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Fluid flows between rotating concentric cylinders
exhibit two distinct routes to turbulence. In flows
dominated by inner-cylinder rotation, a sequence
of linear instabilities leads to temporally chaotic
dynamics as the rotation speed is increased. The
resulting flow patterns occupy the whole system and
sequentially lose spatial symmetry and coherence
in the transition process. In flows dominated by
outer-cylinder rotation, the transition is abrupt
and leads directly to turbulent flow regions that
compete with laminar ones. We here review the
main features of these two routes to turbulence.
Bifurcation theory rationalizes the origin of temporal
chaos in both cases. However, the catastrophic
transition of flows dominated by outer-cylinder
rotation can only be understood by accounting for
the spatial proliferation of turbulent regions with a
statistical approach. We stress the role of the rotation
number (the ratio of Coriolis to inertial forces) and
show that it determines the lower border for the
existence of intermittent laminar—turbulent patterns.
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This article is part of the theme issue “Taylor-Couette and related flows on the centennial of
Taylor’s seminal Philosophical Transactions paper (part 2)’.

1. Background

Fluid flows tend to become turbulent as their speed increases. The emergence of turbulence is
characterized by erratic fluctuations of fluid velocity and pressure, which enhance dissipation
and thus lead to increased energy losses. In his seminal 1923 paper, Taylor [1] computed
the instability of laminar flows between co-rotating cylinders mathematically rigorously by
starting from the Navier-Stokes equations. His own experimental verification of this result
established hydrodynamic stability theory as a powerful tool to make accurate predictions of flow
instabilities. To understand how remarkable this accomplishment is, it is necessary to review the
historical background [2]. Interest in the problem of transition was spurred by Osborne Reynolds’
1883 paper on turbulence transition in pipe flow [3]. Reynolds showed experimentally that in
pipes this transition is sudden and depends on the level of disturbances present in the experiment.
He concluded that the condition might be one of instability for disturbance of a certain magnitude and
stable for smaller disturbances. Despite his remark, most of the subsequent theoretical approaches to
the problem of transition, such as those pioneered by Orr [4], Sommerfeld [5] and others, focused
on the evolution of infinitesimal disturbances and thus failed to predict transition in pipe flow
and even in the mathematically more tractable case of plane shear flow [2].

This failure of linear hydrodynamic stability theory to explain Reynolds’ experiments, and
the insurmountable difficulties inherent to nonlinear theories, continued to trouble the scientific
community for 40 years. Then Taylor [1] made the key observation that the study of the fluid stability
when the disturbances are not considered as infinitely small is extremely difficult. It seems more promising,
therefore, to examine the stability of liquid contained between concentric rotating cylinders. If instability
is found for infinitesimal disturbances in this case it will be possible to examine the matter experimentally.
Taylor’s proposal was motivated by Mallock’s experiments in which the inner cylinder was
rotated while the outer cylinder was held fixed [6]. Mallock observed that the flow was turbulent
even at the lowest speeds that he considered. These observations would go on to inspire Lord
Rayleigh’s derivation of a criterion for the stability of rotating inviscid fluids [7]. Taylor extended
Rayleigh’s analysis to include viscous effects by applying Orr’s framework to the Navier-Stokes
equations in cylindrical coordinates, keeping curvature terms up to first order. His calculations
of the onset of instability were in excellent quantitative agreement with his own laboratory
experiments. He showed this for different curvatures, as determined by the radius ratio, n =1;/7,,
where r; and r, are the radii of the inner (i) and outer (0) cylinder, respectively. Furthermore,
the corresponding axially periodic eigenfunctions, which take on the form of toroidal vortices
stacked along the axial direction, were in good agreement with his flow visualization experiments
using dye injections. Taylor’s analysis was able to predict the stability of the flow even in
regimes where Rayleigh’s theory [7] had failed, such as when the cylinders are made to counter-
rotate or in experiments where the inner cylinder is made to rotate with very low velocity.
More generally, Taylor’s paper was also instrumental in confirming the validity of the Navier—
Stokes equations, supplemented with no-slip boundary conditions (BCs), beyond the laminar
regime.

An intriguing result of Taylor’s 1923 analysis, supported by his experiments, was that laminar
flows with a stationary inner cylinder are linearly stable. This conflicted with earlier observations
by Couette [8], who observed that the torque exerted on the inner cylinder scaled linearly at low
angular speeds of the outer cylinder, £2,, but became erratic as €2, was increased above a certain
critical threshold, before stabilizing but exhibiting a stronger (nonlinear) scaling at even higher
£2,. Couette’s results agreed with observations by Mallock [6], who also noted that if the system
was run right below the threshold for transition and a small perturbation was introduced, the
torque measurements became erratic for extended periods of time before the system returned to
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its initial quiescent state. This transient nature of turbulence is a hallmark of linearly stable flows
(see, e.g. Avila et al. [9] for a recent review) and will be discussed later in §4b.

Similar experiments were carried out by Wendt [10] at even higher Reynolds numbers. Wendt
also studied the effect of the end-wall conditions in his apparatus (e.g. attaching the cap at
the bottom of his test section either to the inner or the outer cylinder) and showed that these
could change the critical rotation rate for transition by as much as 10%. Although Taylor initially
attributed the increased torque reported for flows with stationary inner cylinder by Couette,
Mallock and Wendt to end-wall effects caused by the short aspect ratio, I' =h/d < 20, of their
experimental apparatus (here, 1 is the cylinders’ height and d =r,—t; is the gap width between
them), he was later able to reproduce qualitatively their observations with a new, longer and
more accurate apparatus [11]. Furthermore, Taylor showed that the transition could be triggered
by purposely applying slight perturbations and that turbulence remained sustained well below
the threshold for natural (unforced) transition. This bi-stability of laminar flow and turbulence
at fixed Reynolds numbers, reported earlier by Reynolds for pipe flow [3], is another hallmark
of linearly stable flows (e.g. [12]). Taylor also studied the effect of varying the system geometry
and extrapolated his data toward the narrow gap limit, n — 1, to infer that the critical Reynolds
number for plane Couette flow (PCF) should lie between 315 and 500, which is in agreement
with more recent experiments [13-15]. In the 1950s, Schultz-Grunow [16] impressively showed
that if the apparatus was fabricated with stringent tolerances, laminar flow could be maintained
up to Reynolds numbers exceeding 40 000, whereas if he purposely misaligned his apparatus or
used cylinders that were not perfectly round, his system would transition at Reynolds numbers
consistent with earlier studies [6,8,10,11].

The early work by Taylor and others made it clear that flows between concentric cylinders
exhibit two distinct routes to turbulence. The differences between these routes were pinpointed
in a decade-long study published by Coles [17] in 1965. In the first route, characteristic of flows
dominated by inner-cylinder rotation, transition occurs via a sequence of instabilities that increase
the temporal complexity of the flow and decrease its spatial symmetry. Coles characterized this
sequence using hot wire anemometry and flow visualizations. For the second route, characteristic
of flows dominated by outer-cylinder rotation, Coles noted that transition to turbulence is
akin to that reported by Reynolds for pipe flow [3]. It is controlled by the evolution of finite-
amplitude perturbations, which can cause the sudden emergence of localized turbulent domains
interspersed in a laminar background. In this paper, we review previous works on the transition
to turbulence in Taylor-Couette flow (TCF) and analyse them from the perspective of nonlinear
dynamical systems. The main concepts are illustrated with results from new direct numerical
simulations (DNS).

