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The transition to turbulence in Taylor-Couette flow often occurs via a sequence of
supercritical bifurcations to progressively more complex, yet stable, flows. We describe
a subcritical laminar-turbulent transition in the counter-rotating regime mediated by an
unstable intermediate state in a system with an axial aspect ratio of Γ = 5.26 and a
radius ratio of η = 0.905. In this regime, flow visualization experiments and numerical
simulations indicate the intermediate state corresponds to an aperiodic flow featuring
interpenetrating spirals. Furthermore, the reverse transition out of turbulence leads first
to the same intermediate state, which is now stable, before returning to an azimuthally-
symmetric laminar flow. Time-resolved tomographic particle image velocimetry is used
to characterize the experimental flows; these measurements compare favorably to direct
numerical simulations with axial boundary conditions matching those of the experiments.

1. Introduction

The transition to turbulence in many flows falls into two classes: subcritical transitions
whereby the transition is directly from laminar flow to turbulence or supercritical tran-
sitions where the transition occurs through a sequence of intermediate stable flow states
before ultimately ending in turbulence. By describing well the growth of infinitesimal
disturbances, linear stability theory has often enabled good predictions of the critical
Reynolds numbers at which supercritical transitions occur. By contrast, subcritical
transitions result from the nonlinear growth of finite amplitude perturbations; therefore,
linear stability analyses provide little insight into this type of transition. Subcritical
transitions exhibit hysteresis, in which the turbulent flow returns back to the laminar
state at a Reynolds number that is lower than that for the transition from laminar flow
to turbulence.

Both super- and subcritical turbulent transitions can be observed in the flow between
two independently rotating, coaxial cylinders, or Taylor-Couette flow (TCF) (see Figure
1). TCF can be uniquely characterized by four nondimensional parameters. Two param-
eters characterize the geometry of the system: the radius ratio η = ri/ro, where ri and ro
are the radii of the inner and outer cylinders, respectively, and the aspect ratio Γ = h/d,
where d = ro − ri is the radial separation distance between the cylinders and h is the
axial height of the flow domain. The other two parameters, the inner and outer Reynolds
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Figure 1. In Taylor-Couette flow, a fluid is confined between coaxial cylinders of radii ri and
ro, which counter-rotate with angular velocities ωi and ωo, respectively. In the axial direction,
the flow is bounded by two end caps that rotate with the outer cylinder and are separated by a
distance h. In the radial direction, the separation between the cylinders is d = ro − ri. The flow
is periodic in the azimuthal direction.

numbers Rei,o describe the cylinders’ rotation rates and are given by

Rei,o =
ri,o ωi,o d

ν
, (1.1)

where ν is the kinematic viscosity of the fluid and ωi,o are the angular velocities of the
inner and outer cylinders, respectively. By convention Rei is always taken to be positive,
whereas Reo is positive when the cylinders are co-rotating and negative when they are
counter-rotating.

Numerous studies of supercritical transitions to turbulence in TCF have been published
(see, e.g., Coles (1965); Andereck et al. (1986); Tagg (1994); Meseguer et al. (2009b)).
Experimental studies mostly focus on geometries with Γ � 1 to reduce the influence
of the axial boundaries on the flow and investigate transition at fixed Reo while quasi-
statically increasing Rei. In this parameter regime, TCF exhibits a multitude of stable
non-turbulent flow states for different rotation rates (Coles 1965; Andereck et al. 1986).
As Rei is increased, each new transition typically yields a flow of increased complexity
until the flow eventually becomes turbulent.

The subcritical transition to turbulence in TCF has a long history (Couette 1890;
Mallock 1896; Wendt 1933; Taylor 1936a,b; Schultz-Grunow 1959; Coles 1965; Van Atta
1966; Andereck et al. 1986; Prigent & Dauchot 2005). Recently, there has been renewed
interest in this regime as a testbed for ideas explaining the subcritical transition to
turbulence from the viewpoint of dynamical systems theory (Meseguer et al. 2009a;
Borrero-Echeverry et al. 2010; Avila & Hof 2013; Maretzke et al. 2014; Lopez 2016) and
as a model for understanding the source of the enhanced angular momentum transport
observed in astrophysical disks, which is purportedly caused by turbulence despite the
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predicted stability of these flows (Richard & Zahn 1999; Ji et al. 2006; Paoletti & Lathrop
2011; Burin & Czarnocki 2012; Edlund & Ji 2014). In these studies, which were mostly
conducted with Γ � 1, transition is typically observed to take place directly from the
laminar base flow.

The subcritical transition to turbulence is commonly associated with wall-bounded
shear-driven flows in channels, pipes and boundary layers in which two general transition
scenarios have been identified: (1) an “amplification” scenario involving transient non-
turbulent modes (Reshotko 1976) and (2) a “bypass” transition (Morkovin 1985). In
the amplification scenario, the transition begins with the appearance of a weak struc-
tured flow (e.g., Tollmien-Schlichting (T-S) waves in channel flow), which undergoes
amplification by linear mechanisms until it is sufficiently large that nonlinearity takes
over; eventually, the flow breaks up into turbulence. In this scenario, the unstable
structured flow acts as a transient intermediary that triggers turbulence. Operationally,
the amplification transition is observed by imposing carefully controlled disturbances in
flows where the ambient free-stream turbulent intensities are sufficiently low (Nishioka
et al. 1975). In contrast, in the bypass transition scenario, the free-stream turbulent
intensity is sufficiently large that non-turbulent structured flows are not observed (are
“bypassed”) and, for sufficiently large Re, the transition occurs from featureless laminar
flow directly to disordered turbulent flow. Earlier studies of the subcritical transition to
turbulence in TCF, which were mostly conducted at large aspect ratios, showed that
this transition typically occurs directly from the laminar base flow, i.e., via the bypass
mechanism.

