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Symmetry reduction by the method of slices quotients the continuous symmetries of chaotic flows

by replacing the original state space by a set of charts, each covering a neighborhood of a

dynamically important class of solutions, qualitatively captured by a “template.” Together these

charts provide an atlas of the symmetry-reduced “slice” of state space, charting the regions of the

manifold explored by the trajectories of interest. Within the slice, relative equilibria reduce to

equilibria and relative periodic orbits reduce to periodic orbits. Visualizations of these solutions

and their unstable manifolds reveal their interrelations and the role they play in organizing

turbulence/chaos.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758309]

Today, it is possible to take a stroll through the high-
dimensional state space of hydrodynamic turbulence and
observe that turbulent trajectories are guided by close
passes to invariant solutions of the Navier-Stokes equa-
tions. Charting how close these passes are is a geometer’s
task, but in order to place them on a map, one first has to
deal with families of solutions equivalent under the sym-
metries of a given flow. Evolution in time decomposes the
state space into a “spaghetti” of time trajectories. Continu-
ous spatial symmetries foliate it like the layers of an onion.
In this visual tour of dynamics, we use a low-dimensional
flow to illustrate how this tangle can be unraveled (symme-
try reduction), and how to pick a single representative
point for each trajectory (section it) and group orbit (slice
it). Once the symmetry induced degeneracies are out of the
way, one can identify and describe the prominent turbu-
lent structures by a taxonomy of invariant building blocks
(numerically exact solutions of the Navier-Stokes equa-
tions, finite sets of relative equilibria, and infinite hierar-
chies of relative periodic orbits) and describe the dynamics
in terms of near passes to their heteroclinic connections.

I. INTRODUCTION

Over the last decade, new insights into the dynamics of

moderate Re turbulent flows1–4 have been gained through

visualizations of their 1-dimensional state spaces by means

of dynamically invariant, representation independent coordi-

nate frames constructed from physically prominent unstable

coherent structures,5 hereafter referred to as templates. Navi-

gating and charting the geometry of these extremely high-

dimensional state spaces necessitates a reexamination of two

of the basic tools of the theory of dynamical systems:

Poincar�e sections and symmetry reduction.

In quantum-mechanical calculations, one always starts

out by making sure that the Hamiltonian has been brought to

its symmetry-reduced block-diagonal, irreducible form; any-

thing else would be sheer masochism. As the dynamical

theory of turbulence is still in its infancy, symmetry reduc-

tion is not yet a common practice in processing turbulence

data collected in experimental measurements and numerical

simulations. Symmetry reduction of nonlinear flows is much

trickier than the more familiar theory of irreducible represen-

tations for linear problems such as quantum mechanics, so

most of our sketches illustrate the simplest case, the

1-parameter compact continuous group SO(2) symmetry.

We show here how to bring the numerical or experimen-

tal data to a symmetry-reduced format before any further

analysis of it takes place. Our tool of choice is the linear

implementation of the method of slices.6–9 Here, we extend

this local method to a global reduction of a turbulent flow by

defining local “charts,” their borders, and the ridges that glue

these linear tiles into an atlas that spans the ergodic state

space region of interest. While “charts” and “atlases” are

standard tools in geometry, the prescription for explicit con-

struction of a symmetry-reduced state space presented here

is, to our knowledge, new. We explain the key geometrical

ideas in simple but illustrative settings, eschewing the fluid

dynamical and group theoretical technicalities.

Let us begin by defining a dynamical system comprised

of a flow f s and the state space M on which it acts. If a

group G of continuous transformations acts on a continuous

time flow, each state space point owns a set of tangent vec-

tors (Fig. 1(a)). Integrated in time, the velocity vector vðxÞ
traces out a trajectory f sðxÞ (Fig. 1(b)). Applying the contin-

uous transformations traces out a group orbit Mx ¼ fg xjg 2
Gg (Fig. 1(c)). Together, time evolution and group actions

trace out a complicated smooth manifold, hereafter affec-

tionately referred to as a wurst (see Figs. 1(d), 4(b), and 8),

which we shall here teach you how to slice.

A flow is said to have symmetry G if the form of evolu-

tion equations _x ¼ vðxÞ is left invariant, vðxÞ ¼ gÿ1
vðg xÞ ;

by the set of transformations g 2 G. If a flow has symmetry,

the simplest solutions are highly symmetric invariant equili-

bria and relative equilibria studied in bifurcation-theory

approaches to the onset of turbulence. Physicists lovea)Electronic mail: predrag@gatech.edu.
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symmetries,10 but nature often prefers solutions of no sym-

metry: while the flow equations may be invariant under G,

turbulent solutions are not. The highly symmetric solutions

often lie far from the regions of state space explored by tur-

bulence11 and, thus, are of limited usefulness in understand-

ing its dynamics. In contrast, the relative periodic orbits

studied here are embedded in the turbulence and capture its

geometry and statistics.

We can make headway in unraveling the tangle of

1-dimensional time trajectories with the notion of recurrence.

To quantify how close the state of the system at a given time

is to a previously visited state, we need the notion of distance

between two points in state space. The simplest (but far from

the only or the most natural) is the Euclidean norm

k xÿ x0k2 ¼ h xÿ x0jxÿ x0i ¼
X

d

i¼1

ðxÿ x0Þ2i : (1)

For experimental data, a better norm, for example, might

be a distance between digitized images. While in this paper

we simply assume that a norm is given, its importance cannot

be overstated: the construction of invariant, partial differential

equation (PDE) discretization independent state space coordi-

nates,5 the symmetry reduction by minimization of the dis-

tance between group orbits undertaken in what follows, and

the utility of the charts so constructed all depend on a well-

chosen notion of distance in the high-dimensional state spaces

we are charting here.