2. Parameter regimes of Taylor—Couette flow

Traditionally, the different dynamical regimes of TCF have been characterized in terms of two
control parameters: the inner (Re; = u;d/v) and the outer (Re, = u,d/v) cylinder Reynolds number.
They are based on the azimuthal velocity of each cylinder (u;/, = 7i/0$2i/,), the width of the gap (d)
between the cylinders, and the kinematic viscosity (v) of the fluid filling the gap.

An example of a stability diagram using this traditional set of parameters is shown in figure 1a
for a system with 7 =0.5. The laminar base state of the system, i.e. circular Couette flow (CCF),
is linearly (centrifugally) unstable above the neutral stability curve. For a given value of Re,,
there is a critical Re; above which the flow becomes unstable and secondary flows with increasing
complexity emerge. The neutral stability curve we show here is analogous to those computed by
Taylor [1], but we discretized the full Navier-Stokes equations linearized about the CCF state with
a Galerkin method [18]. Transition to turbulence in the linearly unstable region (red in figure 1) is
discussed in §3.

Below the neutral stability curve, CCFs are linearly stable and only finite-amplitude
disturbances can trigger turbulence. Linearly stable CCF are classified into two distinct regimes
with qualitatively different physics. In the linearly stable cyclonic regime (green in figure 1),
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Figure1. Parameter space of Taylor—Couette flow. (a) In terms of the inner (Re;) and outer (Re,) cylinder Reynolds number; here
for a system with one particular curvature (radius ratio = 0.5). Above the neutral stability curve (red lines with squares),
the laminar flow is linearly (centrifugally) unstable. In the co-rotating regime, the Rayleigh line (Re; = Re, /1%, blue lines
with circles) is indistinguishable from the neutral stability curve (at this scale). For the specific case of solid-body rotation
(Re; = Re, /1, black line with inverted triangle), the flow has a constant angular velocity. Stable flows to the left of this line are
anti-cyclonic, and cyclonic to the right. The specific case of exact counter-rotation (grey line with upright triangle) also separates
the cyclonic from the anti-cyclonic regime. (b) Same as in () but in terms of the shear Reynolds number (Res) and the rotation
number (Rg,). Here, exact counter-rotation (zero mean rotation) corresponds to R, = 0, the Rayleigh lineis givenby R, = —1
(in blue), Keplerian flow is best approximated with R, = —4/3 (grey line with star), and solid-body rotation is approached
for Ro — 00, when coming from the cyclonic (++) or the anti-cyclonic side (—), respectively. (Online version in colour.)

the vorticity of the flow and the mean angular velocity are aligned. Here, the flow may exhibit
a subcritical transition to turbulence. This transition scenario is reviewed in §4. The linearly
stable anti-cyclonic or quasi-Keplerian (QK) regime (blue in figure 1) is characterized by radially
increasing angular momentum, but radially decreasing angular velocity. As reviewed in §5,
the weight of evidence suggests that in this regime no transition to turbulence occurs even at
Reynolds numbers exceeding a million.

In 2005, Dubrulle et al. [19] introduced an insightful alternative parametrization of TCF, which
has improved our understanding of the physics of the system and embeds it in a much wider
context of general rotating shear flows. For example, their parametrization offers a simple relation
to situate typical astrophysical (Keplerian) flows in the parameter space of TCE. Essentially, they
defined a shear Reynolds number (Res) and a rotation number (Rg) in such a way that they
translate to the traditional set of TCF parameters as

(1 = n)(Re; + Rey)

2|nRe, — Re;
:M and RQ:—,

R
e 1+n nRe, — Re;

respectively. We stress that now the ratio of inertial to viscous forces and the ratio of Coriolis to
inertial forces can be independently measured/controlled via Res and Ry, respectively.

Figure 1b shows the same diagram as discussed before, but in terms of R and Reg. This
representation has the advantage that some of the important regime boundaries (except for the
neutral stability curve) remain unchanged as 7 is varied. Crucially, the line corresponding to
exact counter-rotation (R =0) separates cyclonic (R > 0) from anti-cyclonic (Rg < 0) flows
and smoothly connects TCF to rotating plane Couette flow (RPCF) in the limit of vanishing
curvature (n — 1). Hence, RPCF is just a specific (limiting) configuration of TCF [20]. Note that
Reg = 4Re, where Re is the usual Reynolds number for PCE, which is defined with the wall velocity
and half the gap width. The stability boundary derived by Rayleigh [7] for inviscid fluids (i.e.
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the Rayleigh line) is at R = —1. Solid-body rotation can be approached from the cyclonic side
(Re — o0) or from the anti-cyclonic side (Rp — —00). In (Re;, Re,)-space, however, these curves
all depend on 7 and thus move around as the curvature of the system is varied. This makes the
comparison of results obtained for different geometries more challenging.

Before discussing transition in the different regions, it is important to point out that all the
curves shown in figure 1, as well as their stability properties, were defined (or computed)
under the assumption of an ideal (pure rotary) CCF as base state. In laboratory experiments,
however, perfect CCF cannot be attained because of the axial end-walls that confine the flow in
axial direction and spawn secondary flows. Hence, I" and the specific end-wall conditions used
in laboratory experiments are additional important variables that need to be considered when
comparing results from different Taylor-Couette simulations and experiments.

3. Supercritical route to turbulence

TCF is least stable when the outer cylinder is held stationary (Re,=0), as noted early on
by Mallock [6]. He reported turbulent flow for all rotation speeds of the inner cylinder that
he could achieve in his experiments. In fact, the minimum realizable rotation speed in his
apparatus already resulted in a supercritical Reynolds number (as shown later by Taylor [1]).
Flows with stationary inner cylinder have attracted a lot of interest [21] because they simplify
the experimental setup considerably. In this section, we review the transition to turbulence
for n=0.875 and Re, =0 as Re; is increased from 100 to 4000. Our choice is motivated by the
influential experimental investigation of Gollub & Swinney [22], who measured time series of
the radial velocity (u,) at mid gap and revealed three distinct instabilities, each adding a new
frequency to the Fourier spectrum of u, as Re; was increased. In a further transition, the flow was
shown to exhibit a continuous spectrum characteristic of chaotic dynamics, in apparent agreement
with a theorem by Ruelle & Takens [23] regarding the existence of chaotic dynamics near three-
tori in dynamical systems. Here, we present new computational results to illustrate the transition
process.

To this end, periodic BC are employed in the axial (z) and azimuthal (9) direction and
simulations of the incompressible Navier-Stokes equations carried out using our pseudo-spectral
DNS code nsCouet t e [24]. The highest friction Reynolds number (Re; = u.d/v) measured in all
DNS presented here amounts to 95.7, where 1, is the friction velocity at the inner cylinder wall.
We used a spatial resolution (in terms of viscous wall-units based on Re; and denoted by *) of
at least 0.02 < Art < 1.3, AerTF =3.8 and Azt =3.5, which is the state of the art in DNS of wall-
bounded turbulence [25,26]. In nsCouet t e, the size of the time step is dynamically adapted
during run time to ensure numerical stability and lies between 5 x 1077 and 5 x 10~ viscous
time units (4%/v) for all DNS presented here (depending on the exact setup). Except for the spiral
turbulence simulation presented in §4a, all DNS were run for at least 2042 /v, before data were
recorded and analysed.

