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Preface

I wrote this thesis with the intention of making it as accessible as possible. How-

ever, given the visual nature of pattern formation, it’s difficult to capture the most

compelling aspects of this project on paper (i.e. the cool pattern videos). For this

reason I supplement the standalone thesis presented here with a web page de-

signed to enhance the reader’s understanding. As of writing, the page http://

joelhawkins.info/thesis provides an overview of this thesis and displays video

simulations of each pattern discussed as well as interactive charts of the results

derived in Chapter 4.

http://joelhawkins.info/thesis
http://joelhawkins.info/thesis
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Abstract

A method of topological analysis known as computational homology is explored

in the context of the Gray-Scott reaction-diffusion model. Using the homology

data of patterns generated by simulations of the Gray-Scott model (a time series of

the Betti numbers), the Shannon entropy S is calculated over a large set of param-

eters to elucidate features about the system. The results of the calculation show

strong qualitative agreement with previous nonlinear analysis of the Gray-Scott

system. In addition, a formal mathematical description of homology is provided

to uncover the roots of the theory. Other applications of homology, its viability as

an analytic technique, and the problems encountered therein are also discussed.
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Introduction

The study of pattern formation is incredibly diverse and certainly one of the most

compelling aspects of nonlinear phenomenology. Scientists from many disciplines

study pattern formation on scales ranging from that of the entire universe all the

way down to the microscopic.1 Just a cursory glance at the structure of a wind-

swept sand dune, a snowflake, or even our own spiral galaxy reveals something

interesting. Observation of these patterns might lead a scientist to ask what causes

the pattern and wonder why there are patterns at all. This question gets compli-

cated quickly because whether you see ‘God in the patterns’ or see them as the

result of a non-equilibrium universe, there is still the question of what it means to

have “structure” or “complexity” or even to be “interesting.”

Figure 1: Patterns of the Gray-Scott reaction-diffusion system simulated by Karl
Sims. Figure adapted from K. Sims, “Reaction-diffusion tutorial,” 2013. Available
at http://www.karlsims.com/rd.html.

Of course, patterns in nature are inherently difficult to understand; they are of-

ten inhomogeneous, subject to many unknown forces, or simply too large or small

to study carefully. So before arriving at conclusions about the structure of the uni-

verse, it is helpful to look at idealized systems. This can mean a tightly controlled

experimental setup [3] or a completely computational model like the one discussed

here; Figure 1 shows the patterns formed by simulations of the Gray-Scott chemi-

cal reaction-diffusion model (more about this system in Section 1.1) [2]. Indeed, the

1See the introduction of Cross & Greenside for an overview of the study of pattern formation [1].

http://www.karlsims.com/rd.html
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vast amount of literature on the study of pattern formation looks to these simpli-

fied, yet no less dazzling, “prepared patterns” to draw conclusions about natural

patterns [1]. One heavily studied example is Rayleigh-Bénard convection. The ex-

perimental setup is extremely accessible; a thin layer of fluid is heated from below

and cooled from above. Above a critical temperature, the fluid begins to flow with

the hot upflows and cold downwellings giving rise to patterns like the one shown

in Figure 2.

Figure 2: An image of the “prepared pattern” formed by Rayleigh-Bénard convec-
tion. A thin layer of fluid is heated from below and cooled from above. Dark
regions indicate the hot upflows and bright regions indicate cold downflows.
Adapted from H. Kurtuldu, K. Mischaikow, and M. Schatz, “Measuring the de-
partures from the Boussinesq approximation in Rayleigh-Bénard convection ex-
periments,” Journal of Fluid Mechanics, vol. 682, pp. 543–557, 2011.

The study of patterns often comes down to the study of image data, especially

in the setting of a computational simulation. There are many mathematical tools

available to help interpret this kind of data but as the complexity of our informa-

tion (i.e. the amount of data) increases, it becomes increasingly difficult to parse

relevant information. Technological development in recent years not only makes

capturing massive amounts of data possible, but commonplace. In the world of

medical imaging, for example, data sets of X-Ray tomography, which allow for 3D

reconstruction of biological structures such as the heart or lungs, can easily exceed

dozens of gigabytes. While the increasing availability of data would serve only

to improve our understanding of these systems, it is only as useful as our analyt-

ical methods allow. Traditional techniques may fall flat in the face of exceedingly

sophisticated information.

Take for example the Fourier transform, a powerful method for analysis which

is often used to remove noise or apply filters to images. We would expect the

Fourier transform to provide some insight into the spatial frequency of the im-
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(a) Pattern type α. (b) Pattern type κ.

(c) Fourier Transform of α. (d) Fourier Transform of κ.

