. The tallest barrier at 3.25 mm, only had 1.0 mm of
fluid on top. The depths of the oil were calculated using the known oil volume and
the dimensions of the tray.

It was of vital importance to keep the oil as clean as possible since surface contam-
ination leads to droplet coalescence. This meant protecting the oil from particulate
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matter that was already in the tray. Contamination was minimized by cleaning the
tray before filling it and shielding it from the ambient dust using a plastic shield.

2.2.3 Shaker

To shake the tray, we used a mechanical wave driver made by Pasco Scientific, Ro-
seville CA (model SF-9324). An acrylic component with a set screw was glued to the
bottom of the tray. The tray was securely fastened to the thin rod that came on the
shaker by tightening the screw.

This shaker is designed to drive a string or an elastic cord, not a 200 gram tray with
oil inside. The combined weight of the tray and the oil resulted in a notable decrease
in performance after just a couple of minutes of vibration. The initial behavior could
be partially recovered after an hour long rest, but after weeks of use there was a
noticeable difference. This difference was apparent in the acceleration measurements
made by the accelerometer; towards the end of a trial, a signal with a higher amplitude
had to be generated to produce the same accelerations measured at the beginning of
the trial. For this reason, the shaker was replaced before collecting raw data and
was allowed a resting period between trials. The damping of the vibrations also
meant that the acceleration signals from the accelerometer had to be continuously
monitored, since the constant signal from the wave generator could not be trusted to
produce constant tray vibration.

2.2.4 Waveform Generator and Amplifier

The shaker was driven with an Agilent Arbitrary Waveform Generator (model 33210).
This was controlled digitally and was found to be more stable than other available
frequency generators available in the Physics department (e.g. Tektronix CFG280).
The waveform generator was usually set to produce a sine wave at 80 Hz. The signal
from the waveform generator was amplified using a Lepai LP2020A+ digital amplifier,
which allowed precise control of the the amplitude of the tray. The signal, which was
also monitored with a multimeter, was then fed into the shaker.

2.2.5 Accelerometer

As discussed in Chapter 1, knowing the tray’s acceleration allows us to characterize
the behavior of our system. To measure acceleration, we attached an ADXL 326
triple axis accelerometer (made by Adafruit, New York City NY) to the bottom of
the tray using screws. This provided a much more secure mount than tape or glue
while allowing for removal. The ADXL 326 has a range of ±16g, which was ideal for
measuring the accelerations in our setup, which were usually below 5g’s.

The signal from the z-axis of the accelerometer was measured directly on a Tek-
tronix TDS 2012C oscilloscope. A sample output signal is shown in Fig. 2.3(b). For
the vibrating tray, the output was approximately sinusoidal (as expected). The man-
ufacturer’s specifications for the accelerometer indicate a sensitivity of 57± 6 mV/g.
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2.2.6 Shield

A large, see-through cylinder (covered at one end) was manufactured using the laser
cutter. When placed over the tray, it served the purpose of keeping the oil clean
from particulate matter and preventing air currents from influencing the motion of
the walker.

2.2.7 Leveling Platform

A wooden leveling platform supported the shaker. Three adjustment screws allowed
for precise adjustment of the tilt of the apparatus. The alignment of the tray was
tuned using a level placed inside the center of the tray (before the oil was added). This
was done in order to ensure that the driving acceleration was aligned with gravity.

2.2.8 Camera

To document trials, we used a Canon EOS Rebel T5i DSLR camera supported on a
tripod and aimed directly down at the tray. Attached to the camera was a Canon
18-135 mm lens. Set in its Tv configuration (Time Value – allows for shutter control)
and in video mode, the 18 megapixel image could be optically zoomed and manually
focused on the bouncing droplet. Other settings were left on automatic.

2.3 Procedure

Once the desired driving parameters were established (frequency and driving am-
plitude) so that walking behavior was observed, tunneling measurements at a few
different barrier heights were made. These procedures are outlined in more detail
below.

2.3.1 Finding the Walking Regime

Before investigating the rate of tunneling using different barriers, a rough estimate
of the walking regime at a frequency of 80 Hz must be made. Using Fig. 1.2 as a
guide for finding the walking parameters, an estimate of γF and γW was made. These
values were expected to be slightly different from those found in the literature due to
the slightly different height, tray, oil, and shaker configurations.