(a) Bifurcation cascade to temporal chaos

We begin by examining the onset of temporally chaotic dynamics in a small computational
domain with axial aspect ratio I = 5/2 and only one quarter of the circumference in the azimuthal
direction (0 €[0,Lg] with Ly =m/2). This choice is made to match the sequence of patterns
reported by Gollub & Swinney [22] for a system with n=7/8 and I" = 20. In their experiments,
the primary instability took the form of Taylor vortices (TV) with an axial wavelength of
approximately (5/2)d, corresponding to eight pairs of vortices stacked upon each other in
their apparatus. Our simulations with I" =5/2 are expected to capture the dynamics of two
counter-rotating TV around the central section of their experiments, where the flow patterns are
approximately periodic in z [22]. A summary of the flow patterns, dynamics and regimes as Re; is
increased in our simulations is presented in figure 2 and detailed below.
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Figure 2. Route to turbulence in Taylor—Couette flow with stationary outer cylinder (Re, = 0) as the inner cylinder Reynolds
number (Re;) is increased from 100 to 4000 in our simulations for fixed n =7/8, I' =5/2 and Ly = v /2. (a)—(d)
Visualizations of colour-coded iso-contours of the radial (u,), azimuthal (uy) and axial (u;) velocity components show that the
spatial structure of the flow field becomes progressively more complex as Re; increases from (a) Re; = 150 (Taylor vortex, TV)
to (b) Re; = 200 (wavy vortex, WV) to (c) Re; = 250 (modulated wavy vortex, MWV) and finally to (d) Re; = 4000 (turbulent
flow). (e) Nusselt number of the inner cylinder (Nu;) as a function of Re; for the different flow states of increasing complexity
starting with circular Couette flow (CCF). (f)—(g) Time series of u, (recorded at mid gap) and Nu; for selected states. (h)—(k)
Power spectra of the time series of Nu; for selected states including a relative two-torus (R2T) and a chaotic state exhibiting a
continuous spectrum with peaks (CSP). (Online version in colour.)
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At Re; ~ 122 the CCF becomes unstable and is replaced by one pair of axisymmetric TV,
visualized in figure 2a for the example of Re; =150. In this transition, the invariance of CCF to
axial translations is broken, while its rotational symmetry and its axial reflection symmetry (about
the vertical mid plane) are preserved. The TV state is stationary, as can be seen in the time series
of u, recorded at mid-gap position (figure 2f) and in the time series of the inner-cylinder Nusselt
number (Nu;) as well (figure 2g). The latter represents the torque that is necessary to rotate the
inner cylinder for a given flow state, normalized by the torque that would be required for CCF at
the same Re;.

Flow transitions, and more generally turbulence and transition, can be analysed from a
dynamical systems perspective [27]. In this framework, the Navier-Stokes equations span an
infinite-dimensional phase space consisting of all admissible flow fields (i.e. satisfying mass and
momentum conservation). Here, time-dependent flows correspond to trajectories, whereas time-
independent flows, like the TV flow, correspond to steady states or fixed-points in that phase
space. The emergence of a new stable fixed-point (TV), which bifurcates from an existing one
(CCEF) that loses its stability, corresponds to a qualitative change in phase space or bifurcation.
The bifurcation diagram in figure 2e captures this transition. Note that if TV is shifted axially by
an arbitrary amount, the shifted TV pattern is still a solution to the system, so this bifurcation
is known as a pitchfork of revolution. For a more detailed treatment, the reader is referred to
Kuznetsov [28] for an introduction to bifurcation theory, to Chossat & Lauterbach [29] for a
discussion of equivariant bifurcation theory, to Chossat & Iooss [30] for its application to TCF, and
to Crawford & Knobloch [31] for a review of symmetry-breaking bifurcations in fluid dynamics.

As the inner cylinder is further accelerated beyond Re; ~ 150, the TV state turns unstable
and the flow field becomes three-dimensional and time-dependent [17]. As shown in figure 2b,
the vortices acquire waviness in 6, breaking the rotational and the axial reflection symmetry.
However, if the pattern is rotated by 7/2 and reflected about the mid plane, it remains unchanged
[32,33]. The time series of u, for this wavy vortex (WV) state is now time-periodic (figure 2f).
Generically, time-periodic states emerge from the loss of stability of steady states via Hopf
bifurcations [28,34]. However, WV states are not truly periodic solutions, but rather rotating
waves [35,36]. They rotate in 6 like a solid body, and as such the time-dependence disappears
when integral measures such as the torque (or Nu;) are considered (figure 2g). This is the reason
why rotating waves are also known as relative equilibria [37]. In this specific example, the Hopf
bifurcation is subcritical and there is hysteresis. If the flow is initialized with a WV solution at
Re; > 150 and then Re; is reduced, WV remains stable down to Re; ~ 140. Hence in the interval
140 S Re; $150 TV and WV coexist bi-stably and both can be realized depending on the initial
conditions. In addition, we found another wavy vortex solution (WVT) in the same parameter
range, which is stable for Re; 2 160 and is characterized by a higher Nusselt number (figure 2e).
Overall, these calculations exemplify the multiplicity of states common to the (supercritical) route
to turbulence in TCF, which is well-known since the seminal work of Coles [17].

Further increasing the Reynolds number beyond Re;~237, the WV state bifurcates to a
modulated wavy vortex (MWYV) state [35,38]. Now, 1, becomes quasi-periodic (figure 2f) and
exhibits two independent frequencies, whereas Nu; begins to oscillate periodically with only
one frequency (f1), as is clear from the time series shown in figure 2¢ and the corresponding
spectrum shown in figure 2. MWV states are periodic orbits when observed from a reference
frame moving at the speed of the underlying rotating wave [35] and hence are often referred to as
relative periodic orbits [39]. At much larger Reynolds numbers (Re; ~ 1429.69), a new independent
frequency (f2) becomes apparent in the spectrum of Nu; (figure 2i), and the flow can be identified
as a relative two-torus (R2T) [40]; i.e. a state with two independent frequencies (f; and f,) when
viewed in a co-moving frame. As Re; is slightly increased (beyond Re; ~ 1437.50), the R2T state
breaks down into chaos, as exemplified in the (turbulent) broadband spectrum for Re; =4000
shown in figure 2k. We found other solutions in the parameter range studied here. Notably, a
chaotic solution with a clearly dominant frequency (f;) emerges (figure 2j), which is stable for
a wide range of Re;. The computed flow states illustrate the dynamical richness of the Taylor—
Couette system, and indeed many other flow states may exist. Exhausting the complete set of
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possible solutions (and the connections between them) is beyond the scope of this review article
even for the small computational domain examined in this section.