Given a notion of distance, we can talk about a

“neighborhood,” an open set of nearby states with qualita-

tively similar dynamics. Our main task in what follows will

be to make this precise by defining a chart over a neighbor-

hood and its borders. Given distances and neighborhoods, the

next key notion is measure, or how likely a typical trajectory

is to visit a given neighborhood. After some observations of a

given turbulent flow, one can identify a set of templates,6

points x̂0ðjÞ, j ¼ 1; 2;… in the state space representative of the

most frequently visited features of the flow.

Our goals here are two-fold: (i) In Sec. II, we review the

method of Poincar�e sections with emphasis on two particular

aspects that are applicable to high-dimensional flows: the

construction of multiple local linear charts and the determi-

nation of their borders. (ii) In Sec. III, we discuss the effect

of continuous symmetries on nonlinear flows, and in Sec. IV

we use the lessons learned from our discussion of Poincar�e

sections to aid us in the reduction of continuous symmetries,

and, thus, enable us to commence a systematic charting of

the long-time dynamics of high-dimensional flows (Sec. V).

II. SECTION

In the Poincar�e section method, one records the coordi-

nates x̂n of the trajectory xðsÞ at the instants sn when it tra-

verses a fixed oriented hypersurface P of codimension 1. For

the high-dimensional flows that we have in mind, the practi-

cal choice is a hyperplane, the only type of Poincar�e section

(from now on, just a section) that we shall consider here.

One can choose a section such that it contains a template of

interest. Properly oriented, such a section can capture impor-

tant features of the flow in the neighborhood of the section-

fixing template.

But how far does this neighborhood extend? The answer

is that the section captures neighboring trajectories as long

as it cuts them transversally; it fails the moment the velocity

field at a point x̂� fails to pierce the section. At these loca-

tions, the velocity either vanishes (equilibrium) or is orthog-

onal to the section normal n̂,

n̂ � vðx̂�Þ ¼ 0 ; x̂� 2 S : (2)

For a smooth flow in d dimensions such points form a

smooth ðd ÿ 2Þ-dimensional section border S � P, which
encloses the open neighborhood of the template character-

ized by qualitatively similar flow. We shall refer to this

region of the section as a chart of the template neighborhood

(see Fig. 2). Beyond the border, the flow pierces the section

in the “wrong” direction and the dynamics are qualitatively

different.

As an example consider the R€ossler system,12

_x ¼ ÿy ÿ z

_y ¼ xþ ay

_z ¼ bþ zðxÿ cÞ ;
(3)

where a¼ b¼ 0.2 and c¼ 5.7. This flow has two prominent

invariant states, the “inner” and the “outer” unstable equili-

bria x̂0ðÿÞ and x̂0ðþÞ (see Fig. 2(a)), which we choose as tem-

plates for our sections.

We orient the sections so the plane Pÿ contains x̂0ðÿÞ

and its 1-dimensional stable eigenvector (Fig. 2(b)), and the

other section Pþ contains x̂0ðþÞ and its 1-dimensional unsta-

ble eigenvector (Fig. 2(c)), thus capturing the local spiral-in,

spiral-out dynamics. The remaining freedom to rotate each

FIG. 1. (a) In the presence of an N-continuous parameter symmetry, each

state space point x owns ðN þ 1Þ tangent vectors: one vðxÞ along the time

flow xðsÞ and the N group tangents t1ðxÞ; t2ðxÞ; …; tNðxÞ along infinitesimal

symmetry shifts, tangent to the N-dimensional group orbit Mx. (b) Each

point has a unique trajectory (blue) under time evolution. (c) Each point also

belongs to a group orbit (green) of symmetry-related points. For SO(2), this

is topologically a circle. Any two points on a group orbit are physically

equivalent, but may lie far from each other in state space. (d) Together,

time-evolution and group actions trace out a wurst of physically equivalent

solutions.
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section can be used to orient them in such a way that the

ridge (the intersection of the two sections) lies approximately

between the two templates (Fig. 2(d)). Choosing sections is a

dark art: in the example at hand the dynamics of interest is

captured by the two charts—if that were not the case, one

would have had to interpolate, by inserting a third chart

between them.

For R€ossler flow, the border condition (2) yields a quad-

ratic condition in 3 dimensions, so the section borders drawn

in Figs. 2(b) and 2(c) are conic sections. The two charts meet

at a ridge, and together do a pretty good job as the 2-chart

atlas of the interesting R€ossler dynamics. Due to the extreme

contraction rate of the attractor, its intersection with the sec-

tion in Fig. 2(b) is for all practical purposes 1-dimensional,

and the associated return map yields all periodic orbits of the

3-dimensional flow.13

In 3 dimensions everything—sections, ridges, section

borders—can be drawn and the chart fits on a 2-dimensional

sheet of papyrus. But what about for hydrodynamic flows

where the dimensionality d of the state space is very large?

The point of the cartographical enterprize undertaken here is

that while it is impossible to visualize the ðd ÿ 2Þ-dimen-

sional section border of the ðd ÿ 1Þ-dimensional slab that is

now our chart,14 a point is a point and a line is a line in a pro-

jection from any number of dimensions, so a trajectory cross-

ing of either a section or a section border can be easily

determined and visualized in any dimension.

To summarize: Evolution in time decomposes the state

space into a spaghetti of 1-dimensional trajectories xðsÞ,

each fixed by picking a single point xð0Þ on it. A well chosen

set of section charts of codimension 1 allows us to “quotient”

the continuous time parameter s and reveal the dynamically

important transverse structure of the flow’s stable/unstable

manifolds. For unstable trajectories one needs, in addition, a

notion of recurrence to the section. The set of points

fx̂ng ¼ fxðsnÞg, separated by short time flights in between

sections, captures the transverse dynamics without losing

any information about the chaotic flow. We can thus chart

interesting regions of state space by picking a sufficient num-

ber of templates and using them to construct charts of their

neighborhoods, each bounded by section borders and ridges.

We close this section with a remark on what sections

are not: A Poincar�e section is not a projection onto a lower-

dimensional space (in sense that a photograph is a 2-

dimensional projection of a 3-dimensional space). Rather, it

is a local change of coordinates to a direction along the flow

vðx̂Þ, and the remaining coordinates transverse to it. No in-

formation about the flow is lost; the full space trajectory xðsÞ
can always be reconstructed by integration from its point x̂

in the section.