Figure 3: Two very distinct pattern types of the Gray-Scott reaction-diffusion sys-
tem, α and κ (described further in Section 1.1). The Fourier transform of each
pattern is hard to distinguish by eye and extracting meaningful information is dif-
ficult. The problematic nature of this method motivates our need for other, perhaps
lower-level, analytic techniques.

age,2, but in some cases, this method fails to provide useful information. Examine

the two distinct pattern types of the Gray-Scott reaction-diffusion system shown

in Figure 3. The two pattern types α and κ, shown in Figures 3a and 3b, are easy to

differentiate by eye yet their Fourier transforms (Figures 3c and 3d) are disappoint-

ingly similar. Although this method is capable of extracting useful information,

we would like some way to supplement our findings. The need for new methods

arises and many times that means starting at the lowest level (i.e. from the struc-

tures that make up the image) especially when the crucial information is geometric

in nature.

But for many systems, it doesn’t make sense to attempt to describe basic ge-

ometric structures in terms of the underlying mathematical equations (assuming

we can write them down in the first place). This problem calls for a framework

2In this case, the Fourier transform converts from the spatial domain the image we see, to the
frequency domain. The Fourier transform has been used for intricate pattern recognition, see [4].
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that gets at the geometric information even when faced with numerical error and

minor perturbations. The theory of computational homology described in Chap-

ter 2 does just this. Under the umbrella of algebraic topology, homology provides

a beautiful framework for transforming topology into algebra from which one can

draw insight into global properties. Although homology has only recently been

brought to the fore of experimental physics, its application has shown interesting

results [5, 6, 7, 8]. This project explores the application of this theory to one pattern

forming system in particular and highlights the information that may be derived

from it.



Chapter 1

Reaction-Diffusion Systems

Reaction-diffusion (RD) systems are models that determine how concentrations

of chemical species change in space and time. These systems are driven by two

processes: chemical reaction and spatial diffusion. RD systems are governed by

partial differential equations, the most basic of which might look something like

∂u

∂t
= d∇2u + r(u). (1.1)

This is sometimes called the Kolmogorov-Petrovsky-Piskounov equation in which

u is a generic chemical species, d is a diffusion coefficient, ∇2u is the Laplace op-

erator, and r(u) is a general reaction term. Of course, RD systems consisting of a

single chemical do not form interesting patterns since there is no reaction taking

place.

RD systems are interesting because their solutions can show wide variety of

complex patterns, many of which resemble patterns of nature such as spirals,

stripes, and spots [9]. One drawback of the simplicity of these systems is that

quantitative comparison to experimental systems is difficult. Alan Turing, one of

the first to study RD systems in detail, acknowledged this in the famous opening

lines of his 1952 paper [10]:

In this section a mathematical model of the growing embryo will be described.

This model will be a simplification and an idealization, and consequently a

falsification. It is to be hoped that the features retained for discussion are those

of greatest importance in the present state of knowledge.

Despite this concession, reaction-diffusion systems constitute an important part of

the study of nonlinear dynamics today. Turing went on to suggest that reaction-
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diffusion systems of morphogens, chemicals that govern the pattern of embryo

tissue development, may be able to explain the presence of spots or stripes on

an organism. Although the science behind animal patterns is more complicated,

Turing laid the framework by which patterns form from minor perturbations of

otherwise homogenous systems. Since then, many others have noted the similarity

between RD patterns and patterns in nature [11, 12, 13, 14, 15, 16, 17]. Figure 1.1

provides an example of how patterns formed by reaction-diffusion systems have

been used to generate natural-looking textures in the context of computer graphics.

Figure 1.1: Patterns generated by reaction diffusion systems. Witkin compares
these patterns to those of nature [17]; “Row 1: reptile, giraffe, coral, scalloped. Row
2: spiral, triweave, twisty maze, replication, purple thing. Row 3: sand, maze,
zebra haunch, radial. Row 4: space giraffe, zebra, stucco, beats us.” Adapted
from A. Witkin and M. Kass, “Reaction-diffusion textures,” SIGGRAPH Computer
Graphics, vol. 25, no. 4, pp. 299–308, 1991.

1.1 The Gray-Scott model

One important model in the study of pattern formation is the Gray-Scott system

which models the reaction of two generic chemical species, U and V [18]. The
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model is based on the chemical reaction

U + 2V → 3V

V → P,
(1.2)

where V is converted to an inert product, P, which doesn’t interfere with the re-

action of the system. V appears on both sides of the chemical reaction and thus

catalyzes its own production. Gray and Scott developed the following set of non-

dimensional partial differential equations (PDEs) in which u and v represent the

concentrations of chemicals U and V respectively.

∂u

∂t
= du∇

2u − uv2 + F(1 − u) (1.3)

∂v

∂t
= dv∇

2v + uv2 − (F + k)v (1.4)

We see that both equations take the form of (Eq. 1.1) except u and v are coupled.