Droplet size is measured using a recorded video of the walking droplet in motion.
By comparing the number of pixels making up the diameter of the droplet, which is
unknown, to the number of pixels making up the known length of the diagonal of the
rhombus, we can estimate the length associated with each pixel, and thus find the
diameter of the droplet in millimeters. For accurate droplet diameter measurements,
a mean value composed of 9 separate droplet diameter measurements per trial was
computed. The droplets were found to have diameters on the order of 1.0 mm, as
discussed in Section 1.1.
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Driving acceleration values were measured by the accelerometer and displayed on
the oscilloscope. To keep the acceleration constant throughout a measurement, the
amplitude of the signal coming into the shaker was continuously adjusted in order to
counteract the damping introduced as the shaker warmed up.

To ensure that every trial has the same oil depth, we measured the volume of
oil (18.0 mL) before filling the tray using a 25 mL graduated cylinder with 0.5 mL
graduation. Knowing the volume of the tray and of each barrier, we could calculate
a value for the oil depth without interfering with the system. In this way, oil depth
above the barrier (1.5 mm for the 2.75 mm barrier, 1.25 mm for the 3.0 mm barrier,
1.0 mm for the 3.25 mm barrier) could be made constant between trials.

2.3.2 The Experiment

This experiment utilized data collected from 3 independent trials. A trial consisted of
measuring tunneling behavior for three different barrier heights using a single droplet.
At each height (and at a constant frequency of 80 Hz and constant tray acceleration),
a string of collisions were filmed with the camera. Between each measurement, the
barriers had to be removed and replaced while the tray was still shaking in order to
keep the droplet from coalescing. Since the size of the droplet changes its walking
behavior, it was important to maintain a constant droplet diameter to allow for
accurate comparisons between barrier heights. Not having a droplet of the same size
is a major limitation to most of the research in the bouncing droplet system, such as
in the other tunneling experiments [5], and the fact that we were able to keep ours
constant is a great success. To maintain a constant memory, γF was measured for
each system, and the value of γ was adjusted such that the γ/γF memory value stayed
the same between barriers. From the collected data, a fraction of transmissions per
total collisions was calculated, which provides the most simplistic tunneling analysis
of this system.

The tray was designed such that most of the droplet’s collisions with the barrier
occur “head on” (i.e. perpendicular to the length of the barrier), but not all collisions
unfold ideally. A more involved analysis using Tracker used the component of velocity
of the droplet in the direction perpendicular to the barrier to determine the probability
of tunneling given this value. Since not all collisions in the simplistic analysis occurred
at the same velocity, the perpendicular velocity method provided a more refined
analysis of the phenomenon.
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Data Analysis and Results

In this chapter, I will summarize the raw data and the corresponding results. The
chapter ends with a discussion on the sources of error in the experiment.

3.1 Raw Data

The raw data consisted of a total of 7 videos. All of the variables collected for
each trial are laid out in Table 3.1, and the raw data is presented in Table A in
the Appendix. Barrier height, acceleration of the tray, Faraday threshold, and
percentage of “transmissions” were recorded for each of the 7 videos. The 7 videos
contained: one trial of a single droplet for all three barriers, a second trial of a single
droplet for all three barriers, and a final trial of a single droplet for the 3.0 mm
barrier.1 By switching the barriers while the tray was still shaking we were able to
use same droplet for each of the three barrier heights in a trial. There were between
12 to 24 separate collisions for each barrier. An example of a trial is presented in
Fig. 3.1.

These movies were then processed with Tracker [22]. Tracker decomposes a video
into multiple frames for the purpose of tracking an object in a video. The Autotracker
function marks the position of the object in every frame and records the time in
between each frame ( 1

24
seconds). Tracker uses this information to estimate the

velocity of the droplet at every frame. We also want to know the size of each droplet,
so we measure the diameter of the droplet using a function in Tracker. The diameter
is measured 3 times in each movie, yielding 9 total measurements per trial. These
nine measurements were averaged to estimate the diameter of the droplet used in that
trial. In trial 3, where only one barrier was used, 9 independent measurements were
made, as detailed in Section 3.3.