III. DANCERS AND DRIFTERS

What is a symmetry? A visualization of the fluid dynam-

ics of a pipe flow, Fig. 3, affords an intuitive illustration. Sol-

utions of pipe flow remain physically the same under

azimuthal rotations and stream-wise translations (which

become SO(2) rotations in numerical stream-wise periodic

pipes), but rotated and shifted solutions may correspond to

distant points in state space.

Each SO(2) group orbit is topologically a circle, but it

traces out a complicated state space curve composed of

many Fourier modes that are nonlinearly coupled and thus of

comparable magnitude. Together, the two SO(2) symmetries

of numerical pipe flow sweep out contorted and hard to

FIG. 2. 2-chart atlas for R€ossler flow. (a) The inner equilibrium x̂ 0ðÿÞ is a (spi-

ral-out) saddle-focus with a 2-dimensional unstable manifold and a 1-

dimensional stable manifold. The outer equilibrium x̂ 0ðþÞ is a (spiral-in)

saddle-focus, with a 2-dimensional stable manifold (basin boundary for initial

conditions that either fall into the chaotic attractor, or escape to infinity) and a

1-dimensional unstable manifold. (b) Chart Pÿ of the x̂ 0ðÿÞ neighborhood

carved out of a Poincar�e section plane through the inner equilibrium x̂ 0ðÿÞ and

its stable eigenvector, with section border drawn as the solid red line. Note the

ridge (dashed blue line): the chart stops at the ridge. (c) Chart Pþ (here viewed

from below) is bounded by section border (solid red line) of a section through

the outer equilibrium x̂0ðþÞ and its unstable eigenvector. The chart stops at the

ridge (dashed blue line), and it does not intersect the strange attractor. (d) A

two-chart atlas of R€ossler flow, with charts Pÿ and Pþ oriented and combined

so that the ridge (intersection of the two sections, indicated by the dashed blue

line in the three figures) lies approximately between the templates. Section

hyperplanes beyond this ridge do not belong to the atlas.

FIG. 3. A symmetry relates physically equivalent states; a pipe flow solution

translated or rotated is also a solution. (a) An instantaneous state of the fluid

is indicated by a “swirl” —here the reader has to imagine a particular instan-

taneous velocity field across the entire pipe. The same state may be rigidly

(b) translated by downstream shift ‘ (fluid states are SOð2Þz equivariant in a

stream-wise periodic pipe), (c) translated by ‘ and rotated azimuthally by /

(the two states are SOð2Þh � SOð2Þz equivariant), and (d) reflected and

rotated azimuthally by / (the two states are Oð2Þh equivariant). Some

symmetry-related states may also be connected by time evolution. A relative

equilibrium is a solution of the equations of motion that retains its shape

while rotating and traveling downstream with constant phase velocity c. A

relative periodic orbit Mp is a time dependent, shape-changing state of the

fluid that after a period Tp reemerges as (b), (c), or (d), the initial state trans-

lated by ‘p, rotated by /p and possibly also azimuthally reflected.
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visualize T2 tori (see Ref. 11), so we shall illustrate the key

ideas by a much simpler example, the SO(2)-equivariant

Gibbon and McGuinness15,16 complex Lorenz equations of

geophysics and laser physics,

_x1 ¼ ÿrx1 þ ry1 ; _x2 ¼ ÿrx2 þ ry2

_y1 ¼ ðq1 ÿ zÞx1 ÿ q2x2 ÿ y1 ÿ ey2

_y2 ¼ q2x1 þ ðq1 ÿ zÞx2 þ ey1 ÿ y2

_z ¼ ÿbzþ x1y1 þ x2y2 :

(4)

Here, all coordinates and parameters are real. In our cal-

culations, the parameters are set to those used in Ref. 17,

q1 ¼ 28; q2 ¼ 0; b ¼ 8=3; r ¼ 10; and e ¼ 1=10. The com-

plex Lorenz equations are an example of a simple dynamical

system with a continuous (but no discrete) symmetry, equiv-

ariant under SO(2) rotations by

gð/Þ ¼ expð/TÞ ¼

cos/ sin/ 0 0 0

ÿsin/ cos/ 0 0 0

0 0 cos/ sin/ 0

0 0 ÿsin/ cos/ 0

0 0 0 0 1

0

B

B

B

B

@

1

C

C

C

C

A

:

The group is 1-dimensional and compact, its elements

parameterized by /mod 2p. For historical background,

Poincar�e return maps, symbolic dynamics, and in-depth

investigation of the model, see Refs. 8 and 17.

The strange attractor of the complex Lorenz flow, in its

present state, is a complete mess (Fig. 4(a)). Solutions tend

to drift along continuous symmetry directions, with the

physically important shape-changing dynamics hidden from

view.

The ultimate drifter, the signature invariant solution that

signals the presence of a continuous symmetry is a relative

equilibrium (traveling wave, rotational wave, etc.), a trajec-

tory whose velocity field lies within the group tangent space,

vðxÞ ¼ c � tðxÞ ; and whose time evolution is thus confined to

its own group orbit (see Fig. 4(b)); think of an unchanging

body carried by a stream.

A relative periodic orbit behaves more like a dancer.

Mp is a trajectory that recurs exactly

xðsÞ ¼ gp xðsþ TpÞ ; xðsÞ 2 Mp ; (5)

after a fixed relative period Tp, but shifted by a fixed group

action gp that maps the endpoint xðTpÞ back into the initial

point cycle point xð0Þ; think of a dancer moving across the

stage through a set of motions and then striking her initial

pose18 or study the pipe flow sketches in Fig. 3.