The boundary conditions are periodic and for simplicity, du, dv, F, and k are taken

to be constants. The first terms in each equation, du∇2u and dv∇2v, are the dif-

fusion terms. The Laplace operator, ∇2, is responsible for the diffusion of each

chemical in space (like the diffusion of heat in the more familiar heat equation)

while the diffusion coefficients, du and dv, govern the diffusion rate. The ±uv2 terms

are the reaction terms which convert U into V; an increase in v is equal to the de-

crease in u, hence +uv2 in (Eq. 1.4). Since U will eventually get used up to generate

V, the term F(1 − u) is the replenishment term which reintroduces chemical U into

the system (u has a maximum value of 1). Similarly, chemical V would increase

without limit except for the diminishment term, (F + k)v, which serves to remove

chemical V from the system. F is referred to the feed rate and determines the rate of

replenishment while k is the difference between this rate and that of chemical V.

For some biological intuition, one can imagine the chemical reactions that occur

in the development of an embryo as Turing theorized. In this case, the supply of

chemicals might be the bloodstream where the replenishment and diminishment

rates of the reaction are determined by the permeability of cell membranes.

The Gray-Scott system is particularly notable for the wide range of irregular

patterns it produces. Previous analysis of the system by Pearson [9] identified at
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least 12 different pattern types, all of which occur at different F, k with du = 2dv.1

Figure 1.2 shows the 12 quantifiably different patterns observed in this system

which Pearson classfied using standard methods of nonlinear analysis (e.g. linear

stability analysis and bifurcation theory) [19]. The chemical concentration of U is

plotted over a 256 × 256 computational domain. The wide variety of observable

patterns reveals the extremely variable behavior of this system as parameters are

varied. Figure 1.3 provides a legend for the patterns, mapping each of them to their

locations in F, k parameter space. One of the most compelling qualities of these

patterns is their resemblance to patterns of nature. For example, κ (Figure 1.2j)

looks like coral and λ (Figure 1.2k) resembles the growth of bacteria. Other pat-

terns, like β (Figure 1.2b), exhibit complex spatiotemporal behavior that resembles

turbulence.

1.2 Numerical simulation

For the calculations described here, (Eqs. 1.3–1.4) are solved by forward Euler inte-

gration of the discrete Laplacian. This is obtained by the finite difference method

and given by

∇2u(x, y) ≈ u(x − 1, y) + u(x + 1, y) + u(x, y − 1) + u(x, y + 1)− 4u(x, y), (1.5)

and similarly for v. In the Python programming language, this can be easily im-

plemented using the Numpy package as below (see Appendix B.1 for full code).

Lu = ( U[0:-2,1:-1] + U[2: ,1:-1] +

U[1:-1,0:-2] + U[1:-1,2: ] - 4*U[1:-1,1:-1] ) # Laplacian matrix for u

Lv = ( V[0:-2,1:-1] + V[2: ,1:-1] +

V[1:-1,0:-2] + V[1:-1,2: ] - 4*V[1:-1,1:-1] ) # Laplacian matrix for v

uvv = u*v*v # corresponds to uv^2 term

u += (Du*Lu - uvv + F * (1-u) ) # concentration matrix for u

v += (Dv*Lv + uvv - (F+k)*v ) # concentration matrix for v

The matrices u and v contain concentration values for all points in the mesh. By it-

erating this calculation and plotting u and v as concentration maps, we can observe

the evolution of the concentrations in time. The numerical accuracy of this solution

1Turing instabilities, which give rise to spontaneous pattern formation, cannot occur if all diffu-
sion coefficients are equal. The ratio of 2 for diffusion coefficients has been found to show symmetry
breaking for a wide range of parameter values [9].
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(a) α (b) β (c) γ (d) δ

(e) ǫ (f) ζ (g) η (h) θ

(i) ι (j) κ (k) λ (l) µ

Figure 1.2: Patterns of chemical concentration U identified in [9]. Each pattern,
Figure 1.2a—Figure 1.2l, is designated by a Greek letter which corresponds to the
plot in Figure 1.3. Red and blue indicate U = 1 and U ≈ 0.2 respectively. Note
that a concentration plot of chemical V would appear as the inverse of U with red
and blue swapped. Video simulations of each of these pattern types are available
online at http://joelhawkins.info/thesis.

http://joelhawkins.info/thesis
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about the center of the grid was then
perturbed to (U = 1/2,V = 1/4). These
conditions were then perturbed with ± 1%
random noise in order to break the square
symmetry. The system was then integrated
for 200,000 time steps and an image was
saved. In all cases, the initial disturbance
propagated outward from the central
square, leaving patterns in its wake, until
the entire grid was affected by the initial
square perturbation. The propagation was
wave-like, with the leading edge of the
perturbation moving with an approximately
constant velocity. Depending on the param-
eter values, it took on the order of 10,000 to
20,000 time steps for the initial perturbation
to spread over the entire grid. The propaga-
tion velocity of the initial perturbation is
thus on the order of 1 x 10-4 space units per
time unit. After the initial period during
which the perturbation spread, the system
went into an asymptotic state that was either
time-independent or time-dependent, de-
pending on the parameter values.