Here we report a subcritical transition to turbulence in counter-rotating TCF that has
some features in common with the amplification scenario found in prior work on other
wall-bounded shear flows. In our TCF studies, a non-turbulent intermediary flow plays a
central role in the transition. This aperiodic flow features interpenetrating spirals (IPS)
with opposite helicity much akin to those that have been discovered by Andereck et al.
(1986) at large Γ and further investigated by Coughlin & Marcus (1996). At a moderate
value of Γ = 5.26, we find that IPS appear transiently in the transition from laminar to
turbulent flow as Rei is increased at fixed Reo. If Rei is then decreased, the turbulent
flow transitions to stable IPS, which persist over a range of Rei. As Rei is decreased
further, stable IPS eventually transition back to laminar flow.

It is important to note that both super- and subcritical transitions have been exam-
ined in earlier studies of TCF with small-to-moderate aspect ratios (Γ . 5). A rich
variety of phenomena have been observed, including a plethora of asymmetric states
from symmetric end cap forcing (Tavener et al. 1991), a sequence of period doubling
bifurcations (Pfister et al. 1988), and quasiperiodic dynamics with three frequencies
(Lopez & Marques 2003). These examples and many others from prior work describe
transitions to non-turbulent flows, distinct from the transition to turbulence reported
here.

In Section 2, we outline briefly the experimental and numerical methods used in this
study. Then, in Section 3, we discuss the transitions between flow states with a particular
emphasis on the role of the IPS. In Section 4, we discuss the implications of this discovery
for understanding of the subcritical transition to turbulence in TCF and, more generally,
in wall-bounded shear flows; we conclude in Section 5.

2. Methods

Our TCF apparatus with η = 0.905 was composed of a glass outer cylinder with a
radius of ro = 80.03±0.02 mm and a brass inner cylinder of radius ri = 72.39±0.01 mm
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with a black powder coat to enhance optical contrast in flow visualization studies. The
aspect ratio, Γ = 5.26, was set by two end caps, separated axially by h = 40.2 ±
0.05 mm and attached to rotate with the outer cylinder. The cylinders were driven by
stepper motors; to reduce vibration and to ensure uniform cylinder rotation, timing
belts connected the cylinders to the motors, which were mounted separately from the
TCF apparatus. Additionally, a transmission with a gear ratio of 28:1 was used with the
inner cylinder stepper motor to increase the resolution in Rei. While the cylinders were
rotating, the rate of temperature variations in the flow was kept below 0.5 ◦C throughout
the duration of the experiments by surrounding the outer cylinder with a liquid bath.
With these measures, the total systematic uncertainty for Rei and Reo was below 1 %.

The flow was characterized using rheoscopic flow visualization. In some studies, the
working fluid was water mixed with Kalliroscope (Matisse & Gorman 1984) at a con-
centration of 0.3 % by volume and had a kinematic viscosity of ν = 1.01 mm2/s at
20 ◦C. Other studies were carried out using a mixture of water and a stearic-acid-based
rheoscopic fluid (Borrero-Echeverry et al. 2018) at a concentration of 5 % by volume
with kinematic viscosity ν = 1.03 mm2/s at 20 ◦C. The flows were illuminated using
fluorescent lights and imaged using a single Microsoft LifeCam HD webcam oriented
perpendicular to the flow domain and connected via a USB interface to a computer. The
resulting digital images were analyzed using a custom Matlab script to identify qualitative
changes in the flow as a function of Reynolds number as an indicator of flow transition.
For each image, the script counted the total number of pixels with an intensity above
a fixed threshold; different flow states exhibited different, easily distinguishable pixel
counts.