Because the SO(2) transformations act on the complex

Lorenz flow only through the simplest m¼ 1 Fourier mode,

here all group orbits are circles and appear elliptical in d ¼
5 ! 3 dimensions projections. Nevertheless, even the wurst

traced out by one of the simplest relative periodic orbits 018

(shown in Fig. 4(b)) is not so easy to get one’s head around:

you are looking at a 3-dimensional projection of a torus em-

bedded in 5 dimensions.

To summarize: continuous symmetries in the dynamics

foliate the state space into an onion, where each layer is a

group orbit (Fig. 5(a)). How are we to sort out this mess? All

the points on a group orbit are physically equivalent, so we are

free to replace a given flow xðsÞ by any other x̂ðsÞ, such that

xðsÞ ¼ gðsÞ x̂ðsÞ by a moving frame19–21 transformation gðsÞ.
As long as no symmetry reduction procedure is prescribed,

gðsÞ is free: it can be any, in general time dependent, group

transformation. For example, to film our dancer, we can mount

the camera on a cart moving alongside her. So, in the presence

of continuous symmetries, there are two kinds of motion: those

of a dancer, continuously changing shapes, and those of a

drifter, merely shuffling along the shape invariant directions.

We will presently banish the drifters and just enjoy the dance.

IV. CHART

Suppose you are computing a set of numerically exact

invariant solutions of the Navier-Stokes equations. Do you

want to compute the same solution over and over again, once

for every point on the group orbit? No, you would like to

compute it only once. The strategy for picking out that one

FIG. 4. Complex Lorenz flow, d ¼ 5 ! 3 dimensional fx1; x2; zg projec-

tions: (a) The strange attractor. (b) The initial relative equilibrium TW1 point

is shown by the red dot, and its group orbit / trajectory by the dashed red

line. One period of the 01 relative periodic orbit is shown by the solid blue

line. The group orbit of its (arbitrary) starting point is shown by the dashed

blue line: after one period the trajectory has returned to the group orbit but

with a different phase. The wurst, i.e., the group orbit of the 01 trajectory

(dark blue) is shown by the cyan surface. Following 01 for 15 more periods

(faint dotted lines) starts filling out this torus; in that time, the slowly drifting

relative equilibrium TW1 has advanced to the next red dot (red line).

Symmetry-reduced complex Lorenz flow, d ¼ 4 ! 3 dimensional fx2; y2; zg
projections: (c) Strange attractor from frame (a) reduced to a single slice

hyperplane, using TW1 as the template. 01 is now a periodic orbit, shown by

the solid black line. The dynamics exhibits singular jumps (shown in red)

due to forbidden crossings of the chart border. In contrast to the

1-dimensional section borders of Fig. 2, here the chart borders are

3-dimensional and hard to visualize. (d) The 2-chart atlas (see the sketch of

Fig. 11) of the same strange attractor encounters no chart borders and exhib-

its no singularities. The trajectory changes colors from red to blue as it

crosses between the slice hyperplanes of x̂ 0ð1Þ and x̂0ð2Þ. The ridge (shown in

brown) acts as a Poincar�e section P with red or blue ridge points x̂� marking

the direction of the crossing. The charts are 4-dimensional, the ridge

3-dimensional, so the colored blocks and planes are only cartoon drawings

of their projections onto the 2-dimensional figure.
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representative solution is called symmetry reduction. Its goal

is to replace each group orbit by a unique point in a lower-

dimensional symmetry-reduced state space M̂ � M=G, as
sketched in Fig. 5(c).

What is a smart way to go about it? Intuition gained from

pipe flow (see Fig. 3) will again prove helpful. A turbulent

flow exhibits a myriad of unstable structures, each traveling

down the pipe with its own phase velocity. The method of

slices6–9 that we now describe tells you how to pull each

solution back into a fixed frame called a slice and compare it

to your repertoire of precomputed solutions, or the templates

fx̂0ðjÞg, using the poor geometer’s version of a geodesic, the

principle of the closest distance to each. What follows is simi-

lar to the construction of sections of Sec. II; due to the linear

action of the symmetry group, slicing is easier than sectioning,

but wholly unfamiliar. This is why we reviewed the Poincar�e

sections first. We now offer a pictorial tour of this (save for

one bold incursion11) hitherto uncharted territory.

First, pick a template x̂0 and use the freedom to shift and

rotate it (Fig. 5(b)) until it overlies, as well as possible, the

state x, by minimizing the distance

k xÿ gð/Þ x̂0 k : (6)

Now, replace the entire group orbit of x by the closest

match to the template pattern, given by x̂ ¼ gÿ1x. From here

on, we will use the hat on x̂ to indicate the unique point on

the group orbit of x that is closest to the template x̂0. The

symmetry-reduced state space M̂ is comprised of such clos-

est matches, a point for each full state space group orbit.

The minimal distance satisfies the extremum condition

(Fig. 5(d))

@

@/
k xÿ gð/Þ x̂0k2 ¼ 2 hx̂ ÿ x̂0jt 0i ¼ 0 ; t 0 ¼ Tx̂0 ;

where the ½d � d� matrix T is the generator of infinitesimal

symmetry transformations. k gð/Þx̂0 k¼ k x̂0 k is a constant.

To streamline the exposition, we shall assume here that the

symmetry group is SO(n). In that case T is antisymmetric, so

the group tangent vector t0 evaluated at x̂0 is normal to x̂0 and

the term hx̂0jT x̂0i vanishes. Therefore x̂, the point on the group
orbit of x that lands in the slice satisfies the slice condition

h x̂jt0i ¼ 0 : (7)

As xðsÞ varies in time, the template x̂0 tracks the

motion using the slice condition (7) to minimize

k xðsÞÿ gð/ðsÞÞx̂0 k and the full-space trajectory xðsÞ is

rotated into the reduced state space trajectory x̂ðsÞ by appro-

priate time varying moving frame angles f/ðsÞg, as depicted
in Fig. 6(a). M̂ is thus a (d- N)-dimensional hyperplane nor-

mal to the N group tangents evaluated at the x̂0 as sketched in

Fig. 6 in a highly idealized manner: A group orbit is an

N-dimensional manifold and, even for SO(2), is usually only

topologically a circle and can intersect a hyperplane any

number of times (see Figs. 7 and 8).