The transition scenario observed in our simulations, including the Reynolds numbers of the
instabilities, is in agreement with the experiments of Gollub & Swinney [22]. They stressed the
remarkable resemblance of their experimental observations with the theory of Ruelle & Takens
[23], who proved the existence of chaos close to three-frequency tori. However, as shown in
figure 2i, the R2T state is a two-frequency tori in a co-moving reference frame. Hence, their
reported breakdown is actually in better agreement with a later paper by Newhouse et al. [41],
who proved that generic breakdown into chaos is also possible from two-tori. The resulting
temporally chaotic flow initially retains spatial coherence in 6 and z, but this is gradually lost as
Re; is further increased [42,43]. Nevertheless, large-scale structures called turbulent TV (because
of their similarity to TV) are observed to persist in the time-averages of turbulent flows up to the
highest Reynolds numbers (Res = 0(10°)) investigated so far (e.g. [44]). The focus of this paper
is on the transitional regime and the reader is referred to Grossmann et al. [45] for a review on
turbulent TCF and to the recent work of Jeganathan et al. [46], who explore the role of Coriolis
forces on the formation of turbulent Taylor rolls.

(b) Flows with defects

The results presented in the previous section were obtained using a small computational domain
containing exactly one pair of TV and one azimuthal wavelength of the WV state. In the
experiments [22], the WV repeated four times in 6 and had eight pairs of vortices in z. This
raises the question of whether the dynamics obtained in our small cell are also reproduced
when spatially extended cells are considered. We carried out two DNS in a domain with I" =25
and spanning the whole circumference. The simulations were initialized with the corresponding
CCEF state disturbed with a small perturbation repeating ten times in z and four times in 6, and
numerical noise in the remaining modes. At Re; =200, the CCF state rapidly destabilized and ten
pairs of TV formed, which subsequently developed into a WV state of the exact same periodicity
as in the simulations of the previous section. An examination of the time series of #, and Nu;
confirmed that indeed the computed flow state is identical in both cases.

At Re; =250, these two transitions were also observed and then followed by the transition
to an MVW state also exactly as in the previous section. However, after a very long time (20
viscous times units), the axial and azimuthal periodicity were lost as spatial defects appeared. A
snapshot of this flow state is shown in figure 3a. The corresponding temporal spectrum (figure 3b)
is continuous but features a broad, noisy peak close to the first harmonic of the spectrum of
the MVW in the small domain. Similarly, all the spatial (axial) modes are excited, but as shown
in figure 3¢, the spectrum exhibits a clearly dominant peak (and harmonics) corresponding to
ten pairs of vortices. Detailed investigations of transitions to chaotic flows with spatial defects,
often referred to as spatio-temporal chaos (STC) [47], are scarce and deserve more attention. One
example was studied in magnetohydrodynamic TCF, where the transition to defects was shown
to emerge via a symmetry-breaking sub-harmonic bifurcation of a rotating wave [48]. While the
temporal spectrum shown here is much noisier than that reported by Gollub & Swinney [22] for
the MVW state, their spectrum also contains substantial noise. This may be due to the presence
of defects in the flow, similar to those reported here, or to measurement errors, and cannot be
clarified here. However, we point out that the end-walls confining the fluid in z result in distinctly
different bifurcations, as demonstrated e.g. in detailed experiments [49] and in DNS [50] for
systems with moderate aspect ratios (I" ~10). The effect of axial end-walls is reviewed below
in §3d.

() Flow patternsin the linearly unstable regime

The results discussed in the previous sections are specific to flows with a stationary outer cylinder
(Reo =0) and that particular curvature (n ="7/8). Even for the small domain investigated in §3a,
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Figure 3. Onset of spatio-temporal chaos (STC) in large domains (1" = 25, Ly = 25) obtained in our simulations for fixed
n =7/8,Re; = 250and Re, = 0. (a) Visualization of the flow state with colour-coded iso-surfaces of the velocity field (grey for
Ug = u;/2and red/blue foru, = =-u;/20). (b) Power spectra of the corresponding time series of Nu; compared to a modulated
wavy vortex (MWV) flow at the same Re; = 250 but in a smaller domain with I" =5/2, Ly = 7r /2; i.e. the state shown in
figure 2c. (c) Modal kinetic energy, (E), g ((x;), where «, is the axial wavenumber. (Online version in colour.)

we found coexistence of many different flow states and alternative routes to chaos (not shown
in detail here). This complexity is due to the nonlinear nature of the Navier-Stokes equations,
resulting in a strong dependence on the initial conditions and in typical experiments on the path
in (Re;, Reo)-space taken to prepare the system. This was known to Coles, who in his 1965 paper
[17] reported that for a given flow configuration (i.e. particular combination of Re; and Re,) there
could be as many as 26 different possible stable flow states (characterized by their wavenumbers
kg and ;) with complicated dynamical connections between them.

When the cylinders are allowed to rotate independently in the linearly unstable region,
extremely rich dynamics are found. This was beautifully illustrated by Andereck et al. [38], who
extensively mapped out the two-dimensional parameter space spanned by (Re;, Re,) and revealed
a large variety of flow regimes, characterized by their spatio-temporal symmetries and temporal
frequencies as well as their azimuthal and axial wavenumbers. For example, in the counter-
rotating regime, there exists an Re,, at which the primary bifurcation to TV is replaced by a Hopf
bifurcation to non-axisymmetric spiral vortices, which rotate in 6 and travel in z. This spiral flow
pattern was already observed by Taylor [1] in his seminal paper and was later studied in detail
theoretically [51,52] and experimentally [53]. As the speed of the inner cylinder (Re;) is further
increased, interpenetrating spiral patterns emerge, which consist of the nonlinear superposition
of spiral vortices of opposite helicity. Later the flow transitions to a chaotic state characterized
by episodic bursts of turbulence superimposed on the laminar interpenetrating spirals [38,54-56].
This transition is just one of the multiple ones reported by Andereck et al. [38] and many others
thereafter [21]. The study of the various transitions between flow states has played a central role
in the development of pattern formation theory [57,58].

(d) Effect of axial end-walls

Whether comparing experimental results to the infinitely tall cylinders of theory, or to the periodic
BC commonly used in simulations, the vertical boundaries of TCF are a widespread source of
limitations, but also of new phenomena. Mitigating their effect started early, e.g. with Mallock [59]
using a pool of mercury at the bottom of his cylinders as a buffer and Couette introducing the use
of guard rings [60]. Accordingly, the results discussed so far were for experiments with relatively
tall cylinders (I" 2 20) or simulations with periodic BC. Cole [61] systematically investigated the
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effect of varying I" and observed that the critical Reynolds number for TV is in good agreement
with theoretical predictions for infinitely long cylinders even for aspect ratios as low as I" =8.
However, he also found that I" > 40 was necessary to obtain quantitative agreement with axially
periodic simulations regarding the rotation speed of the WV.

From a theoretical stand point, the presence of end-walls destroys the translation invariance of
the system. In addition, the necessary discontinuity of the BC between end-walls and inner/outer
cylinder generates Ekman vortices [62]. As Re; increases, the cellular TV pattern first appears near
the end-walls and then rapidly fills the entire domain, as soon as the system reaches the critical
Re; predicted for the infinite-cylinder case [61,63]. As a consequence, the transition to TV is not
the result of a discrete bifurcation, but is a continuous process [63].

In systems with a stationary outer cylinder (Re, =0) and the end-walls also at rest, the end-
wall boundary layers tend to flow radially inwards. However, Benjamin [63] found that cellular
flows at low I" could also have an outflow in one or both end-wall boundary layers. These
flows, termed anomalous modes, are disconnected in phase space from the CCF solution and
appear only at higher Re;. For I' ~ 1, the competition between the normal two-cell mode and the
one-cell anomalous mode has been extensively investigated [64-66], along with the transition to
chaos [67,68]. This specific case is particularly appealing for theoretical studies because the strong
confinement drastically reduces the number of possible solutions to the Navier-Stokes equations.
As I' increases, the temporal dynamics become increasingly complex and a multitude of local
[49,50] and even global [69] bifurcations have been reported.