From the volume of the oil V , which was measured with a graduated cylinder, and
known dimensions of the tray, we can calculate the parameter h, which is defined as
the height of the oil above the barrier. This was done by calculating the volume of the

1A similar methodology was attempted for Trial 3, but droplet coalescence prevented a complete
trial from being recorded. Eventually it was decided to only examine the barrier with h = 1.25 mm,
since it exhibited the richest behavior.
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Table 3.1: This table illustrates data collected for all trials. For each barrier (2.75 mm,
3.0 mm, or 3.25 mm), the forcing acceleration γ, the Faraday threshold acceleration
γF, and the percentage of “transmissions” (%T) were recorded. The oil volume V was
recorded at the beginning of each trial. From Tracker, measurements of the droplet
diameter Dn in three randomly selected frames were made, along with the velocity of
the droplet for every frame v(t). Using V , the values of the depth of oil in the bath
H and over the barrier h were calculated.

Trial Barrier Recorded From Tracker Calculated

1
2.75 γ, γF, %T, V 3 x D1, v(t) H, h
3.0 γ, γF, %T 3 x D1, v(t) H, h
3.25 γ, γF, %T 3 x D1, v(t) H, h

2
2.75 γ, γF, %T, V 3 x D2, v(t) H, h
3.0 γ, γF, %T 3 x D2, v(t) H, h
3.25 γ, γF, %T 3 x D2, v(t) H, h

3 3.0 γ, γF, %T, V 9 x D3, v(t) H, h

“space” inside the tray, which required knowing the dimensions of the tray accurately.
Values for the various parameters in this experiment are shown in Table 3.2. Error
estimates are discussed in Section 3.3.

Table 3.2: Values of the various parameters in this experiment.

Parameter Measured Value

Viscosity ν (cSt) 20.0†

Frequency f (Hz) 80.0
Density ρ (g/mL) 0.95†

Memory γ/γF 0.98± 0.03
Drop Diameter D (mm) 0.99 to 1.07± 0.04
Bath Depth H (mm) 4.26± 0.04

Oil Depth Above Barrier h (mm) 0.99 to 1.52± 0.04

3.2 Analysis

3.2.1 Tunneling vs. Oil Depth

The primary purpose of this investigation was to determine how the depth of the
fluid layer above the barrier affects tunneling. The results are shown in Fig. 3.2,

†Value provided by the manufacturer.
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h2.75 = 1.51 ± 0.04 mm

h3.0 = 1.26 ± 0.04 mm

h3.25 = 1.02 ± 0.03 mm

T2.75 = 17/17 = 1.0

T3.0 = 7/19 = 0.37

T3.25 = 0/18 = 0.0

Figure 3.1: The the raw data from Trial 2. The red line in each image traces the path
of the droplet for the duration of the trial. For each of the three barrier heights, the
depth h of the oil above the barrier is shown, along with the fraction of droplets T
that tunneled across the barrier.

indicating that droplets never crossed near h = 1.0 mm, whereas they always crossed
at h = 1.5 mm. For the intermediate depth h = 1.25 mm, both transmissions
and reflections were observed at a rate that changes for every trial. If we consider
the droplet diameter, we see that the plot suggests that the transmission coefficient
increases as the diameter of the droplet increases.

3.2.2 Tunneling by Droplet Velocity

Not every droplet barrier collision was ideal. Many times, the droplets approached
at an angle or at different velocities which means that it is a misleading to consider
every collision as being the same. One way we can standardize collisions is by looking
at the velocity perpendicular to the barrier at 5 mm away from the center of the
barrier, as shown in Fig. 3.3.

We expect the perpendicular component of velocity to be important because it
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Figure 3.2: The proportion of collisions leading to transmission as a function of h.
Each data series corresponds to a single trial for which the droplet diameter was kept
constant. The vertical error bars indicate standard error, and the horizontal error
bars indicate uncertainty calculated using error propagation.

proved critical in the study of barrier width carried out by Eddi et al. [5], and
because intuitively, if the droplet moves faster, it has greater momentum and is more
difficult to stop. Fig. 3.4 shows every collision for the intermediate barrier height,
and the result of each interaction. In trials 2 and 3, the droplets with the fastest
perpendicular velocities were usually the ones that passed through the barrier, as
expected. This did not seem to be the case for trial 1, for unknown reasons.