Figures 2 and 3 are phase diagrams; one
can view Fig. 3 as a map and Fig. 2 as the key
to the map. The 12 patterns illustrated in
Fig. 2 are designated by Greek letters. The
color indicates the concentration ofU with
red representing U = 1 and blue represent-
ing U ~ 0.2; yellow is intermediate to red
and blue. In Fig. 3, the Greek characters
indicate the pattern found at that point in

0.3

0.2-

0.1

0.0
o.00 0.02 0.04 0.06 0.08

k

Flg. 1. Phase diagram of the reaction kinetics.
Outside the region bounded by the solid line,
there is a single spatially uniform state (called
the trivial state) (U = 1,V = 0) that is stable for
all (F, A). Inside the region bounded by the solid
line, there are three spatially uniform steady
states. Above the dotted line and below the
solid line, the system is bistable: There are two
linearly stable steady states in this region. As F
is decreased through the dotted line, the non-
trivial stable steady state loses stability through
Hopf bifurcation. The bifurcating periodic orbit
is stable for k < 0.035 and unstable for k >
0.035. No periodic orbits exist for parameter
values outside the region bounded by the solid
line.

parameter space. There are two additional
symbols in Fig. 3, R and B, indicating
spatially uniform red and blue states, respec-
tively. The red state corresponds to (U =
1,V = 0) and the blue state depends on the
exact parameter values but corresponds
roughly to (U = 0.3,V = 0.25).

Pattern a is time-dependent and consists
of fledgling spirals that are constantly col-
liding and annihilating each other: full
spirals never form. Pattern P is time-depen-
dent and consists ofwhat is generally called

a a

E

phase turbulence (8), which occurs in the
vicinity of a Hopf bifurcation to a stable
periodic orbit. The medium is unable to
synchronize so the phase of the oscillators
varies as a function of position. In the
present case, the small-amplitude periodic
orbit that bifurcates is unstable. Pattern y is
time-dependent. It consists primarily of
stripes but there are small localized regions
that oscillate with a relatively high frequen-
cy (-10`-). The active regions disappear,
but new ones always appear elsewhere. In

'v C

-I

'I

Flg. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which
are used in Fig. 3 to indicate the pattern found at a given point in parameter space.

0. 08 . a. . . . . . . a. . a a. .. a a a

0.06

0.04

0.02

u.u

0.03 0.04 0.05
k

Fig. 3. The map. The Greek letters
indicate the location in parameter
space where the patterns in Fig. 2
were found; B and R indicate that
the system evolved to uniform blue
and red states, respectively.

0.06 0.07
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190
Figure 1.3: The mapping of Greek letters in Figure 1.2 to their location in F, k pa-
rameter space. R and B indicate that the system evolved to uniform red and blue
states respectively. This figure also represents a phase diagram of the reaction ki-
netics. Between the solid and dotted line, the system is bistable for which there are
two linearly stable steady states. As f passes below the dotted line, the non-trivial
steady state becomes unstable through Hopf bification giving stable periodic or-
bits for k < 0.035 and unstable ones for k > 0.035. The trivial state, (U = 1, V = 0)
exists for all ( f , k) outside the solid line. Adapted from J. E. Pearson, “Complex
patterns in a simple system,” Science, vol. 261, no. 5118, pp. 189–192, 1993.

is limited by the discretization of the Laplacian in (Eq. 1.5) which is second-order

accurate.

A spatial grid of 256 × 256 points constitutes the mesh with a time step of 1.2

The system was initialized with the state U = 1, V = 0 with a 40 × 40 area located

symmetrically in the center perturbed with U = 0.5, V = 0.25. This square area is

then further sprinkled with 1% random “noise” to catalyze the reaction. The pat-

terns in Figure 1.2 were generated using this method and depict the concentration

of chemical U. A plot of chemical V would appear as the inverse of U so only U is

shown.

For each F, k, the simulation is run for 25,000 time steps. Every 10th image of the

simulation is saved, so a total of 2,500 PNG files are produced to describe the time

2There are no qualitative differences for domain sizes up to 1024× 1024 and time steps as low as
0.01. Initial conditions also have little to no effect on the qualitative features of the resulting pattern
after some time [9].
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evolution of each pattern. The resulting images used for the analysis described in

Chapter 3 use a greyscale colormap like that of Figure 3.





Chapter 2

Computational Homology

As large amounts of data become available, it becomes more difficult to determine

what information is relevant. There are, of course, high and low-level approaches.

A high-level approach like a fingerprint scanner or handwriting recognition might

be the end-goal of one’s analysis, but lower-level approaches like homology look

at the geometric makeup of an object and are often a requisite step toward building

higher-level processes. Homology is one way of analyzing local properties in order

to extract information about global phenomena.

At this time, computational homology is a relatively new field and its applica-

tion in physics has only recently been explored [20, 7, 3, 8]. Although homology

is a field of algebraic topology, it combines the mathematics of several other fields

including combinatorics and computation. The mathematical formalism behind

homology is difficult to grasp so only the relevant information will be detailed in

Section 2.1. For the interested reader, Section 2.2 presents a more thorough discus-

sion of the mathematical background of cubical homology.