FIG. 5. (a) The N-dimensional group orbit Mxð0Þ of state space point xð0Þ and
the group orbit MxðsÞ reached by the trajectory xðsÞ a time s later. (b) Two

physically equivalent trajectories xðsÞ and x̂ðsÞ are related, in general, by an ar-
bitrary, time dependent moving frame transformation gðsÞ, such that

xðsÞ ¼ gðsÞ x̂ðsÞ. (c) A symmetry reduction schemeM ! M̂ is a rule that pre-

scribes gðsÞ and thus replaces a group orbit Mx � M through x by a single

point x̂ 2 M̂. (d) In this paper, gðsÞ is fixed variationally by the extremal condi-

tion (7) for the point x̂ on the group orbitMx that is nearest to the template x̂0.

FIG. 6. The method of slices, a state space visualization: (a) A chart M̂ �
M=G lies in the (d- N)-dimensional slice hyperplane (7) normal to t 01 … t 0N,

which span the N-dimensional space tangent to the group orbit g x̂ 0 (dotted

line) evaluated at the template point x̂ 0. The hyperplane intersects all full

state space group orbits (green dashes). The full state space trajectory xðsÞ
(blue) and the reduced state space trajectory x̂ðsÞ (green) are equivalent up

to a ‘moving frame’ rotation xðsÞ ¼ gðsÞ x̂ðsÞ, where gðsÞ is a shorthand for

gð/ðsÞÞ. (b) In the full state space, a relative periodic orbit xð0Þ ! xðsÞ !
xðTpÞ returns to the group orbit of xð0Þ after a time Tp, such that

xð0Þ ¼ gpxðTpÞ. A generic relative periodic orbit quasi-periodically fills out

what is topologically a torus (Fig. 4(b)). In the slice, the symmetry-reduced

trajectory is periodic, x̂ð0Þ ¼ x̂ðTpÞ.
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One can write the equations for the flow in the reduced

state space _̂x ¼ v̂ðx̂Þ (for details see, for example, Ref. 13) as

v̂ðx̂Þ ¼ vðx̂Þ ÿ _/ðx̂Þ tðx̂Þ; (8)

_/ðx̂Þ ¼ hvðx̂Þjt 0i=htðx̂Þjt 0i ; (9)

which confines the motion to the slice hyperplane. Thus, the

dynamical system fM; f sg with continuous symmetry G is

replaced by the reduced state space dynamics fM̂; f̂ sg: The
velocity in the full state space v is the sum of v̂, the velocity

component in the slice hyperplane, and _/ t, the velocity com-

ponent along the group tangent space. The integral of the

reconstruction equation for _/ keeps track of the group shift

in the full state space.

The template x̂0 should be a generic state space point in

the sense that its group orbit has the full N dimensions of the

group G. The set of the group orbit points closest to the tem-

plate x̂0 forms a neighborhood of x̂0 in which each group orbit

intersects the hyperplane only once. A slice hyperplane quali-

tatively captures neighboring group orbits until, for a point x̂�

not so close to the template, the group tangent vector tðx̂�Þ lies
in the slice hyperplane. The group orbits for such points are

grazed tangentially rather than sliced transversally, much like

what happens at the section border (2) for evolution in time.

This is also a linear condition and defines the chart border S,8,9

a (d – N – 1)-dimensional manifold, which contains all the

points x̂� whose group tangents lie in the slice hyperplane, i.e.,

h x̂�jt0i ¼ 0 and htðx̂�Þjt0i ¼ 0 : (10)

S also contains all points for which tðx̂�Þ ¼ 0. While

for the Poincar�e sections (2) the analogous points were

equilibria (captured only if the section cut through them), for

slice hyperplanes points with vanishing group actions belong

to invariant subspaces, and, by its definition, every chart bor-

der automatically includes all invariant subspaces.

For the complex Lorenz equations (4), the invariant

subspace is the 1-dimensional z-axis, with trivial dynam-

ics, _z¼ –bz, but in general invariant subspaces are high-

dimensional and have their own dynamics. Physicists, for

example general relativists, often work in invariant subspa-

ces, as this is easier than solving the full problem.22 Such

FIG. 7. The chart border is the (d –N –1)-dimensional hyperplane that con-

tains all the points x̂� whose group tangents tðx̂�Þ lie in the slice hyperplane

or vanish and are thus normal to t0. Beyond this boundary, the group orbits

pierce the slice hyperplane in the wrong direction, so only the half-

hyperplane that contains the template belongs to the slice. The chart border

is not easy to visualize; For the lack of dimensions, here it is drawn as a

“line,” the z axis in this 3-dimensional sketch. (a) If the equivariant coordi-

nates transform only under the m¼ 1 representation of SO(2), every group

orbit is a circle, and crosses any slice hyperplane exactly twice. However, if

there are coordinates that transform as higher m, the group orbit can pierce

the hyperplane up to 2m times, and the chart border lies closer to the tem-

plate: For example (b) a group orbit for a combination of m¼ 1 and m¼ 2

equivariant coordinates resembles the seam of a baseball, and can cross the

slice hyperplane 4 times, out of which only the point closest to the template

is in the slice.

FIG. 8. Wurst, sliced. Every slice hyperplane cuts every group orbit at least

twice (see Fig. 6), once at the orbit’s closest passage to the template, and

another time at the most distant passage, also satisfying the slice condition

(7). An SO(2) relative periodic orbit Mp is topologically a torus, so the two

cuts are the two periodic orbit images of the same relative periodic orbit, the

good close one x̂p (blue), and the bad distant one (red), on the other side of

chart border, and thus not in the slice.