Next, we try breaking up the collisions by velocity. The collisions from the 3.0 mm
barrier were grouped into bins of width 2 mm/s and plotted by the fraction of all
collisions that tunneled. The result, shown in Fig. 3.5, leaves a little to be desired. We
see immediately the major limitation is the lack of trials, and perhaps, in consistency.
Trial 3 is the only one that shows the expected trend for all bins: as velocity increases
so does tunneling. Trial 2 starts off on the right track but a few reflections at high
velocities skew the results. Finally, the results from trial 1 are inconsistent with the
predicted behavior.

Our data seem to indicate that tunneling probability increases as a function of
velocity and of droplet diameter. Droplet diameter is really just a way of expressing
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Figure 3.3: The image shows the point at which the measurement of the perpendicular
component of velocity was made. This is 5 mm from the middle of the barrier.

the size of the droplet, but another way of doing that is by using the droplet’s mass
m. The momentum p of an object of mass m and velocity v is defined as:

p = mv.

We can estimate the mass of the droplet by multiplying the volume of the droplet by
its density ρ. Assuming a spherical droplet of diameter D, the volume is given by:

Vd =
4

3
π

(

D

2

)3

.

Thus, we can express the momentum of the droplet as

pd = ρ Vd v (3.1)

= ρ
4

3
π

(

D

2

)3

v (3.2)

where the density ρ of silicone oil has been provided by the manufacturer. Looking
at just the perpendicular component momentum and grouping the droplets into bins
(as we did in Fig. 3.5 and then multiplying by the calculated mass m of the droplet)
and we get the plot shown in Fig. 3.6. The plot shows incredibly similar slopes for
portions of trials 2 and 3, suggesting the importance of momentum as a factor that
increases tunneling probability. Even one of the momentum bins from the first trial
falls on the curve, though the rest of the bins from that trial remain unexplained.

3.3 Sources of Error

With a system like the one studied here, which is sensitive to small variations in
any parameter, it is crucial to keep track of the errors so that we can consider the
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Figure 3.4: The result of each collision for the intermediate oil depth. The color
represents the outcome of the collision (either transmission (T) or reflection (R)),
and the shape represents the diameter of the droplet. The horizontal spread within
each trial was added to aid in visualization.

limitations that these errors could have on our conclusions. Below, I discuss the
nature of the experimental errors associated with my measurements.

3.3.1 Droplet Diameter

The droplet diameter measurements were made using the Tracker program. Knowing
the length (in mm) of another object in the frame, in this case the length of the
rhombus cutout inside the tray, we can measure the length of anything else in the
frame (in mm). This works by finding the length in mm associated with each pixel
in the frame and finding the width in pixels of the droplet. Using this ratio rmtp, we
can calculate the length of an object in mm:

length of rhombus in mm

length of rhombus pixels
= rmtp =

diameter of droplet in mm

diameter of droplet in pixels

Since each pixel has a defined length, and because we cannot resolve anything within
that pixel, our error is associated with that measurement is at least the width of half
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Figure 3.5: Collisions with similar perpendicular velocities were grouped into bins of
width 2 mm/s per bin. The overall fraction of transmissions was computed for each
bin, and plotted. Colors distinguish between droplet diameters, and sizes indicate the
number of data points in each bin. Error bars indicate the associated standard error.

a pixel, usually around 0.04 mm. There is also an error associated with the initial
measurement of the rhombus in pixels, since it can be difficult to discern where exactly
each point lies. This error was mitigated by making a new length measurement on
Tracker every time the barrier was changed.

Additionally, the droplet does not remain a perfect sphere as it bounces. At the
bottom of its bounce, the droplet will be squished and appear (from the top view)
wider than usual, where at the moment of lift it will be less wide (from the top)
than usual. Since the camera recording our data shoots at 24 frames per second, it
is impossible to know at what point in the bounce the droplet is, so it is impossible
to know when to measure the diameter of the droplet. For this reason, we measured
the diameter of the droplet in 3 random frames at each of the 3 barrier heights, and
with a total of 9 separate measurements per trial and averaged the results. Because
the data for each barrier was filmed separately, this meant computing a new rmtp

value for each barrier. For the third trial in which only one barrier was used, the
mm to pixel ratio rmtp was re-calculated after 3 diameter measurements, in order to
mimic the procedure of the first two trials. In other words, 3 separate groups of 3
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Figure 3.6: Collisions of similar perpendicular momentum were grouped into bins.
The overall fraction of transmissions was computed for each bin, and plotted. Colors
distinguish between trials, and sizes indicate the number of data points in each bin.
Error bars indicate the associated standard error. The droplets were grouped by
perpendicular velocities of width 2 mm/s per bin, and then these velocity values were
multiplied by m.

measurements were made. Multiple measurements gave us an associated standard
error, which combined with the error due to pixel limitations, gave us error bars.