2.1 Homology overview

At its root, homology is concerned with the enclosed holes and connected pieces

in topological spaces. This vague statement might lead one to ask what exactly

we mean by “connected pieces” and “holes.” To gain an intuitive understanding,

examine Figure 2.1 in which the connected pieces (the black segments) and holes

(the white enclosed areas) of the Reed Griffin have been colored in. While it may

seem easy enough to simply count these structures as I have done, the goal of ho-

mology is to provide a formal mathematical description of these geometric struc-
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tures regardless of the complexity or spatial dimension. Although the formalism

of homology is difficult to understand, the relevant concepts are easily illustrated

through examples. It’s best to think about this in one dimension first.

(a) (b) (c)

Figure 2.1: The homology of the Reed Griffin. On the left (2.1a) is the original
image. The isolated black segments of the Griffin are the “connected pieces” and
the white enclosed areas are the “holes”. The other two (2.1b and 2.1c) have been
colored in to highlight the 14 connected pieces and 4 holes respectively. Homology
provides a precise mathematical description these structures.

Figure 2.2 shows two simple topological spaces, X and Y. Although X and Y

are spaces with one and two line segments respectively, in terms of homology one

would say X consists of a single connected piece while Y has two distinct pieces. The

fact that the line segments are straight or of different length is not important for

the homology. In this one-dimensional example, the zeroth homology groups of each

are

H0(X) ∼= Z1 and H0(Y) ∼= Z2, (2.1)

where Z is the group of integers. The homology pairs a topological space (e.g.

X and Y) with an abelian group, a set of elements combined with operations that

satisfy five axioms: closure, associativity, identity, invertibility, and commutativity

(a full definition can be found in Appendix A.1.1). Notice, however, that the zeroth

homology group of Y is Z2; the rank of the group, 2, is what accounts for the two

distinct pieces, but more on this later.

Since there is a zeroth homology group, it makes sense that there would be a first

homology group. Looking at the two-dimensional example in Figure 2.3, the homol-
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X

Y

Figure 2.2: Topological spaces X and Y. X consists of one connected line segment
and Y has two disconnected line segments.

ogy of each space Xa, Xb, Xc, and Xd is

H0(Xa) ∼= Z H0(Xb) ∼= Z H0(Xc) ∼= Z H0(Xd) ∼= Z2 (2.2)

H1(Xa) ∼= Z H1(Xb) ∼= 0 H1(Xc) ∼= Z H1(Xd) ∼= Z. (2.3)

(a) Xa (b) Xb

(c) Xc (d) Xd

Figure 2.3: Topological spaces Xa, Xb, Xc, and Xd. Shading indicates that the en-
closed area is filled.

Spaces Xa, Xb, and Xc have a zeroth homology group of Z since there is a single

connected component while Xd has Z2 to account for the two disconnected lines.

In each space, a connected component forms an enclosed area (i.e. the squares).

The square in Figure 2.3a forms a hole, a region completely enclosed by the black

line. Figures 2.3a, 2.3c, and 2.3d each contain one hole. The shading in Figures 2.3b,

2.3c, and 2.3d indicates that the hole is filled and is thus no longer counted. Just as

the zeroth homology group is concerned with connected segments, the first homology

group is concerned with holes.

The terms “piece” and “hole” are informal. Formally, we could say that the kth
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Figure 2.4: The pattern κ described in Section 1.1. The homology of κ gives Betti
numbers β0 = 1 and β1 = 9. True to the homology, we can easily count a single
black connected component and nine holes, each of which is filled with a different
color to illustrate this fact.

homology group, Hk(X), represents the group of k-dimensional holes1 of X where

a k = 0 hole is merely the gap between two components (e.g. Y in Figure 2.2). As I

alluded to earlier, the rank of the homology group (e.g. the rank 2 of Z2 in (Eq. 2.1))

represents the number of k dimensional holes. This is called the Betti number βk. In-

deed, Betti numbers are non-zero for all k < d where d is the dimension of the

topological space. Betti numbers are the most important feature of the homology

in this thesis since they assign a nice mathematical quantity to an otherwise visual

characteristic of a topological space. Figure 2.4 gives the Betti numbers for pat-

tern κ; there is clearly one single connected component, shown in black, and nine

enclosed holes which have been colored in. Thus, β0 = 1 and β1 = 9.