End-wall effects have also been investigated in the counter-rotating regime, albeit less
intensively. Non-axisymmetric spiral vortices can appear directly at the end-walls and propagate
towards the centre of the system below the critical Reynolds number predicted by the infinite-
cylinder approximation [70]. The bifurcation scenario was found to depend strongly on the end-
wall rotation speed [71]. Interpenetrating spirals have also been observed in recent experiments
[72] and simulations [73] for I" ~ 5, although this small aspect ratio results in a strongly modified
laminar flow and a transition scenario that is qualitatively different from that observed for tall
cylinders [72].

4. Subcritical route to turbulence

The transition to turbulence in flows dominated by outer-cylinder rotation is of a completely
different nature. Here, the absence of a cascade of linear instabilities starting from laminar
CCF greatly complicates the transition scenario and calls for a fully nonlinear approach. First,
finite-amplitude perturbations are required to destabilize the laminar flow and the mechanisms
sustaining turbulence are fully nonlinear [74-76] and cannot be captured by a weakly nonlinear
analysis. Second, the flow organizes itself in complex laminar—turbulent patterns, that are spatio-
temporally intermittent (figure 4). As a consequence, understanding the subcritical transition
in linearly stable TCF, and more generally in wall-bounded shear flows, requires stochastic
approaches and additionally accounting for spatial effects. Neither of these two aspects is covered
by the classical route to temporal chaos discovered by Ruelle & Takens [23] and Newhouse et al.
[41] and discussed in the previous section. The appropriate framework to describe the onset of
laminar—turbulent patterns was proposed by Kaneko [77], who extended the dynamical systems
approach to linearly stable, spatially extended flows. The first experimental studies embracing his
spatio-temporal perspective were carried out in the 1990s by Bottin & Chaté [14] and Bottin et al.
[78] for PCE.

(@) Spiral turbulence and turbulent spots

For flows with stationary inner cylinder (Re; =0) and rapid outer-cylinder rotation Mallock [6]
had already noted in 1896 that when the velocity approached that at which instability was liable to
occur, it was interesting to note how small a disturbance of the system was sufficient to change the entire
character of the motion. A slight blow on the support which carried the apparatus, or a retardation for a few
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Figure 4. Spiral turbulence and turbulent spots in Taylor—Couette flow with stationary inner cylinder (Re; = 0). (a) Spiral
turbulence in experiments [80] for Re, = 4500, n = 0.97 and I" = 92. Kalliroscope flakes were added to the water for
imaging. (b) Spiral turbulence in a direct numerical simulation for the same parameters as in (a) but for I" = 613,y = 77 /2
and using periodic boundary conditions (BCs) in the azimuthal (©) and axial (z) direction. Shown are colour-coded iso-contours
of the velocity field (uy = u,/2in grey and u, = =u, /10 in red/blue). (c)—(h) Sequence of flow patterns as Re, is decreased
in the experiments [80] from Re, = 6500 down to 2000 (electronic supplementary material, video). (Online version in colour.)

moments of the rotation of the outer cylinder, was almost sure to produce the effect. The flow patterns
emerging from this type of transition consist of well-defined turbulent domains (spots) that
evolve in an otherwise laminar background, very similar to what Reynolds [3] reported for pipe
flow. Coles [17] observed that individual spots sometimes spontaneously laminarized, but could
also grow in size and sometimes merge with other spots. He reported that under some conditions
turbulent spots came together and formed a spiral band of turbulence that cork-screwed around
the apparatus (see figure 4a—d). The eminent physicist Richard Feynman, who was a Professor at
Caltech at the same time as Coles, was intrigued by the origin of this surprisingly organized, but
at the same time turbulent pattern, which he called barber-pole turbulence [79].

The emergence and death of spiral turbulence is demonstrated in figure 4c—h with snapshots
from the experiments of Burin & Czarnocki [80] for Re; =0 and 1 =0.97. They quasi-statically
increased the rotation speed of the outer cylinder and reported an abrupt transition from laminar
to spatio-temporally intermittent flow at around Re, ~ 4500. Since no specific perturbations were
applied to their experiments, this corresponds to the natural transition point at which ambient
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noise and/or imperfections sufficed to trigger transition in their setup. Further increasing Re,
to 8000 led to a fully turbulent flow depleted of laminar regions. Subsequently, they decreased
Re, to study the spatio-temporal dynamics of turbulence. The snapshots in figure 4c-h, and
the corresponding electronic supplementary material, movie, illustrate how laminar regions
gradually appear and grow in size as Re, is reduced, leading to the formation of laminar—
turbulent spiral patterns. This transition process from fully turbulent TCF to laminar—turbulent
spiral patterns can be understood as a spatial modulation of the fully turbulent state [81], arising
from a linear instability of the latter [82]. As Re, was further decreased, the spiral turbulence
retained its form, until it began to progressively disintegrate into spots. These spots were
sometimes elongated, in line with the spiral angle, and their boundary appeared to propagate
in this direction as well (see e.g. the video at Re, =2100). Finally, the flow laminarized fully
at Re, ~2000. We stress that the parameter regime Re, € [2000,4500] is characterized by strong
hysteresis. Here, the history of the flow (i.e. its path taken in parameter space) determines the
observed flow state for a given Re,. If the flow is initially laminar and ‘undisturbed’, it remains
laminar forever. By contrast, if it is initially turbulent (or laminar, but sufficiently disturbed), it
remains turbulent.

This behaviour is not specific to flows with a stationary inner cylinder, but extends to most of
the counter-rotating regime of TCF [38,55,56]. Figure 5a shows the regime diagram for n =0.98.
We first focus on the transition scenario for Re, = —1000, which was the focus of an experimental
study by Avila & Hof [56]. As Re; exceeds 650, the laminar flow becomes unstable to a spiral
mode and accordingly a transition to interpenetrating laminar spiral patterns was observed in the
experiments. Upon a slight increase in Re; turbulent spots spontaneously formed and decayed in
an unpredictable manner, while the interpenetrating spirals remained largely unaffected in the
background, as exemplarily shown figure 5b. This intriguing flow state was discussed briefly in
§3c and has been reported by many authors [38,54-56]. Avila & Hof [56] then reduced Re; and
noted that the interpenetrating spirals vanished, while the turbulent spots organized themselves
into turbulent spiral arms interspersed in the remaining laminar background (figure 5c). The
resulting spiral turbulence remained robust as Re; was further reduced, until it disintegrated
into spots and ultimately laminarized fully at Re; = 525. Similar results were obtained for other
Re,. As shown in figure 54, the faster the rotation of the outer cylinder, the larger the region of
hysteresis in which spiral turbulence or fully laminar flow can be observed (depending on the
initial conditions). For the same geometry, Prigent et al. [83] did not detect hysteresis. In their
experiments, the natural transition point coincides approximately with the laminarization border
of spiral turbulence. This suggests a high level of background disturbance in their setup and
illustrates the dependence of the natural transition point on technical details of the apparatus.
Overall, the results of Avila & Hof [56] are in qualitative agreement with earlier numerical
simulations of Meseguer et al. [55], who studied the counter-rotating regime for n = 0.883 in detail.