Tomographic particle image velocimetry (tomo PIV) (Elsinga et al. 2006) was also used
to perform flow measurements. In tomo PIV, particles suspended in the flow are imaged
simultaneously by multiple cameras at different viewing angles, and the images are used
to reconstruct the light intensity distribution in a 3-D flow volume; 3-D cross-correlation
of distributions reconstructed at different times enables determination of 3-D velocity
fields throughout a flow volume with an approximate size of d radially, 0.75h axially, and
2πro/10 azimuthally. Custom-made, density-matched polyester particles (25 µm to 32 µm
in diameter) were doped with Rhodamine 6G and suspended in the flow. The particles
were illuminated with a Quantronix 527/DP-H Q-switched Nd:YLF laser. Fluorescent
light emitted from the particles was collected by four Vision Research Phantom V210
high speed cameras synchronized with the laser illumination. Each camera was fitted
with a 105 mm Nikon Nikkor fixed focal length lens attached via a Scheimpflug adapter
(LaVision Inc.). A low pass optical filter (Semrock BLP01-532R-25) on each camera lens
attenuated, by a factor of 107, the scattered 527 nm wavelength laser illumination and
passed, with 80% efficiency, fluorescent light at wavelengths >532 nm. The images were
then analyzed using LaVision Inc.’s DaVis tomographic PIV software package. To reduce
optical distortion from the outer cylinder’s curved surfaces, the index of refraction of both
the working fluid and the bath liquid were matched to the index of refraction of the glass
outer cylinder. Index matching of the working fluid was achieved by using an ammonium
thiocyanate solution prepared with a specific gravity of 1.13 and a kinematic viscosity
of ν = 1.37 mm2/s at 23 ◦C (Borrero-Echeverry & Morrison 2016). A small amount of
ascorbic acid was added to the ammonium thiocyanate solution to mitigate reaction with
trace metals (Sommeria et al. 1991). Index matching of the bath liquid was achieved by
a binary mixture of two mineral oils with a 68.8 % heavy viscosity oil (McMaster-Carr
part no. 3190K632) to 31.2 % light viscosity oil (McMaster-Carr part no. 3190K629)
ratio. Further details about the implementation of tomo PIV measurements in our TCF
apparatus are reported elsewhere (Borrero-Echeverry 2014).
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Fully resolved direct numerical simulations (DNS) of TCF were conducted using the
code developed by M. Avila and his collaborators (Avila et al. 2008; Mercader et al. 2010;
Avila 2012). This code uses a pseudospectral scheme to solve the Navier-Stokes equation
in cylindrical coordinates (r, θ, z) subject to physical (no-slip) boundary conditions at the
surface of the rotating concentric cylinders and top and bottom end caps. The geometry of
the simulation was chosen to match that of the experimental apparatus. The simulations
used Nr = 20 Chebyshev modes in the radial direction, Nz = 100 Chebyshev modes in
the axial direction, and Nθ = 1280 Fourier modes in the azimuthal direction, so that the
velocity field v at a point (r, θ, z) and time t is given by

v(r, θ, z, t) = Re

Nr∑
k=0

Nz∑
n=0

Nθ/2∑
m=0

Vknm(t)Tk(x)Tn(y)eimθ, (2.1)

where x = (2r− ri − ro)/d, y = 2z/h− 1 (where 0 < z < h), and Tn(·) is the Chebyshev
polynomial of order n. All experimental and numerical results are nondimensionalized in
terms of a characteristic length scale d = ro− ri = 7.64 mm (the annular gap width) and
a characteristic (viscous) time scale τ = d2/ν = 56.7 s.

To quantify flow fields in both simulations and experiments, the perturbation flow field

ṽ(t) = v(t)− vlam, (2.2)

characterizes the deviation of the full flow v(t) from an axially symmetric laminar flow
vlam computed numerically at the same Reynolds numbers. The numerically computed
vlam was used to compute the perturbation flow field for both simulations and exper-
iments since the laminar flow is unstable for some Rei considered in this study, and,
therefore, unobservable in the laboratory experiments.

3. Results

We first briefly describe a coarse experimental exploration of laminar-turbulent and
turbulent-laminar transitions over a range of Reo for cylinders that counter-rotate
(Rei > 0 and Reo < 0). We then focus on the case of Reo = −1000 and examine in
detail the transitions associated with increasing and decreasing Rei using both laboratory
experiments and numerical simulations.

3.1. Laminar-Turbulent Transition: Dependence on Reo

To coarsely map out the transition boundaries for TCF in the geometry studied here,
we performed flow visualization experiments by first spinning up the outer cylinder from
rest (with the inner cylinder stationary) to a specific value of Reo; then, with Reo held
constant, Rei was increased in steps of ∆Rei = 10 by slowly stepping up the rotation
rate of the inner cylinder until a qualitative change in the flow was observed. We waited a
time interval of 3.2 τ between steps to ensure that the flow had reached equilibrium. The
turbulent-laminar transition boundary at the same Reo was then determined by starting
in the turbulent regime and slowing the inner cylinder down by ∆Rei = 10 every 3.2 τ
until the flow was observed to be in the laminar state. The experiments were repeated
for different fixed values of Reo.

The experimental studies revealed instability of the azimuthally symmetric smooth
laminar flow always leads to turbulence over a range of Reo from −3500 to −500 (Figure
2). The transition back to laminar flow was always observed to be hysteretic; the range
in Rei over which hysteresis occurs increases as the magnitude of Reo increases. Our
results indicate that transition from laminar flow is suppressed by the moderate aspect
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Figure 2. Phase diagram illustrating the hysteretic laminar-turbulent transition in experiments
on counter-rotating (Reo < 0 and Rei > 0) Taylor-Couette flow with Γ = 5.26 and η = 0.905.
The diagram indicates transitions observed in experiments where Rei was increased or decreased
quasi-statically while keeping Reo fixed. The black solid and dashed lines, drawn to guide the
eye, indicate the transition boundaries from laminar flow to turbulence and from turbulence to
laminar flow, respectively. The gray dash-dotted line represents the marginal stability curve for
TCF at η = 0.9 for Γ =∞ (Esser & Grossmann 1996).

ratio of our apparatus, i.e., for fixed Reo, the transition occurs at Rei larger than that
predicted by linear stability analysis with Γ =∞ (gray line in Figure 2). This observation
is consistent with earlier experiments at larger values of Γ (and somewhat smaller values
of η) where, like our studies, the endcaps rotated with the outer cylinder (Hamill 1995).
In that work, the delay of laminar flow transition was found to increase with decreasing
Γ , most likely due to the end-wall effects (e.g. dissipation and Ekman pumping) that
become more pronounced as Γ decreases.