2.1.1 Prior work

Although the literature surrounding homology is relatively little, the techniques

described here have been used to characterize complex patterns. Prior work by

Gameiro and Mischaikow examines the 1D Gray-Scott system as well as the 2D

FitzHugh-Nagumo model [7]. Using a time series of Betti numbers, they are able

to calculate the maximal Lyapunov exponent (LE) which, if positive, implies exis-

tence of spatial-temporal chaos. They compare their computation of the LE using

1The “dimension” of k is different from the dimension of the topological space. To describe the
dimension of a space such as a cube in R

3, call it X, we write dim X = 3. Structures of lower
dimensions, such as the square faces that make up the cube, are embedded in the higher dimensional
space X. For k ≥ dim X, Hk(X) = 0 since there are no structures embedded in a space with a higher
dimension than that of the space itself. It is important to note that if we could place the topological
spaces shown in Figure 2.3, which live in R

2 on the page, into 3-dimensional space, R
3, this would

not change the homology groups.
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a time series of Betti numbers to that obtained through standard methods. The re-

sults are compelling for two reasons; one is that there is near-perfect agreement be-

tween the LE obtained through the Betti time series and standard methods which

confirms that using homology data is an acceptable approach. The other is that,

due to its topological features, the homology data is also able to capture spatial

chaos which the LE calculated through the standard method does not (it only mea-

sures temporal chaos).

The work done by Gameiro, Mischaikow, and others provides a wonderful

backdrop and inspiration for the analysis of the 2D Gray-Scott model in this the-

sis. The computational method for calculating homology data of this system is

outlined in Chapter 3. In Section 3.2, I describe how this can be used to derive

information about the complexity of a system’s dynamics.

2.2 Cubical homology

In cubical homology, topological spaces are represented as a collection of cubes.

This thesis is concerned with the interpretation of digital images as topological

spaces. Digital images are quite literally a collection of two-dimensional cubes,

pixels, thus a homology that examines these objects is a natural environment for

examining the output of computer simulations. In this section, I present a brief

mathematical description of cubical homology that closely follows that of [21]

and [5]. By skipping this section, one would miss some of the interesting sub-

tleties of homology theory but a thorough understanding is by no means essential

to the understanding of this thesis.

We’ll start by defining elementary cubes, which make up the building blocks

for the theory. It is important to keep in mind here that one of the fundamental

ideas in homology theory is to connect topological objects (e.g. connected pieces

and holes) to algebraic objects.

Definition 2.2.1. An elementary interval is an interval I ⊂ R of the form

I = [l, l + 1] or I = [l, l]

for some l ∈ R. To simplify notation, say

[l] = [l, l]
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1 2 3 4

1

2

3

Q1

Q2

Figure 2.5: Two elementary cubes Q1, Q2 ⊂ R
2. The cube Q1 = [1, 2]× [1, 2] and

Q2 = [3, 4]× [1]. Notice that Q2 ⊂ R
2 is different from the cube [3, 4] ⊂ R as they

are subsets of different spaces.

is an interval containing a single point, which we call a degenerate interval. Inter-

vals of the form [l, l + 1] are called nondegenerate.

Definition 2.2.2. An elementary cube Q is a finite cartesian product of elementary

intervals,

Q = I1 × I2 × . . . × Id ⊂ R
d

where each Ii is an elementary interval. We denote the set of all elementary cubes

in R
d as Kd.

The set of all elementary cubes, K, is

K :=
∞⋃

d=1

Kd.

Two elementary cubes are shown in Figure 2.5. Cube Q1 = [1, 2] × [1, 2] and

Q2 = [3, 4]× [1]. Both Q1 and Q2 are subsets of R
2 even though one interval of Q2

is degenerate.

Definition 2.2.3. Let Q = I1 × I2 × . . . × Id ⊂ R
d be an elementary cube. The

embedding number of Q is defined to be d which we denote by emb(Q). Interval Ii

is the ith component of Q and is written Ii(Q). The dimension of Q is defined as the

number of nondegenerate components in Q and denoted dim Q. We refer to an

elementary cube Q with dim Q = k as a k-cube and denote

Kk := {Q ∈ K|dim Q = k},
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and

Kd
k := Kk ∩Kd.

The relationship between the embedding number and dimension might be a

little muddy since it seems that they would always be the same. Observe that

for elementary cube Q, if emb(Q) = d, then Q ∈ Kd. The only general relation

between the embedding number and dimension of Q is that

0 ≤ dim Q ≤ emb(Q).

To illustrate this, imagine a Rubik’s cube on a desk. The Rubik’s cube itself has

both emb, dim = 3 while any one square face has emb = 3 but dim = 2 (also see

Example (2.2.1)).

Example 2.2.1. Given elementary cube Q := [1, 2] × [1, 2] × [−1] ⊂ R
3, we have

I1(Q) = [1, 2], I2(Q) = [1, 2], and I3(Q) = [−1] (which is degenerate). Therefore,

emb(Q) = 3 and dim Q = 2, due to the degenerate I3.

Now we must define the class of topological spaces for which we define the

homology.

Definition 2.2.4. A set X ⊂ R
d is cubical complex if X can be written as a finite

union of elementary cubes.

Given cubical complex X ⊂ R
d, we define

K(X) := {Q ∈ K | Q ⊂ X}

and

Kk(X) := {Q ∈ K(X) | dim Q = k}.

We can write Kd(X) to remind us that X ⊂ R
d as well as Kd

k := Kd(X) ∩ Kk(X).

For example, elements of K0(X) are vertices of X, elements of K1(X) are edges and

so forth. Kk(X) are the k-cubes of X.