FIG. 9. A 2-chart atlas. Sketch (a) depicts two templates x̂0ð1Þ; x0ð2Þ, each
with its group orbit. Start with the template x̂ 0ð1Þ. All group orbits traverse its

(d –1)-dimensional slice hyperplane, including the group orbit of the second

template x0ð2Þ. (b) Replace the second template by its closest group

orbit point x̂0ð2Þ, i.e., the point in chart M̂
ð1Þ
. This is allowed as long as x̂ 0ð2Þ

is closer than the M̂
ð1Þ

chart border (red region), otherwise an interpolating,

closer template needs to be introduced.
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approaches yield highly symmetric solutions,23,24 whose

dynamics may be quite different from those that guide

turbulence in the full state space (for a striking example,

see Ref. 11).

There is yet another, much kinder type of a border: a

ridge. Our initial chart M̂
ð1Þ

is a (d –N)-dimensional hyper-

plane. If we pick another template point x̂0ð2Þ, it comes

along with its own slice hyperplane M̂
ð2Þ
. Any pair of

(d –N)-dimensional local slice hyperplanes intersects in a

ridge, a (d –N –1)-dimensional hyperplane P of points x̂�

shared by a pair of charts and thus satisfying the slice

condition (7) for both,

h x̂�jt0ð1Þi ¼ 0 and hx̂�jt0ð2Þi ¼ 0 : (11)

The ridge forms a Poincar�e section PðijÞ that serves as a

toll bridge, crossed by any direct transit from a chart M̂
ðjÞ

to

the adjacent chart M̂
ðiÞ
. In Fig. 10(a), a ridge is visualized as

a “line,” and in Fig. 11 as a “plane” of intersection of two

volumes. We shall refer to the neighborhood of a template

x̂0ðjÞ bounded by its chart border and the ridges to other such

linear neighborhoods as a chart M̂
ðjÞ

� M=G, and to

Eqs. (10) and (11) as the border conditions.

V. CHARTING THE SLICE

Let us summarize the voyage so far: we are charting a

curved manifold, and it would be nice to use tools of differ-

ential geometry, but this does not seem possible in the high-

dimensional state space of hydrodynamic turbulence. The

only feasible way to chart this space is to (1) quotient all

continuous symmetries and (2) tile the reduced state space

with flat (d –N)-dimensional tiles or charts. We do this step

by step, starting with a set of templates and using them to

construct charts of each neighborhood, and then building up

an atlas of the slice, chart by chart, which captures all of the

reduced dynamics of interest (but not all possible dynamics).

Here are the steps along the way:

Template: Pick a template x̂0 such that G acts on it regularly

with a group orbit of dimension N.

Slice hyperplane: The (d –N)-dimensional hyperplane satisfy-

ing h x̂jt 0ai ¼ 0 ; normal to group transformation directions

at the template x̂0.

Moving frame: For any x, the slice condition hx̂jt 0i ¼ 0 on

x ¼ gð/Þx̂ determines the moving frame, i.e., the group

action gð/Þ that brings x into the slice hyperplane.

Chart border: The set of points x̂� on a slice hyperplane

whose group orbits graze the hyperplane tangentially,

such that h x̂�jt 0i ¼ htðx̂�Þjt 0i ¼ 0 :
Flow invariant subspace: If a subset or all of the group tan-

gents of a chart border point x̂� vanish, taðx̂
�Þ ¼ 0, its

time trajectory remains within a flow-invariant subspace

for all times.

Ridge: A hyperplane of points x̂� 2 Pð21Þ formed by the inter-

section of a pair of slice hyperplanes M̂
ð1Þ

and M̂
ð2Þ
.

Chart: The neighborhood of a template x̂0ðjÞ, bounded by the

chart border and the ridges to other linear neighborhoods,

comprises a chart M̂
ðjÞ

� M=G. The borders ensure that
there is no more than one oriented group orbit traversal

per chart; a group orbit either pierces one chart, or no

charts at all.

FIG. 10. A 2-chart atlas. (a) Now that the group orbits have been reduced to

points, erase them and consider the two slice hyperplanes through the two

templates. As these two templates are the closest points viewed from either

group orbit, they lie in both slice hyperplanes. However, the two tangent

vectors t0ð1Þ and t0ð2Þ have different orientations, so they define two distinct

charts M̂
ð1Þ

and M̂
ð2Þ

which intersect in the ridge, a hyperplane of dimension

(d –2) (here drawn as a ‘line’, and in Fig. 11 as intersection of two ‘volumes’)

shared by the template pair that satisfies both slice conditions (11). The chart

for the neighborhood of each template (a page of the atlas in part (b)) extends

only as far as this ridge. If the templates are sufficiently close, the chart border

of each slice hyperplane (red region) is beyond this ridge, and not encountered

by the symmetry-reduced trajectory x̂ðsÞ. The reduced trajectory is continuous

in the slice comprised of such charts - it switches the chart whenever it

crosses a ridge. (b) The slice (unique point for each group orbit) is now

covered by an atlas consisting of (d –1)-dimensional charts M̂
ð1Þ
;M̂

ð2Þ
;….

FIG. 11. Here the two charts of Fig. 10(a) are drawn as two (d –1)-dimen-

sional slabs. The ridge, their (d –2)-dimensional intersection, can then be

drawn as the shaded plane. This hyperplane cuts across the symmetry-

reduced trajectory x̂ðsÞ and thus serves as a Poincar�e section Pð21Þ that cap-

tures all transits from the neighborhood of template x̂ 0ð1Þ to the neighborhood

of template x̂ 0ð2Þ. Poincar�e section transits are oriented, so x̂1 and x̂2 are in

the section, but the third point is not.
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Atlas: A set of (d –N)-dimensional contiguous charts

M̂
ð1Þ
;M̂

ð2Þ
;…

Slice: Let G act on a d-dimensional manifold M, with group

orbits of dimension N or less. A slice is a (d –N)-dimen-

sional submanifold M̂ such that all group orbits that

intersect M̂ do so transversally and only once.