3.2. Flow Transitions at Reo = −1000

A detailed experimental and numerical investigation at fixed Reo = −1000 led to
the observation of an intermediate state that plays an important role in the laminar-
turbulent transition. The transition from turbulence to laminar flow was found to involve
an aperiodic stable intermediate state (interpenetrating spirals) that persists over a range
of Rei. Moreover, IPS were found to appear – albeit transiently – during the transition
from laminar flow to turbulence. Transitions between different flow states are described
in detail below.
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Transition Experiment Noiseless DNS
Laminar → Turbulence 643 ± 2 675 ± 5

Turbulence → IPS 625 ± 3.6 623.5 ± 0.5
IPS → Turbulence 631 ± 3.7 630.5 ± 0.5

IPS → Laminar 617 ± 1 617.5 ± 0.5

Table 1. The inner cylinder Reynolds numbers for flow transitions are shown for both
laboratory experiments and numerical simulations at Reo = −1000. Uncertainty values from
the experiment reflect the systematic uncertainties associated with the measurement of Re as
well as repeatability of the transition while the uncertainty values from the noiseless DNS reflect
the resolution with which Rei was investigated.

(a) (b) (c)

Figure 3. Evolution of the flow during laminar to turbulent transition in experiments at
Reo = −1000 and Rei = 643. The sequence of snapshots shows (a) the initial laminar flow, (b)
transient interpenetrating spirals, and (c) persistent intermittent turbulence.

3.2.1. Transitions in Laboratory Experiments

Transitions were determined in flow visualization studies by first spinning up the outer
cylinder to Reo = −1000 (with the inner cylinder at rest), and then increasing the inner
cylinder’s counter-rotation in steps of ∆Rei = 0.5 every 3.2 τ , until the flow became
turbulent. Subsequently, beginning from the turbulent state, Rei was decreased at the
same rate as before until the flow returned to the laminar state. No observable shifts in
the transition boundaries were found when incrementing or decrementing Rei in steps of
∆Rei = 0.25 separated in time by 10.7 τ .

With the flow starting in a laminar state, laboratory experiments exhibit a laminar-
turbulent transition at Rei = 643 with a total uncertainty in Rei of ±2. Repeated
measurements demonstrate the transition can be determined to a resolution of ±0.13
(i.e. 0.02 %), as constrained by the mechanical limits of the motor and transmission
driving the inner cylinder; in other words, from laminar flow just below threshold (cf.
Figure 3(a)), a single increment of ∆Rei = 0.13 reproducibly results in turbulence.
At onset (with Rei fixed), the structure of the flow changes slowly at first; very weak
interpenetrating spirals gradually become discernible and grow slowly in amplitude
with time (cf. Figure 3(b)). Then, abruptly, the spirals break up and spatiotemporally
intermittent turbulence develops on top of an IPS-like background flow and persists (cf.
Figure 3(c)). The interval of time over which the flow resembles IPS before transitioning
to turbulence was different each time the experiment was performed and this interval
decreased with an increase in the increment size of ∆Rei. If Rei is increased stepwise
(with a fixed time interval of 3.2 τ between each step), the transition Rei is unchanged
for increments of ∆Rei < 1; the transition Rei is observed to decrease for increments of
∆Rei > 1.

Starting from turbulent flow, decreasing Rei reveals a transition to stable IPS at
Rei = 625 ± 3.6. IPS were observed to be weakly chaotic (i.e., having a broad-band
temporal spectrum) over a range of Rei and persist for as long as 3.8× 103 τ (two and a
half days, after which time the experiments were ended). From stable IPS, increasing Rei
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Figure 4. Transition probability P (t). After an abrupt change in Rei, the transition time for
turbulence to either (a) disappear or (b) first appear is exponentially distributed. P (t) indicates
the fraction of experimental trials where either (a) turbulence still persists after changing Rei
from 640 to 623 or (b) turbulence has not yet appeared after changing Rei from 623 to 640.

leads to a transition back to intermittent turbulence at Rei = 631± 3.7; decreasing Rei
leads instead to a transition to the axisymmetric laminar state at Rei = 617±1. It should
be noted that the values of Rei at which various transitions are observed (see Table 1)
depend on disturbances of two qualitatively different types: (a) disturbances associated
with a discrete change of Rei and (b) other types of disturbances (e.g., the cylinders not
being perfectly round or coaxial, the deviation in their angular velocity from a constant,
etc.). All of these are disturbances of a finite, though likely small, amplitude.

A series of quenching experiments (Bottin & Chaté 1998; Prigent & Dauchot 2005;
Peixinho & Mullin 2006; Borrero-Echeverry et al. 2010) were carried out to characterize
further the hysteretic transition between IPS and turbulence. To probe the transition
from turbulence to IPS, a turbulent state at Rei = 640 was first established and
monitored for 5.3 τ ; the inner cylinder rotation was then rapidly (in approximately
4.2 × 10−3 τ) reduced to Rei = 623. The time interval between the reduction in Rei
and the disappearance of turbulence was recorded. Similarly, to probe the transition
from IPS to turbulence, IPS at Rei = 623 was monitored for 5.3 τ ; then, the inner
cylinder rotation was rapidly (in approximately 4.2×10−3 τ) increased to Rei = 640 and
the time interval between the increase in Rei and the first appearance of turbulence was
recorded. Figure 4 summarizes the results from 250 experiments performing the same
cycle of transitions between turbulence and IPS; the data indicate a clear exponential
distribution of intervals between the time when the inner cylinder rotation rate is changed
and the time for turbulence either completely disappears (cf. Figure 4 (a)) or first appears
(cf. Figure 4 (b)). The exponential distribution suggests that both transitions describe
a memoryless Poisson process, with a chaotic attractor at the initial Rei becoming a
chaotic repeller at the final Rei (Kadanoff & Tang 1984; Kantz & Grassberger 1985).
Similar distributions of transition lifetimes were found in relaminarization studies of
high-aspect-ratio TCF (Borrero-Echeverry et al. 2010).