Our measurement procedure helped reduce the error associated with the changing
size during a bounce. It also reduced the error associated with finding the exact value
of rmtp since it was calculated 3 separate times each trial.

3.3.2 Droplet Velocity

The droplet velocity was measured using Tracker. The error in this measurement can
be attributed to the Autotracker function, which automatically tracks the motion of
the droplet using a built-in algorithm that searches a specific region of a frame for
a known arrangement of pixels. Autotracking is mostly spot on, but if left alone for
1, 000 frames, the marker begins to deviate from the actual location of the droplet.
The marker was adjusted whenever a deviation was noticed. The error can be esti-
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mated to no more than 10 pixels over 1000 frames, corresponding to ± 0.01 mm/s.
We expect the error to be much lower than this in practice, since we are concerned
only with a velocity measurement at a specific location 5 mm away from the barrier.

3.3.3 Height of Oil

The volume of oil was measured before each trial with a graduated cylinder with
markings every half milliliter. With measurements on the order of 18.0 mL, there was
an associated error of ± 0.10 mL. Then, oil was lost between barrier adjustments
since pliers were inserted in the oil to pull each barrier out, and a little bit of oil
remained on the barrier and on the pliers each time. The volume of fluid lost after
each barrier replacement was estimated to be about 3 droplets of diameter 3.0 mm.
This corresponds to a loss of 0.014 mL of oil after every change in barrier. Finally,
the volume of the oil was used to estimate the height of the oil above the barrier. The
elements in the tray were manufactured for this experiment, and were then measured
using digital calipers yielding an error of ± 0.03 mm.

For the height of the oil above the barrier, the above estimates provide us with an
error on the order of about ± 0.035 mm. The amount of fluid lost after each barrier
replacement corresponds to a depth H decrease of 0.002 mm (for a barrier of the
same size). This difference was offset by the added volume of the larger barrier, so
that the bath depth H remained relatively constant across the entire trial.

It is impossible to account for factors such as the amount of oil left in the graduated
cylinder, or the oil that may have seeped into microscopic fractures inside the tray.
We assume these systematic errors to remain relatively constant over the duration of
the experiment. This means that the pattern of our results should remain about the
same, even if the exact numbers are slightly off.

3.3.4 Consistency of Memory

The shaker’s acceleration decayed the longer it ran which lead to changes in droplet
behavior. This could be seen by the acceleration measured by the accelerometer,
which decreased even as the input signal remained constant. To counteract the chang-
ing acceleration, the amplitude of the driving signal was increased so that the system
memory γ/γF remained constant (as measured by the accelerometer) throughout the
duration of the experiment. After replacing each barrier, the Faraday threshold γF
was re-measured. As the amount of oil and the barrier height changed, the Faraday
threshold also changed, so keeping the same input signal was not an option. Rather,
in all experiments the memory was kept constant, at γ/γF = 0.98 ± 0.03. Because
at different memories we see different droplet behaviors, a constant memory meant
we keep the droplet behavior as consistent as possible over the course of a trial [20].

3.3.5 Imperfect Droplet Motion

The intent of the tray design was to create droplet trajectories such that their colli-
sions were perpendicular to the length of the barrier. However, in practice, this was
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not the case. Trajectories tended to deviate to one side and impacted the barriers
at an angle. These trajectories tended to drift to the side of the tray with the ac-
celerometer (shown in the top of Fig. 3.1), possibly because the accelerometer added
weight to one side causing the tray to vibrate unevenly. Often, in situations in which
the droplet was reflected, the trajectory would cycle through a triangular orbit before
diverging off in another path. This meant for a couple of collisions in a row, the
droplet-barrier collision was not ideal since it was not completely perpendicular.