In the literature,25–27 “slice” refers to any co-dimension N

manifold that slices transversally a group orbit. Here, we define

an atlas over a slice constructively but more narrowly, as a

contiguous set of flat charts, with every group orbit accounted

for by the atlas sliced only once, and belonging to a single

chart. A slice is not global, it slices only the group orbits in an

open neighborhood of the state space region of interest.

The physical task, for a given dynamical flow, is to pick

a set of qualitatively distinct templates (for a turbulent pipe

flow there might be one typical of 2-roll states, one for 4-roll

states, and so on), which together provide a good atlas for

the region ofM=G explored by chaotic trajectories.

The rest is geometry of hyperplanes and has nothing to

do with dynamics. Group orbits MxðjÞ through x
ðjÞ, group tan-

gents tðx̂0ðjÞÞ, and the associated charts M̂
ðjÞ

are purely

group-theoretic concepts. The slice, chart border and ridge

conditions (7), (10), and (11) are all linear conditions which

depend on the ray defined by the template x̂0, not its magni-

tude. Checking whether the chart border is on the far side of

the ridge between two slice hyperplanes is a linear computa-

tion; for a symmetry-reduced trajectory moving in M̂
ð1Þ

chart one only has to keep checking the sign of

h x̂ðsÞjt 0ð2Þi : (12)

Once the sign changes, the ridge has been crossed, and

from then on the trajectory should be reduced to the M̂
ð2Þ

chart. For three or more charts you will have to align the

ridge of the current chart with a previously-used chart.

You’ll cross that ridge when you come to it (a hint: the mani-

fold is curved, so there will be a finite jump in phase).

How the charts are put together is best told as a graphic

tale, in the 5 frames of Figs. 9–11, and then illustrated by

contrasting the mess of the complex Lorenz equations

strange attractor Fig. 4(a) to the elegance of its 2-chart atlas,

Fig. 4(d).

It is worthwhile to note that the only object that enters

the slice hyperplane, border and ridge conditions is the ray

defined by the unit vector t̂
0
¼ t 0= k t 0 k. This gives much

freedom in picking templates. In particular, the two rays

t̂
0ð1Þ

¼ ð0:263;ÿ0:692; 0:624;ÿ0:251; 0Þ

t̂
0ð2Þ

¼ ð0:153;ÿ0:610; 0:747;ÿ0:213; 0Þ
(13)

used to construct the complex Lorenz equations 2-chart atlas

of Fig. 4(d) were found by numerical experimentation.

With the atlas in hand, the dynamics is fully charted: as

explained in Refs. 8 and 13, Poincar�e return maps then yield

all admissible relative periodic orbits.

Three concluding remarks on what slices are not:

(1) Symmetry reduction is not a dimensional-reduction

scheme, a projection onto fewer coordinates, or flow

modeling by fewer degrees of freedom: It is a local

change of coordinates with one (or N) coordinate(s)

pointing along the continuous symmetry directions. No

information is lost by symmetry “reduction,” one can go

freely between solutions in the full and reduced state

spaces by integrating the associated reconstruction equa-

tions (9).

(2) If the flow is also invariant under discrete symmetries,

these should be reduced by methods described, for exam-

ple, in ChaosBook.org.

(3) An atlas is not needed for Newton determination of a sin-

gle invariant solution, or a study of its bifurcations.28

Any local section and slice plus time and shift

constraints does the job.29–31 It is possible to compute

60 000 relative periodic orbits this way.22 Once we have

more than one invariant solution, the question is: how is

this totality of solutions interrelated? For that, a good

atlas is a necessity.

VI. BRIDGES TO NOWHERE

Everybody encounters a symmetry sooner or later, so

the literature on symmetry reduction is vast (for a historical

overview, see remarks in ChaosBook.org and Ref. 8). Before

asking, “Why the method of slices and not […]?” a brief tour

of the more familiar symmetry reduction schemes is called

for. They all have one thing in common: they will not work

for high-dimensional nonlinear systems.

To start with, mastery of quantum-mechanics or bifurca-

tion theory28,32 symmetry reduction to linear irreducible rep-

resentations is only partially illuminating; linear theory

works quite well for linear unitary operators or close to a

bifurcation, but, as we tried to show in this pictorial tour, the

way symmetries act on nonlinear systems is much subtler.

For flows with strongly nonlinearly coupled modes, both

time trajectories and group orbits are complicated, so choices

of sections and slices require insight into the geometry of the

particular flow; there exists no general theory of linear trans-

formations into symmetry irreducible coordinates that would

do the job.

There are purely group-theoretical approaches, with no

dynamics to inform them, inspired by the observation that

while coordinates xi are equivariant, the squared length r2 ¼
X

x2i is invariant under OðnÞ transformations.

For SO(2), an obvious idea is to go to polar coordinates.

The simplest nonlinear examples33 already run into rj ! 0

type of singularities, and it is not altogether clear how one

would rewrite the Navier-Stokes equations in such a format,

or integrate them numerically. A more sophisticated

approach is to rewrite the dynamics in terms of invariant

polynomial bases, described lucidly in Ref. 34, with the

equivariant state space coordinates ðx1; x2; x3;…; xdÞ
replaced by an invariant polynomial basis ðu1; u2; u3;…; umÞ.
As the dimension of the problem increases, the number of

these polynomials grows quickly, as does the number of

syzygies, the nonlinear relations amongst them. There is no

guiding principle for picking a set of such polynomials, and
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no practical way to implement the scheme35 for high-

dimensional flows: how and why would one replace the large

number of equivariant state space coordinates of hydrody-

namic turbulence with a vast number of invariant

polynomials?

Other approaches are informed by dynamics, foremost

among them being the method of co-moving frames. Visual-

izing a single “relative” trajectory in its co-moving frame,

i.e., moving with that solution’s mean phase velocity, is use-

ful if one is concerned with that individual solution and the

tiny relative periodic orbits (modulated-amplitude waves)

that bifurcate off it.30,31 A co-moving frame is useless, how-

ever, if we are concerned with studying collections of these

trajectories, as each solution travels with its own mean phase

velocity cp ¼ /p=Tp, and there is no single co-moving frame

that can simultaneously reduce all traveling solutions. The

slice that we construct here is not “co-moving,” but emphati-

cally stationary.