We remark that in the experiments of Burin & Czarnocki [80] and Avila & Hof [56] the
subcritical turbulence was created differently. In the latter, the laminar flow reproducibly became
unstable as Re; was increased above the linear instability threshold. By successively decreasing Re;
below this threshold, the subcritical turbulence was investigated. By contrast, in the experiments
of Burin & Czarnocki [80] with a stationary inner cylinder, a linear instability was unavailable
and finite-amplitude disturbances (e.g. unavoidable imperfections in the setup, vibrations or
ambient noise) trigger turbulence, as in Prigent’s setup [83]. Despite this difference, the reverse
transition from turbulent to laminar flow, as the Reynolds number decreases, is less sensitive to
disturbances. Generally, in the subcritical regime, the properties of the laminar—turbulent patterns
are intrinsic to the system and independent of how the turbulent flow is initialized.

The lower boundary for the laminarization of turbulent spots has been measured by many
authors experimentally [14,15,17,38,55,56,80,85] and in DNS [55,86,87]. These measurements are
summarized in figure 6, where the lowest Res for turbulence survival is shown as a function
of Rg. Recall that R =0 corresponds to exact counter-rotation and the first data point (lowest
Rg) here corresponds to PCF flow with Res ~ 1300 [14], which we calculated as Res = 4Re, where
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Figure 5. Sub- and supercritical spiral turbulence in Taylor—Couette flow experiments [56,83], both with counter-rotating
cylinders and narrow gaps (1 == 0.98). (a) Laminar flow can exist everywhere below the theoretical neutral stability curve (red
line with full squares as in figure 1). In the linearly stable cyclonic regime (light green) itis the only flow state. In the nonlinearly
unstable hysteretic regime (dark green) laminar flow or subcritical spiral turbulence can be observed, depending on the flow
history and the existence of finite-amplitude perturbations. Above the neutral stability curve, laminar interpenetrating spirals
arise, sometimes coexisting with turbulent spots/spirals. (b) Supercritical spiral turbulence featuring intermittent turbulent
spirals on top of laminar interpenetrating spirals [84]. (c) Subcritical spiral turbulence with the typical coexisting laminar and
turbulent domains [84]. (Online version in colour.)

Re is the Reynolds number commonly defined for PCE. This is followed by the experiments
of Klotz et al. [15] for an extremely narrow gap (7 =0.997) and stationary inner cylinder with
Res~1320 and R =0.003. As Rg, is increased and cyclonic rotation is added, higher Regs are
required to sustain turbulence. As shown in figure 6, experimental data from various studies
collapse well into a single curve despite the wide ranges covered in curvature (5 € [0.789, 1]) and
in Reynolds numbers (Re; € [-1000,1200] and Re, € [-50000, —1200]). One exception to this are
the transition points obtained by Burin & Czarnocki [80] for wide gaps, n=0.73 and 0.55 (the
latter not shown in the plot, as it corresponds to much larger Rg). For a fixed experimental
apparatus, wider gaps result in lower I'. In combination with the increased Reg, which is
required for subcritical transition, this leads to end-wall effects becoming very significant for
the laminarization boundary. In that case, the end-walls greatly perturb the laminar base state
and may trigger subcritical transition [80] or even result in linear instabilities [90-92]. For channel
flow, it has been recently shown that end-walls destabilize laminar—turbulent bands and can cause
relaminarization [93,94].

The remarkable collapse of the data (figure 6) illustrates the suitability of the parametrization
introduced by Dubrulle et al. [19] and demonstrates that the specific case of stationary inner
cylinder (i.e. R = (1/n) — 1) does not exhibit some form of singularity, as figure 1a may initially
suggest. This point is further confirmed by the experiments of Coles [17], who continued
the laminarization curve from the counter-rotating to the co-rotating regime. Note also that
curvature appears to influence the laminarization boundary only indirectly through Ry, at least
for n 2 0.789.

Extending measurements to larger R would be valuable, but is challenging. Specifically, as
R increases, Res grows exponentially, necessarily resulting in a huge difference between the
angular speeds of the inner and outer cylinders. This exacerbates end-wall effects in experiments
and has extremely high computational cost in axially periodic DNS. Finally, we stress that the
boundary at which turbulence can become sustained depends only on the system parameters. By
contrast, the natural (uncontrolled) transition boundary, where turbulence is observed to appear
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1 =0.730, exp. Burin & Czarnocki [80] (excl. from fit)
1 =0.789, exp. Litschke & Roesner [85]
7 =0.881, exp. Coles [17]
n =0.881, exp. Coles [17]
1 =0.883, exp. Andereck et al. [38]
1 =0.883, DNS Meseguer et al. [55]
1 =0.895, exp. Litschke & Roesner [85]
7 =0.910, DNS Berghout er al. [87]
1 =0.970, exp. Burin & Czarnocki [80]
1 =0.980, exp. Avila & Hof [56]
B> 1=0.997, exp. Klotz et al. [15]
1 =1.000, exp. Bottin & Chaté [14]
7 =1.000, exp. Tillmark & Alfredsson [88]
7 =1.000, exp. Tsukahara er al. [89]
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Figure 6. Laminarization boundary of turbulent spots in terms of the critical shear Reynolds number (Res) as a function of
the rotation number (R, ). The datasets from many different experiments [14,15,17,38,56,80,85,88,89] and simulations [55,87]
span a wide range of curvatures (r € [0.73,1]) and Reynolds numbers (Re; € [—1000, 1200], Re, € [—50 000, —1200]).
Most measurements were taken in the subcritical counter-rotating regime or for stationary inner cylinder, but Coles [17] also
performed measurements in the co-rotating cyclonic regime. Note that in typical experimental setups with fixed cylinder length,
an increase in gap width (i.e. a decrease in 17) comes at the price of a decrease in I". As a consequence, the critical Res is more
affected by the specific end-cap configuration. Thus, the data of Burin & Czarnocki [80] for wide gaps (n = 0.73and = 0.55,
the latter not shown here) were excluded from the exponential fit. (Online version in colour.)

as Reg is increased, depends on the level of disturbance present in the experiment and can vary
by as much as one order of magnitude in Reg for the same geometry and a fixed value of Ry, [16].

(b) Transient turbulence: stochastic decay of turbulent spots

The experiments reported by Mallock [6], Taylor [11] and Coles [17] demonstrated that, once
triggered, turbulent episodes can last almost indefinitely or relaminarize after irregular intervals.
This essentially implies that the lower boundary discussed in the previous section depends on
the observation time and on the experimental realization, which in part explains the scatter in
figure 6.

The first systematic study of the stochastic nature of turbulence decay in TCF was performed
in 2010 by Borrero-Echeverry et al. [95]. They investigated a system driven by pure outer-cylinder
rotation (Re; =0) and repeated the experiments up to 1200 times for every Re, in order to
statistically characterize the duration of turbulent episodes. Their flow visualizations indicated
that turbulence collapses suddenly and without warning. The duration (or lifetime) f1, of
turbulence at Re, =8106 in each experimental run is shown in figure 7a. The corresponding
lifetime distribution, shown in figure 7b, is approximately exponential. This implies that
relaminarization follows a memoryless process, exactly as reported earlier for plane Couette
[14] and pipe [96,97] flows. By collecting lifetime distributions at various Re,, Borrero-Echeverry
et al. [95] showed that the associated time constant 7; (i.e. the average lifetime) increases super-
exponentially with Re,, but remains finite as Re, increases. This result, in qualitative agreement
with previous studies of pipe flow [98,99], was confirmed by Alidai ef al. [100], who additionally
showed that t; does not depend on the specific details of how the turbulence is initially triggered,
but is significantly affected by imperfections in the experimental apparatus, and by the end-wall
conditions. Finally, they also showed that as I" is reduced, t; decreases.