Quenching experiments were also performed for the transition from stable IPS to
laminar flow; however, due to the discreteness with which Rei could be varied in
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(a) (b) (c)

Figure 5. Evolution of the flow during the laminar to turbulent transition in numerical
simulations at Reo = −1000 and Rei = 645. (a) A laminar flow becomes unstable, transitioning
first to (b) interpenetrating spirals and, eventually, (c) turbulence. Each panel shows isosurfaces
of the radial velocity component; the color indicates the corresponding azimuthal velocity
component. Red (blue) indicates flow in the same direction as the inner (outer) cylinder rotation.

(a) (b) (c)

Figure 6. Interpenetrating spirals at Reo = −1000 and (a) Rei = 620, (b) Rei = 625, (c)
Rei = 630. Each panel shows isosurfaces of the radial velocity component; the color indicates
the corresponding azimuthal velocity component. Red (blue) indicates flow in the same direction
as the inner (outer) cylinder rotation.

experiment, we could not find a final Rei for which a meaningful distribution of lifetimes
could be observed.

3.2.2. Transitions in Numerical Simulations

Numerical simulations were used to determine linear stability of the steady axisym-
metric laminar flow vlam. This flow was generated at Reo = −1000 and different fixed
Rei by keeping only the m = 0 azimuthal Fourier mode and evolving the state until it
stopped changing. The azimuthal symmetry of this flow was then broken by perturbing
the m = 1 Fourier mode (with the nonlinear term generating disturbances for all m 6= 0).
Specifically, a random Gaussian noise with standard deviation σ = 10−8 was added to
the coefficient of each of the spectral modes Vkn1

i |t=0, i = r, θ, z (note this is a very
small perturbation since Vkn0

θ = O(Reo)). Evolving the perturbed flow, we found that
the perturbation decays (the laminar state is linearly stable) for Rei < Reci = 675 ± 5
and grows, resulting in a transition to turbulence, for Rei > Reci .

Since the laminar flow undergoes transition to turbulence in experiment at a notably
lower Rei than the linear stability threshold Reci , an investigation of its stability to
finite amplitude disturbances was performed. Qualitatively, we find that, for Rei > 634,
finite amplitude perturbations lead to destabilization of the laminar state (cf. Figure
5(a)), giving rise to IPS with an amplitude that grows and saturates temporarily (cf.
Figure 5(b)). Ultimately the IPS gives way to spatiotemporally intermittent turbulence
(cf. Figure 5(c)), just as in the experiment. The same transition sequence was found to
occur for initial disturbances with different magnitudes and spatial profiles.

To quantify how the critical disturbance amplitude depends on Rei, we fixed the spatial
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Figure 7. The critical magnitude αc of the homotopy parameter below which the flow
relaminarizes at different Rei. The symbols and denote that the flow at this Rei transitions
to IPS and turbulence, respectively, for α > αc.

profile of the disturbance by choosing the initial condition in the form of a homotopy

v = (1− α)vlam + αvIPS, (3.1)

where vlam is the laminar flow at the given Rei and vIPS is a snapshot of the (nonaxisym-
metric) IPS at Rei = 630. As Figure 6 illustrates, the structure of the IPS is fairly similar
at different Rei; thus, for the purpose of determining critical disturbance amplitudes, we
considered it to be sufficient to compute vIPS at a fixed Rei. The homotopy parameter
0 6 α 6 1 characterizes the magnitude of the disturbance; increasing α increases
the disturbance amplitude. This particular choice of homotopy guarantees that initial
conditions are divergence-free for any value of α.

For each Rei we considered, a series of numerical simulations were performed with each
simulation at a different value of α; the simulations were run until the flow approached an
asymptotic state. We then used bisection to determine the largest value of α at which the
flow relaminarized. The critical value αc is then defined as the midpoint between the two
α values found that produce relaminarization and transition. The results are summarized
in Figure 7 and suggest that the bifurcation at Reci leading to the loss of stability of the
laminar flow is subcritical, with αc decreasing with increasing Rei and vanishing at Reci .
Furthermore, for Rei > 634, disturbances with α > αc lead to a transition to turbulence
with IPS serving as a transient intermediate state. For Rei 6 633, on the other hand,
disturbances with α > αc lead to a transition to stable IPS. We note that the value
Rei = 643± 2 at which the transition to turbulence is found in experiment corresponds
to αc ≈ 0.02, suggesting the ambient disturbance level present in the experiments is fairly
low.

To illustrate the transition from laminar flow to turbulence, Figure 8 shows the energies
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Figure 8. The energy of the flow contained in the ten leading azimuthal Fourier modes during
the transition from laminar flow to turbulence at Rei = 640. The mode numbers are shown next
to each curve.

of the ten leading azimuthal Fourier modes (m = 0, · · · , 9)

Em(t) =

∫ 1/(1−η)

η/(1−η)
r dr

∫ Γ

0

|vm(t)|2 dz, (3.2)

where vm is the m-Fourier component of the velocity field, for a representative numerical
simulation at Rei = 640, where the initial condition was constructed using the homotopy
(3.1) with α = 0.06. One can clearly see three distinct regimes: for 0 < t / 0.7 the
perturbation about the laminar flow grows. For 0.7 / t / 1.6, the flow temporarily
saturates into IPS where the mode energies remain roughly constant, with modes m = 4
and m = 5 dominating. Finally, for t ' 1.6, IPS give way to turbulence. The flows
corresponding to the three regimes are qualitatively similar to those shown in Figure 5.