There exists a beautiful theory of symplectic symmetry

reduction for the mechanics of three-dimensional rigid

bodies,36,37 or the use of Lie symmetry reduction to derive

Eulerian velocity fields from Lagrangian trajectories.38

These approaches do not appear to be applicable to problems

considered here, and anyway, the goal is different. Rather

than to reduce a particular set of equations, we seek to for-

mulate a computationally straightforward and general

method of reducing any continuous symmetry, for any high-

dimensional chaotic/turbulent flow. One should also note

that “symmetry reduction” in general relativity23 and Lie

theory often implies restricting one’s solution space to a sub-

space of higher symmetry; here we always work in the full

state space.

There is, however, one intriguing, compelling and physi-

cally informed contender. In mechanics and field theory, it is

natural to separate the flow locally into group dynamics and

a transverse, “horizontal” flow,37,39 by the “method of

connections,” 40 illustrated in Fig. 12. The method of connec-

tions, however, does not reduce the dynamics to a lower-

dimensional reduced state space M=G. In contrast to the

method of co-moving frames, where one defines a mean

phase velocity of a relative periodic orbit, the method of con-

nections is inherently local. The two methods coincide for

relative equilibria.

The meaning of the “method of connections” in classical

dynamics is clearest in the work of Shapere and Wilc-

zek:18,41 one can observe a swimmer (or our dancer) from a

fixed slice frame, or bring her back to observe only the

shape-changing dynamics, no drifting. Left to herself, she

will reemerge in the same pose someplace else: that shift is

called a “geometrical phase,” which—while accruing it is

the whole point of swimming—has not played any role in

our discussion of symmetry reduction. Conversely, most

gauge choices in quantum field theory are covariant, and

while that suffices to regularize path integrals, the method of

slices says that this is no symmetry reduction at all, and it

yields no insight into the geometry of nonlinear flows.

Symmetry reduction in dynamics (including classical

field theories such as the Navier-Stokes equations) closely

parallels the reduction of gauge symmetry in quantum field

theories. There, the freedom of choosing moving frames

shown in Fig. 5 is called “gauge freedom” and a particular

prescription for choosing a representative from each gauge

orbit is called “gauge fixing.” Just like the slice hyperplanes

of Fig. 7 may intersect a group orbit many times, a gauge fix-

ing submanifold may not intersect a gauge orbit, or it may

intersect it more than once (Gribov ambiguity).42,43 In this

context, a chart is called a “Gribov” or “fundamental modu-

lar” region and its border is called a “Gribov horizon” (a

convex manifold in the space of gauge fields). The Gribov

region is compact and bounded by the Gribov horizon.

Within a Gribov region the “Faddeev-Popov operator” (ana-

logue of the group orbit tangent vector) is strictly positive,

while on the Gribov horizon it has at least one vanishing

eigenvalue.

VII. CONCLUSIONS

As turbulent flow evolves, every so often we catch a

glimpse of a familiar structure. For any finite spatial resolu-

tion and time, the flow follows unstable coherent structures

belonging to an alphabet of representative states, here called

“templates.” However, in the presence of symmetries, near

recurrences can be identified only if shifted both in time and

space.

In the method of sections (along time direction) and

slices (along spatial symmetry directions), the identification

of physically nearby states is achieved by cutting group

orbits with a finite set of hyperplanes, one for each continu-

ous parameter, with each time trajectory and group orbit of

symmetry-equivalent points represented by a single point.

The method of slices is akin to (but distinct from) cutting

across trajectories by means of sections. Both methods

reduce continuous symmetries: one sections the continuous-

time trajectories, the other slices the layers of the onion

formed by group-orbits. Both are triggered by analogous

conditions: oriented piercing of the section and oriented

piercing of the slice. Just as a Poincar�e section goes bad,

the slice hyperplane goes bad the moment transversality is

lost. A slice, however, is emphatically not a Poincar�e sec-

tion: as the first step in a reduction of dynamics, a slice

replaces a trajectory by a continuous symmetry-reduced

trajectory, whereas in the next step a Poincar�e section

replaces a continuous time trajectory by a discrete sequence

of points.

FIG. 12. (a) By equivariance vðxÞ can be replaced by v?ðxÞ, the velocity nor-
mal to the group tangent directions at state space point x. (b) The method of

connections replaces vðx̂Þ at every instant x̂ ¼ x̂ðsÞ by v?ðx̂Þ, so in x̂ðsÞ’s co-
variant frame there is no motion along the group tangent directions.
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The main lesson of the visual tour undertaken above is

that if a dynamical problem has a continuous symmetry, the

symmetry must be reduced before any detailed analysis of

the flow’s state space geometry can take place. So far, this has

only been achieved for transitionally turbulent numerical pipe

flows,11 resulting in the discovery of the first relative periodic

orbits embedded in turbulence. In the future, it should be the

first step in the analysis of any turbulent data, numerical or ex-

perimental. Once symmetry reduction is achieved, all solu-

tions of a turbulent flow can be plotted together: all

symmetry-equivalent states are represented by a single point,

families of solutions are mapped to a single solution, relative

equilibria become equilibria, relative periodic orbits become

periodic orbits, and most importantly, the analysis of the

global dynamical system in terms of invariant solutions and

their stable/unstable manifolds can now commence.
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state-space in plane Couette flow,” J. Fluid Mech. 611, 107–130 (2008);

e-print arXiv:0705.3957.
6C. W. Rowley and J. E. Marsden, “Reconstruction equations and the

Karhunen-Lo�eve expansion for systems with symmetry,” Physica D 142,
1–19 (2000).

7W.-J. Beyn and V. Th€ummler, “Freezing solutions of equivariant evolution

equations,” SIAM J. Appl. Dyn. Syst. 3, 85–116 (2004).
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