Goldenfeld et al. [101] proposed that turbulent spots relaminarize when all turbulent
fluctuations within the spot fall below a certain level. With this assumption they exploited
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Figure 7. Lifetime statistics of turbulent episodes in Taylor—Couette flow experiments [95] at Re; = 0, Re, = 8106, = 0.871
and I" = 33.6. (a) Duration (fy,) of turbulent episodes after triggering turbulence by briefly counter-rotating the inner
cylinder in 300 experimental realizations. For some runs turbulence collapses almost immediately, but for others it persists
up to O(10") viscous time units (¢ /v), which for this Reynolds number corresponds to O(10°) convective time units (d /o).
(b) Probability (P) that turbulence survives up to time ty. The runs where turbulence collapses immediately (., = 0), are
highlighted by an almost vertical drop in P. For the rest of the runs, P decays approximately exponentially, as indicated by the
linear fit (broken line) with the slope —1/7,. Here, T4 & 2.4 is the average survival time. Note the semi-log scale of the plot.
The error bars (grey) represent the sampling error. (Online version in colour.)

extreme-value theory, where super-exponential scaling appears as a matter of course [102], to
develop a model consistent with the scaling of t; observed in experiments [95,98]. This idea has
recently been validated and elaborated further in DNS studies [103,104].

(c) Onset of sustained turbulence: spatio-temporal proliferation of spots

Despite the transient nature of individual turbulent spots, Moxey & Barkley [105] showed a
mechanism by which the proliferation of turbulent spots (i.e. puffs in their case) can lead to
sustained turbulence in pipe flow. Avila et al. [106] further showed that the probability of a
puff to grow and shed a daughter one, statistically identical to its parent, increases as the
Reynolds number increases. Specifically, the associated proliferation time constant decreases
super-exponentially with Reynolds number. The competition between the stochastic processes
of turbulence decay and turbulence proliferation determines the critical Reynolds number for the
onset of sustained turbulence in pipe flow [106]. The same mechanism was later demonstrated
in a narrow-gap Taylor-Couette system [107], in which the computational domain was spatially
extended in one direction only (as happens naturally in pipe flow).

Beyond the critical point, turbulence proliferates faster than it decays and the fraction of
the flow domain occupied by turbulence increases with Reynolds number. This was explicitly
demonstrated by Lemoult et al. [108], who precisely measured the evolution of the turbulence
fraction as a function of Re, for a system with stationary inner cylinder and a very narrow gap
(n =0.998). The short aspect ratio they used (I" = 8) allowed turbulence to localize only in 6, while
filling the apparatus in z completely. The turbulence fraction was found to increase continuously
from zero at the critical point, corresponding to a second-order phase transition. The spatio-
temporal dynamics of the turbulent spots, and of the laminar gaps between them, could be shown
to fall into the universality class of directed percolation (DP), which is the simplest case of a non-
equilibrium phase transition. We stress that in this system the dynamics of spots is exactly as in
pipe flow due to the axial confinement. The critical exponents could be accurately determined
with extremely long measurement times, because TCF is a closed system in contrast to pipe flow,
where turbulent puffs ultimately leave the pipe at its downstream end.
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It is worth noting that the mechanisms of turbulent proliferation are qualitatively different
in flows extended in one and in two directions. In the former, the turbulence fraction can only
increase as the spots grow in the azimuthal direction (¢), whereas in the latter, spots can also
extend in the axial direction (z). In both cases the transition is of second order [84]. Moreover,
recent measurements by Klotz et al. [15] in very tall cylinders (I" = 750) with a very narrow gap
(n =0.997) exhibit also a DP transition; but with exponents characteristic of systems extended in
two directions (here in 6 and z). The interested reader is referred to two recent reviews about
laminar—turbulent patterns in wall-bounded flows extended in two spatial directions [109] and
about the role of DP for turbulence transition in general [110].

(d) Simple invariant solutions and the origin of transient turbulence

The results discussed in the previous section resolve the question of the onset of sustained
turbulence in linearly stable flows, but do not provide information as to how chaotic dynamics
appears in the phase space of the system. In an influential paper, Nagata [111] showed in 1990 that
a specific WV solution, similar to the WV shown in figure 2b for stationary outer cylinder, could
be numerically continued from Taylor-Couette to plane Couette flow (without rotation). In this
limit, Nagata’s WV solution remains three-dimensional, but becomes steady. More importantly, it
is disconnected from the laminar (plane) Couette flow in phase space, a result that holds already
for TCF in very narrow gaps (n 2 0.993) [20]. In other words, in PCF there is no sequence of
instabilities leading from its laminar base state to WV flow, because the base state is linearly stable.
Nagata’s discovery paved the way for applying the dynamical systems approach to linearly stable
flows.

At the lowest Reynolds number (called saddle-point) at which Nagata’s WV solution exists,
it is stable in a certain symmetry-restricted subspace (but unstable in full space). As shown in
figure 8 (data re-plotted with permission from Kreilos & Eckhardt [112]), at Reynolds numbers
slightly above the saddle-point this solution undergoes a Hopf bifurcation leading to a periodic
solution [113]. This is exactly like the bifurcation from a WV state into a relative periodic solution
(MWYV) shown earlier in figure 2e for TCF. As Res is further increased, a period-doubling cascade
(PDC) renders the flow chaotic. Despite the difference in the precise bifurcations occurring here
in PCF and in the case of TCE, the situation is similar in both cases. Chaos emerges from a
simple solution (WV) after a short bifurcation sequence during which symmetries are lost and
the temporal complexity increases. We, however, stress that in PCF, these changes in phase
space occur far away from the laminar base state, which actually remains stable to infinitesimal
disturbances for arbitrarily large Reynolds numbers [114].

As Reg is further increased, the chaotic attractor’s volume grows in phase space, i.e. larger
fluctuations of the velocity occur. Finally, the attractor collides with a twin lower branch WV
solution, born at the same saddle-node bifurcation, and is destroyed [115,116]. Beyond this Res
the chaotic dynamics is not sustained, but transient, and the resulting lifetime distributions are
exponential [117]. Although this is consistent with the experimental observations at larger Reg
described in the previous section, there are crucial qualitative differences. The DNS described in
this section were performed by imposing artificial symmetries in small computational cells. This
stabilizes the solutions, simplifies the temporal dynamics and precludes the spatial localization
typical of turbulent spots. In conclusion, a wide gap between theory and experiment remains at
this stage. The interested reader is referred to the recent review by Avila ef al. [9] with main focus
on pipe flow.