Once again, our goal is to establish a relationship between algebraic objects and

topological spaces. The first step, then, is to associate some algebraic object with

the elementary cubes that we just defined.

Definition 2.2.5. For each elementary k-cube Q ∈ Kd
k , we associate an algebraic ob-

ject Q̂ which we call an elementary k-chain of R
d where Q̂ : Kd

k → Z is the function
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defined by

Q̂(P) =





1 if P = Q,

0 otherwise.

We also define 0̂ : Kd
k → Z to be the zero function, i.e. 0̂(Q) = 0 for all Q ∈ Kd

k .

The set of all elementary k-chains of R
d is given by

K̂d
k :=

{
Q̂ | Q ∈ Kd

k

}

and the set of all elementary chains of R
d is given by

K̂d :=
∞⋃

k=0

K̂d
k .

As previously mentioned, the purpose of defining the k-chain Q̂ versus k-cube

Q is to bridge the gap between the algebra and the topology. Just as a k-cube

describes a structure formed by the product of intervals (e.g. [0, 1] × [0, 1] is an

elementary 2-cube), a k-chain describes a combination of simplices (a 0-simplex is a

point, a 1-simplex is a segment, a 2-simplex is a triangle, and so on). In the context

of a graph, a chain might describe a path between vertices (0-simplices) in the form

of a linear combination of the vertices.

For an elementary cube Q, we refer to Q̂ as its dual elementary chain. Conversely,

given elementary chain Q̂, we call Q is its dual elementary cube. What we want is

a one-to-one relationship between the elementary k-cubes (topological objects) and

elementary k-chains (algebraic objects). In other words, the map of k-cubes (Kd
k ) to

k-chains (K̂d
k ) is a bijection.

Proposition 2.2.1. The map φ : Kd
k → K̂d

k given by φ(Q) = Q̂ is a bijection.

Proof. See Kaczynski et al. [5].

Proposition 2.2.1 allows us invoke the inverse of φ to go from an algebraic ob-

ject, the elementary chain Q̂, to a topological set, Q. The following definition uses

the algebra that we have built up to give the elementary k-chains algebraic struc-

ture.

Definition 2.2.6. The group Cd
k of k-dimensional chains (or k-chains) of R

d is the free

abelian group (see Appendix A.1.2) generated by the elementary chains of Kd
k .

Thus the elements of Cd
k are functions c : Kd

k → Z such that c(Q) = 0 for all but
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a finite number of elementary cubes Q ∈ Kd
k . In particular, the set of elementary

k-chains K̂d
k is the basis for Cd

k . By the same notation used in Appendix A.1.1,

Cd
k := Z(Kd

k).

If c ∈ Cd
k , then dim c := k.

Figure 2.6 illustrates how we can use information about the boundary to exact

information about the k-cubes, but we are again using topological information (the

existence of a boundary) to derive more topological information (the existence of

loops). What we would really like to do is use algebra to get at this information,

so we start by defining the algebraic boundary of a k-chain.

A B

A B

CD

Figure 2.6: The line segment (left) has a topological boundary given by {A} ∪
{B} (or [A, B]) and therefore does not form a loop (a 0-cube). The square (right),
however, does not have a boundary (since we can’t pick a definite start and end
point) and therefore forms a loop (a 1-cube).

The set of elementary chains forms a basis for Cd
k , thus we would like to eas-

ily describe an arbitrary chain c ∈ Cd
k in terms of the elements of K̂d

k . Definition

(Eq. 2.2.7) provides such a relation which is analogous to the dot product in vector

space.

Definition 2.2.7. Consider c1, c2 ∈ Cd
k , where c1 = ∑

m
i=1 αiQ̂i and c2 = ∑

m
i=1 βiQ̂i

and αi and βi scalars. The scalar product of the chains c1 and c2 is defined as

〈c1, c2〉 :=
m

∑
i=1

αiβi.

The astute reader will notice that this definition restricts us to describing a k-

chain only in terms of k-dimensional cubes. We know, however, that cubes may
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be decomposed into lower dimensional faces. For example, the square in Fig-

ure 2.6 may be constructed from the four edges (or 1D faces) [A, B], [B, C], [C, D],

and [D, A], and we would like to be able to write all k-chains in terms of lower-

dimensional faces. This will be essential when the boundary operator is defined in

2.2.9 and provides the motivation for the following definition and proposition.

Definition 2.2.8. Given two elementary cubes P ∈ Kd1
k1

and Q ∈ Kd2
k2

, let

P̂ ⋄ Q̂ := P̂ × Q

This extends to arbitrary chains c1 ∈ Cd1
k1

and c2 ∈ Cd2
k2

by

c1 ⋄ c2 := ∑
P∈Kk1

, Q∈Kk2

〈c1, P̂〉〈c2, Q̂〉P̂ × Q

The chain c1 ⋄ c2 ∈ Cd1+d2
k1+k2

is called the cubical product of c1 and c2.