Numerical simulations find the same sequence of transitions as laboratory experiments
when the flow is initially turbulent. Decreasing Rei first leads to a transition to stable
IPS at Rei = 623.5 ± 0.5. From stable IPS, increasing Rei leads to a transition back
to turbulence at Rei = 630.5 ± 0.5, while decreasing Rei leads to a transition to the
time-independent laminar state at Rei = 617.5 ± 0.5. These numerically determined
transition Reynolds numbers between IPS and turbulence and from IPS to laminar are
quantitatively in agreement with those found in laboratory experiments, as illustrated in
Table 1. Due to the subcritical nature of the transition between laminar and turbulence,
however, the appropriate choice of the finite amplitude perturbation, α, is required.

The protocol for determining Rei for transition from turbulence to IPS is as follows:
We started with verifying that turbulence persists at Rei = 640 by evolving the flow
for a time interval 5.264 τ . Then we ramped down Rei in increments of ∆Rei = 5 and
evolved the flow for the same interval to determine whether a transition occurred. Once
a transition was detected (at Rei = 620), we re-initialized the flow using the final state of
the simulation at Rei = 625, decreased the Reynolds number by ∆Rei = 1, and evolved
the flow for a further 5.264 τ . The procedure was repeated with ∆Rei = 2, 3, · · · until a
transition was found.
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(a) (b)

Figure 9. A snapshot of interpenetrating spirals in (a) a tomo PIV experiment and (b)
DNS. Each image shows a single isosurface of the perturbation field, ṽθ, for Rei = 625 and
Reo = −1000 inside a cylindrical subvolume. The color indicates the corresponding azimuthal
velocity component. Red (blue) indicates flow in the same direction as the inner (outer) cylinder
rotation. The shaded orange rectangular box represents the region probed by tomo PIV, which
spans approximately 10 % of the flow domain volume.

A similar protocol was used for the two transitions from stable IPS. In these cases, we
verified that stable IPS persists at Rei = 620 and 630. The final states of the simulation
at Rei = 630 (or Rei = 620) were evolved for 5.264 τ at a fixed Rei that was increased
(or decreased) by ∆Rei = 1, 2, 3, · · · until transition to turbulence (or laminar flow) was
found. Note that, in all of these cases, only one simulation was performed and the finest
resolution was ∆Rei = 1, which determines the accuracy of the values reported in Table
1.

Given ample experimental evidence that the transitions between turbulence and IPS
are probabilistic, we did not investigate these transitions numerically in more detail.
For the transition from IPS to laminar flow, however, experiments did not conclusively
determine the nature of the transition. We therefore performed an additional numerical
investigation of this transition by evolving IPS at a number of fixed Rei in the range
(617, 618). While most of the results were consistent with a transition threshold found
previously, there were a few outliers. In particular, we found that evolving IPS for 5.264 τ
at Rei = 617.8125 does not result in a transition to a laminar flow, although eventually
the flow does relaminarize. This result shows that the transition from IPS to laminar
flow also appears to have a probabilistic nature and does not correspond to a bifurcation
which would have resulted in a sharp transition boundary.

3.2.3. Flow Field Characterization

Flow fields computed numerically also compare well with measurements from labora-
tory experiments. The stable IPS found in simulations and experiments exhibit a similar
spatial structure (Figure 9). Moreover, both experiments and simulations show that just
above the onset of turbulence, the flow features localized patches of turbulence that co-
exist with disordered spiral structures (cf. Figure 5(c) and Figure 10). To quantitatively
compare the flows in experiment and numerics, we computed the average energy E
corresponding to the θ component of the velocity perturbation ṽ = v−vlam over a time
interval T = O(τ) and region Ω in the r, z plane at a fixed azimuthal location where
experimental velocity measurements were available. Only the θ-component of velocity
was analyzed because vr and vz had increased noise due to the frame rates used in
the PIV. The region Ω is bounded by the coordinates r ∈ [η/(1 − η), 1/(1 − η)] and
z/Γ ∈ [0.254, 0.973], where z is measured from the bottom of the flow domain. For the
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(a) (b)

Figure 10. A snapshot of a turbulent flow in experiment (a) and DNS (b). Each image shows a
single isosurface of the perturbation field, ṽθ, for Rei = 650 and Reo = −1000 inside a cylindrical
subvolume. The color indicates the corresponding azimuthal velocity component. Red (blue)
indicates flow in the same direction as the inner (outer) cylinder rotation. The shaded orange
rectangular box represents the region probed by tomo PIV, which spans approximately 10 % of
the flow domain volume.

stable states (IPS and turbulence), the average energy was defined according to

E =
1

TA

∫ T

0

dt

∫
Ω

ṽ2θ(t) drdz, (3.3)

where A is the area of the cross section of Ω.
With the use of E as an order parameter, IPS and turbulence can be easily dis-

tinguished. A transition map shown in Figure 11 quantifies both IPS and turbulence
as well as the boundary of the basin of attraction of the laminar flow. The gold and
blue arrows connecting the three flow states represent the value of Rei where the flow
transitions in numerics and experiment, respectively. The shading around these arrows
represent the uncertainty in those values. For experiments, the uncertainty represents
the repeatability of the transition while in the numerics the uncertainty represents the
resolution of the steps in Rei investigated. The diamonds and circles correspond to the
value of E computed from the numerics and experiment respectively. The triangles and
squares correspond to the critical initial disturbance (for transition from laminar flow to
IPS and turbulence, respectively) shown in Figure 7 in terms of the homotopy parameter
α. The average energy E corresponding to the critical disturbance was computed by
averaging over the azimuthal variable rather than time in (3.3) where ṽ = α(vIPS−vlam)
according to (3.1) and α = αc.