Several families of simple solutions with distinct symmetries have been computed in TCF to
date [118-120]. A particularly interesting solution computed for PCF [121] is spatially localized
in the form of a spiral, similar to the spiral turbulence observed in experiments and shown
in figure 4. Generally, these solutions are all unstable, but it has been demonstrated that the
phase space of the turbulent dynamics is organized around them and their stable and unstable
manifolds [122,123]; reviews are given by Graham & Floryan [124] and Kawahara et al. [125]. More
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Figure 8. Bifurcation diagram showing the onset of chaotic transients in plane Couette flow (PCF) in a small, symmetry-
restricted cell. The kinetic energy contained in the cross-flow velocity components, +/Eq, is shown as a function of the shear
Reynolds number (Res). A pair of steady wavy vortex (WV) solutions is born at a saddle-node bifurcation at Res & 655. The
upper branch is stable in the symmetry-restricted space, but loses stability in a Hopf bifurcation to a modulated wavy vortex
(MWV) state at Res & 664. Subsequently, a period-doubling cascade (PDC) generates a chaotic attractor, although there is a
shortwindow (735 < Res < 740) with a stable period three state. The chaotic attractor s destroyed at Res & 754 and thereafter
all trajectories laminarize. Note that the shear Reynolds number is related to the usual plane Couette Reynolds number as
Res = 4Re. The data shown in this figure is re-plotted with permission from Kreilos & Eckhardt [112]. (Online version in colour.)

recent studies using a Taylor-Couette system with I" =1 have provided experimental evidence
supporting the importance of simple solutions in organizing the turbulent dynamics [126-128].

We conclude this section by noting that Deguchi [129] recently made the surprising discovery
of a linear instability of TCF with stationary inner cylinder. However, for typical experimental
gap widths (i.e. n 2 0.1), this instability only occurs for Re, 2 107. Even if these extreme Reynolds
numbers could be attained in experiments (not achieved so far), subcritical transition would
certainly occur well before this instability could be observed.

5. Quasi-Keplerian regime

Because of its potential relevance to astrophysical flows, the QK regime of TCF (—oo < Rp < —1,
blue region in figure 1) has attracted particular interest in recent years. A thin disc of gas
in orbital motion around a central gravitating body is a paradigmatic scenario in astronomy
usually associated with the beginning or end of stellar lifetime [130-132]. In principle, accretion
in astrophysical discs requires a radial transport of orbiting gas towards the central mass, and
the corresponding inward loss of angular momentum is explained by an outward transport of
the same. If the orbiting motion is laminar, the only mechanism available to maintain outward
momentum transport is molecular viscosity, which is orders of magnitude too low for accretion
to take place on the inferred time scales. Thus the transport is naturally turbulent, but the possible
origin of this turbulence has generated considerable discussion.

In astrophysical discs, the angular velocity of the orbiting gas is often assumed to scale as §2 «
r~1, where r is the distance to the central object and g = —2/Rg, fully characterizes the flow with
q=3/2 corresponding to Keplerian flow (R = —4/3) [19]. Significantly, the flow in the QK regime
is linearly stable according to the Rayleigh criterion. While magnetic fields can drive turbulence
via magnetorotational instabilities [133], it remains unclear whether such instabilities operate in
cooler (i.e. weakly ionized) discs, where the gas is largely neutral and the ambient magnetism
may not play a significant dynamical role. For ordinary (non-conducting) homogeneous fluids,
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any transition in the QK regime is expected to be subcritical. It is, however, noted that results from
cyclonic subcritical flows, discussed in the previous section, do not offer much guidance for the
anti-cyclonic QK regime.

For almost two decades, experiments in the QK regime presented conflicting results. Ji
et al. [134], used laser Doppler velocimetry (LDV) to demonstrate that a quiescent flow is
maintained even up to Reg =2 x 10°, which was at the limit of their experimental apparatus.
They then surmised by extrapolation that discs were hydrodynamically stable. However, the
opposite conclusion was reached by Paoletti & Lathrop [135] for slightly lower Reg, using
torque measurements as an integral measure of the angular momentum transport. In both
experiments considerable care was taken to minimize end-wall effects. While Ji et al. [134] used
split, independently-rotating end-caps, Paoletti & Lathrop [135] measured the torque only on a
central portion of the inner cylinder.

The influence of end-wall effects has remained an epicentre of discussion and disagreement,
but the problem has come into better focus more recently. First, further experiments [136], where
a high-Res QK flow was actively perturbed, demonstrated robust stability (i.e. laminar flow at
high Reg), bolstering the earlier result [134]. Second, DNS [91,137] brought significant clarity
to the apparently conflicting experimental results in detailing how boundary effects can be
significant even at moderate Res. Specifically, if the end-wall conditions are carefully chosen,
turbulence becomes confined to thin boundary layers as Res increases, while the bulk flow
remains laminar [137]. This result is consistent with axially periodic DNS [138,139] and with
radially resolved observations in cyclonic experiments [80] and thus points to a general care
needed when interpreting results. For additional elaboration on the QK regime and related topics
we refer the reader to the papers by Ji & Goodman [140] and by Guseva & Tobias [141].

6. Conclusion

Starting with Taylor’s groundbreaking work, Taylor—Couette flow has become the archetype
to study hydrodynamic stability, bifurcations, pattern formation, transition to turbulence and
highly turbulent wall-bounded flows. More generally, the development of the dynamical systems
framework to study dissipative systems has been greatly inspired and influenced by experimental
observations of this very system. The detailed bifurcation mechanisms and features of the flow
patterns depend sensitively on the four dimensionless control parameters of the problem (Re;,
Re,, n, I') and on the axial BCs. As a consequence, the dynamical richness of TCF has no limits
and in this review we have only summarized briefly some of the main traits.

Despite qualitative differences in the instabilities and flow patterns preceding turbulence, the
transition to turbulence falls into one of two main categories, which we termed supercritical
and subcritical. The first one is characterized by a sequence of bifurcations eventually
leading to temporally chaotic dynamics. The ensuing flow patterns fill the whole apparatus
and sequentially lose spatial symmetry and coherence. These bifurcations were studied
experimentally, numerically and theoretically in great detail in the last century. The catastrophic,
subcritical route to turbulence was also studied and characterized experimentally back then,
but it is only in the last two decades that an understanding of the underlying mechanisms has
emerged. This has been possible thanks to statistically resolved spatio-temporal characterizations
of very large systems up to extremely long observation times. The two key physical mechanisms
underlying the DP transition to sustained turbulence in linearly stable TCF are turbulence decay
and proliferation. Both are stochastic processes. In the counter-rotating regime, things become
even more complicated as the linearly unstable layer close to the inner cylinder interacts with the
linearly stable (but nonlinearly unstable) one close to the outer cylinder. This results in a mixture
of the two transition routes and is a topic that deserves more attention. It is not only relevant to
TCEF, but also to e.g. curved pipes [142].

A third, perhaps even more intriguing case is the absence of turbulence and hence of a
route to it in the QK regime. Here, the weight of the experimental evidence suggests that
CCF is nonlinearly stable up to at least Res = O(10°). Whether transition occurs at even higher
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Reynolds numbers remains an outstanding question. The exponential stabilization of CCF with
increasing Ry in the cyclonic regime revealed in this review cannot be extrapolated to the anti-
cyclonic regime, but highlights the efficiency of the Coriolis force in undermining the regeneration
mechanisms of wall-bounded turbulent flows.

Data accessibility. The data set is available at: https://doi.pangaea.de/10.1594/PANGAEA 955328 [143]. Our
code is additionally available here: nsCouette.
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