The perpendicular velocity measurements were a work-around since they provide
a more descriptive picture of each interaction. Even with this crutch though, the
angled trajectories are a symptom of an imperfect setup. Though great care was
taken to ensure that the tray was flat, it was impossible to adjust the mostly vertical
direction of vibration to be perfectly vertical. When the oscillations are not exactly
vertical, the oil inside the tray does not shake evenly and it is not at a constant depth
throughout the tray, which leads to imperfect droplet motion. Rather than moving
in a straight line until encountering a barrier of some sort, the droplet will slowly
curl away from certain areas within the tray. Additionally, the tray in our setup was
attached at a single point by a rod connected to the shaker. This could have lead to
bending of the acrylic at the edges, since the tray was so large. A mechanical shaker,
as detailed in [23], would provide a much better base than the smaller shaker used
in this experiment. It also would have the added benefit of shaking the entire tray at
once, rather than just a single point. While the error due to this component cannot
be measured quantitatively, it should be considered when drawing conclusions.

Despite these difficulties, we were able to show that barrier depth h did have an
effect on the droplet’s probability of tunneling, and that the mass and velocity of the
droplet also played a role in determining this probability.



Conclusion

The question we sought to answer was: How does tunneling probability of a walking
droplet change with the depth of oil above the barrier? Our results showed that
tunneling is highly sensitive in this system, and even changes in height on the order of
fractions of a millimeter are enough to radically influence the proportion of tunneling
droplets. Using a barrier of width e = 3.0 mm, it was found that a depth of h =
1.5 mm produced tunneling in every interaction, while at h = 1.0 mm there was
no tunneling. In the middle of this range was a sweet spot of h = 1.25 mm where
tunneling appeared probabilistic, but still somewhat dependent upon droplet diameter
and droplet velocity. Our data suggests that for a given barrier, a droplet with a
higher momentum is more likely to tunnel than a droplet with lower momentum.
For a droplet of a constant diameter, tunneling occurs at higher values of h. The
proportion of tunneling events decreases as the value of h decreases.

The main limitations in this investigation had to do with consistency of param-
eters between trials, and dearth of data points. The damping of the shaker made
keeping consistent conditions in every trial difficult, and limited the number trials
and interactions that were filmed. A better shaker would have significantly improved
these things. For example, the shaker modeled in [23], shakes the whole tray at the
same time and with same amplitude for hours. These shakers of course, cost more
than the budget allowed for. Another difficulty was in measuring the height of the
oil within a trial. When removing each barrier, a certain amount of oil was lost.
While this value was estimated, it still was a source of uncertainty and it introduced
contamination from the pliers into the oil (making coalescence likely).

Future Work

An extension of this topic would benefit from using barriers of height 2.90 mm and
3.10 mm in addition to those used in this investigation, as this would have allowed
for greater resolution in the tunneling probabilities as a function of h. Limitations in
the shaker meant that testing more than three barriers using a single droplet became
exceedingly difficult as the shaker’s performance decayed, but an improved set up
would make it possible.

Another avenue of study would be looking at how memory affected tunneling.
For a constant barrier and a constant droplet, does adjusting memory affect the
probability of tunneling? Because quantum-like behaviors emerge at higher memories
we might expect these tunneling properties to exist only at these higher memories.
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This experiment would be relatively easy to carry out since it uses a single barrier.
Finally, a few words of advice for those seeking to recreate the experiment: take

your time in setting up the device, ensuring that the tray is level and that it vibrates
vertically. Invest in good silicone oil, and do your best to limit any contamination of
the oil. Finally, there is an accelerometer out there that does what you need, your
task is simply to find it.



Appendix

Raw Data

The combined raw data is shown in Table A. The final two rows highlight the fact
that the droplet diameter was measured 3 times for each of the 3 calculated rptm
ratios.

Table A: The raw collected data.

Trial γ/γF (mV/mV) %T Dn,1 (mm) Dn,2 (mm) Dn,3 (mm) h (mm)
1 284 / 290 13/13 0.99 1.01 1.05 1.52
1 264 / 270 2/24 1.00 0.98 0.97 1.27
1 252 / 258 0/22 1.00 1.00 0.97 1.02
2 268 / 270 17/17 1.04 1.09 1.11 1.51
2 264 / 268 7/19 1.01 1.15 1.03 1.26
2 252 / 256 0/18 1.06 1.05 1.08 1.01
3 256 / 262 4/13 1.09 0.98 1.06 1.26
3 - - 1.00 0.98 1.03 -
3 - - 0.92 0.99 1.09 -
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