4. Discussion

Two distinct instabilities at play in counter-rotating TCF form the basis for a qualita-
tive physical picture of turbulent transition. In the limiting case where Reo approaches
zero (the outer cylinder is at rest), the laminar flow is subject to centrifugal instability
when Rei is sufficiently large. By contrast, in the limiting case where Rei approaches
zero (the inner cylinder is at rest), the flow is centrifugally stable for all values of Reo,
but is subject to shear instability for Reo sufficiently large. Under counter-rotation, both
instability mechanisms can, roughly speaking, be thought of as operative in distinct
spatial regions, separated by a “nodal surface” where the azimuthal velocity component
is zero. On the side of the nodal surface nearer the inner cylinder, the azimuthal velocity
component is decreasing with increasing radial distance from the inner cylinder, thereby,
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Figure 11. Transition map for the three flow states: laminar, IPS, and turbulence. Numerically
computed values of E for stable IPS and turbulence at various Rei are plotted as while the
values calculated from experimental measurements are plotted as . The gold and blue arrows
indicate the values of Rei at which transitions occur in simulation and experiment respectively.
The shading around the arrows corresponds to the uncertainty in the transitional Rei value.
The and represent the E value associated with the critical magnitude of the finite amplitude
perturbation, which corresponds to α = αc, necessary to initiate transition from laminar flow
to IPS and turbulence, respectively. All curves are to guide the eye only.

providing a necessary condition for centrifugal instability in this (inner) flow region. On
the side of the nodal surface nearer the outer cylinder, centrifugal instability is ruled out
since the azimuthal velocity component is increasing with increasing radial distance from
the inner cylinder; however, shear flow instabilities remain as a possibility in this (outer)
flow region.

Prior work in large-aspect-ratio counter-rotating TCF has described a scenario in which
the interplay between the inner and outer flow regions leads to turbulent transition.
When Reo is fixed and sufficiently large in magnitude and Rei is increased quasi-
statically, the primary instability of the laminar flow leads to the formation of stable
spiral flows (Coles 1967; Andereck et al. 1986; Eckhardt & Yao 1995; Goharzadeh &
Mutabazi 2001), which are mainly confined to the centrifugally-unstable inner region
and qualitatively similar to IPS described in the present paper. Simulations with periodic
axial boundary conditions (Coughlin & Marcus 1996) showed that, as Rei is increased
beyond the primary instability, the spiral flow in the inner region increasingly disturbs the
centrifugally-stable outer region. Coughlin & Marcus found that, beyond a certain Rei,
the disturbance amplitude becomes strong enough to trigger a shear instability in the
outer layer leading to turbulence. This transition scenario is in qualitative agreement with
experimental observation in TCF with moderate-to-large aspect ratios (17 6 Γ 6 46)
(Hamill 1995).

Our experimental results suggest the interactions between inner and outer flow regions
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(a) (b)

Figure 12. Typical snapshots of the radial velocity in the constant θ plane for (a) IPS and
(b) turbulence in the numerical simulation at Rei = 637 and Reo = −1000. The r direction is
vertical and z is horizontal, with the inner cylinder at the bottom. Red (blue) indicates positive
(negative) values of vr.

also play a central role in transition in small-aspect-ratio TCF, with the important
difference that transition from laminar flow leads directly to turbulence facilitated by the
temporary appearance of IPS. The laminar state with Reo fixed exhibits a subcritical
rather than a supercritical instability as Rei increased quasi-statically. Consequently, as
Rei increases, the laminar flow undergoes a finite amplitude instability leading to growth
of a spiral flow mostly confined to the inner region (cf. Figure 12(a)). However, unlike
the large-aspect-ratio case, the emerging spiral states are transient, with the flow in the
inner region generating disturbances of sufficient amplitude to trigger shear instability
in the outer region leading to turbulence (cf. Figure 12(b)). Stable IPS do exist in our
system at lower Rei, but are disconnected from the axisymmetric laminar solution. The
transition from stable IPS to turbulence appears similar to the large-aspect-ratio case.

This transition, as well as the reverse transition from turbulence to stable IPS are
similar from a dynamical systems standpoint. The results shown in Figure 4(a) for the
decay from turbulence is reminiscent of earlier observations of transitions from turbulence
in pipe flows (Faisst & Eckhardt 2004; Peixinho & Mullin 2006; Avila et al. 2011) and
in large-aspect-ratio TCF driven solely by outer cylinder rotation (Borrero-Echeverry
et al. 2010). In all these cases, the exponential decay from turbulence is suggestive of a
memoryless process in which, from a state space viewpoint, the transient character of
turbulence is captured by a finite-time escape from a chaotic repeller to a qualitatively
different solution. Interestingly, in all previous work, once the turbulent transients had
disappeared, the flow relaminarized; by contrast, our results demonstrate, for the first
time, that turbulence gives way to another chaotic state (IPS). Moreover, Figure 4(b)
suggests the transition from IPS to turbulence exhibits a similar character, so that for
sufficiently large Rei, IPS are described by a chaotic repeller and the flow transitions to
a different chaotic state (turbulence). In this regard, the origin of the IPS-to-turbulent
transition observed here is quite different from the linear secondary instability mechanism
proposed earlier (Coughlin & Marcus 1996). The change of the nature of the chaotic set
underlying IPS from an attractor at lower Rei to a repeller at higher Rei also explains
the transient appearance of IPS during the transition from laminar to turbulent flow.

Prior work has demonstrated the chaotic behavior of IPS arises from competition
between spiral modes of different wavenumbers and helicities (Andereck et al. 1986;
Hamill 1995; Coughlin & Marcus 1996). Our observations of IPS were made in a TCF
apparatus with an aspect ratio substantially smaller than that employed in earlier studies
of IPS; thus, axial confinement effects in our work hinders clear identification of distinct
spiral modes at play in IPS. Nevertheless, we speculate that chaos in IPS observed here
originates from qualitatively similar mode interactions as that found in larger aspect
ratio studies.
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5. Conclusion

Our experimental and numerical results indicate that, for suitable parameter values,
Taylor-Couette flow can exhibit some key characteristics commonly observed in the
transition to turbulence in other shear flows. The transition from laminar flow to
turbulence is subcritical, like that observed for flows in channels and boundary layers.
In particular, when transition is probed by increasing Rei sufficiently slowly (see Sec.
3.2.1), structured, non-turbulent flows (transient interpenetrating sprials) mediate the
transition to turbulence in Taylor-Couette flow in a manner that is analogous to the role of
Tollmein-Schlicting (TS) waves in the transition to turbulence in channels and boundary
layers in low-noise environments. Moreover, when transition is probed by increasing
Rei sufficiently rapidly with relatively large step changes ∆Rei, the corresponding
disturbances to the laminar flow cause turbulent transition at values of Rei that decrease
with increasing ∆Rei. Under these conditions, the dependence of the laminar-turbulent
transition on disturbance amplitude is reminiscent of bypass transition scenarios observed
in channels and boundary layers when the ambient (free-stream) turbulence intensity is
sufficiently large.

However, there are also significant differences between Taylor-Couette flow and other
canonical shear flows: the physical instability mechanism of IPS (centrifugal instability)
differs from the mechanisms for TS waves; TCF transition does not feature a linear
growth regime like that found for TS waves in channel and boundary layer transition;
stable, nonlinearly-saturated TS waves are never observed in channels/boundary layers,
unlike the stable IPS observed in TCF.

While TCF is a closed flow while, most commonly, the subcritical laminar-turbulent
transition is studied in open flows. Nevertheless, the highly reproducible character of the
transition, with close correspondence between numerics and experiment in TCF offer the
opportunity to explore in great detail shear flow transition behaviors that may show up
generally in a variety of settings. One such opportunity for future study emerging from
recent theoretical and experimental work suggests that the dynamics of turbulent flows
are guided by particular unstable solutions to the Navier-Stokes equation (Hof et al. 2004;
Suri et al. 2017). This work suggests that selected solutions with simple temporal behavior
(e.g., equilibria, limit cycle oscillations) exhibit spatial structures that are strikingly
similar to well-known patterns (coherent structures) that have long been known to play
a central role in turbulence; moreover, a suitable selection of such solutions (known
as exact coherent structures) can be harnessed to capture turbulent flow dynamics and
statistics (e.g., average turbulent flow properties). Our results suggest that exact coherent
structures with spiral spatial structures could play a role in mediating laminar-turbulent
transition in counter-rotating Taylor-Couette flow.

6. Acknowledgements

The authors would like to acknowledge the financial support by the Army Research
Office under grants No. W911NF-15-10471 and W911NF-16-10281. D.B.-E. gratefully
acknowledges the support of the M.J.Murdock Charitable Trust (Award # 2015214)
and the Kresge Endowment at Willamette University. We are grateful to Marc Avila for
sharing the Taylor-Couette DNS solver used here with us and for many useful discussions.



Novel transition to turbulence in Taylor-Couette flow with counter-rotation 17

REFERENCES

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette
system with independently rotating cylinders. Journal of Fluid Mechanics 164, 155.

Avila, K & Hof, B 2013 High-precision Taylor-Couette experiment to study subcritical
transitions and the role of boundary conditions and size effects. Review of Scientific
Instruments 84, 065106.

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset
of turbulence in pipe flow. Science 333, 192.

Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating
cylinders. Physical Review Letters 108, 124501.

Avila, M., Grimes, M., Lopez, J. M. & Marques, F. 2008 Global endwall effects on
centrifugally stable flows. Physics of Fluids 20, 104104.

Borrero-Echeverry, D. 2014 Subcritical transition to turbulence in Taylor-Couette flow.
PhD thesis, Georgia Institute of Technology.

Borrero-Echeverry, D., Crowley, C. J. & Riddick, T. P. 2018 Rheoscopic fluids in a
post-Kalliroscope world. Physics of Fluids 30, 087103.

Borrero-Echeverry, D. & Morrison, B. C. A. 2016 Aqueous ammonium thiocyanate
solutions as refractive index-matching fluids with low density and viscosity. Experiments
in Fluids 57, 123.

Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. 2010 Transient turbulence in Taylor-
Couette flow. Physical Review E 81, 025301(R).
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