Proposition 2.2.2. Let Q̂ be an elementary cubical chain of R
d with d > 1. Then there

exist unique elementary cubical chains Î and P̂ with emb(I) = 1 and emb(P) = d − 1

such that

Q̂ = Î ⋄ P̂

Proof. See Kaczynski et al. [5].

Definition 2.2.9. Given k ∈ Z, the cubical boundary operator or cubical boundary map

given by

∂k : Cd
k → Cd

k−1

is a homomorphism of free abelian groups, which is defined for an elementary

chain Q̂ ∈ K̂d
k by induction on the embedding number d as follows. Consider first

the case d = 1. Then Q is an elementary interval and hence Q = [l] ∈ K1
0 or

Q = [l, l + 1] ∈ K1
1 for some l ∈ Z. Define

∂kQ̂ :=





0 if Q = [l],

[l̂ + 1]− [l̂] if Q = [l, l + 1]

Now assume that d > 1. Let I = I1(Q) and P = I2(Q)× . . . × Id(Q). Then by 2.2.2,

Q̂ = Î ⋄ P̂.
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Define,

∂kQ̂ := ∂k1
Î ⋄ P̂ + (−1)k1 Î ⋄ ∂k2

P̂,

where k1 = dim I and k2 = dim P. Finally, we extend the definition to all chains

by linearity; that is, if c = α1Q̂1 + α2Q̂2 + · · ·+ αmQ̂m, then

∂kc = α1∂kQ̂1 + α2∂kQ̂2 + · · ·+ αm∂kQ̂m.

The domain of ∂k is the k-chains, so if we know that c ∈ Cd
k , it is redundant and

labor intensive to write the subscript k so we simplify to ∂. Geometrically speaking,

the boundary of a k-chain is simply the alternating sum of its (k − 1)-dimensional

faces. As Figure 2.7 demonstrates, however, merely having a boundary sum equal

to zero is not enough to constitute a loop. The right picture does not character-

ize a hole since it is filled in by the 2-chain Q.2 This boundary is represented al-

gebraically by ∂(Q̂) = [Â, B] + [B̂, C] − [Ĉ, D] − [D̂, A]. We would represent the

boundary topologically by [A, B] ∪ [B, C] ∪ [C, D] ∪ [D, A].

A B

CD

Q

A B

CD

Figure 2.7: The boundary of the chain [Â, B] + [B̂, C] − [Ĉ, D] − [D̂, A] is zero in
both pictures. The left picture, however, characterizes a loop (or hole) while the
one on the right does not since it is “filled in” by 2-chain Q.

We can now say that holes are characterized by chains that have a boundary

equal to zero, but are not themselves the boundary of other chains. In order to

count the holes, then, we must count the chains which have zero boundary, but are

not boundaries. The following definitions help us achieve this.

Definition 2.2.10. Let X ⊂ R
d be a cubical complex. Let K̂k(X) := {Q̂ | Q ∈

Kk(X)}. We define the set of k-chains of X as the subgroup Ck(X) of Cd
k generated

by the elements of K̂k(X).

2Not to be confused with 2 Chainz [22].
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Proposition 2.2.3. Let X ⊂ R
d be a cubical complex. Then

∂k(Ck(X)) ⊂ Ck−1(X)

Proof. See Kaczynski et al. [5].

This leads to the following definition.

Definition 2.2.11. The boundary operator of the cubical complex X is defined to

be

∂X
k : Ck(X) → Ck−1(X)

obtained by restricting ∂k : Cd
k → Cd

k−1 to Ck(X).

An extremely important property of the boundary operator is defined in the

following proposition.

Proposition 2.2.4.

∂ ◦ ∂ = 0

Proof. See Kaczynski et al. [5].

It should make sense that if we are to take the boundary of a topological ob-

ject, the boundary itself should have a lower embedding number (the boundary

of a square, k1 = 2, is made up of lines, k2 = 1). It may not seem immediately

intuitive that the boundary of a boundary is zero; the boundary of a disk is a circle

which has boundary equal to zero; the boundary of a baseball is its spherical shell

which also has a zero boundary. At this point we are tantalizingly close to defining

homology—but wait! The following descriptions will be helpful in a moment.

Definition 2.2.12. Let X ⊂ R
d be a cubical set. A k-chain z ∈ Ck(X) is called a

k-cycle in X if ∂z = 0. Thus the set of all k-cycles of X is the kernel of ∂X
k and so it is

a subgroup of Ck(X). We denote the set of all k-cycles by Zk(X). In short,

Zk(X) := ker ∂X
k = Ck(X) ∩ ker ∂k ⊂ Ck(X). (2.4)

A k-chain z ∈ Ck(X) is called a boundary in X if there exists a (k + 1)-chain

c ∈ Ck+1(X) such that ∂c = z. Thus the set of all boundary elements in Ck(X) is

the image3 of ∂X
k+1, and so it is also a subgroup of Ck(X). We denote the set of all

3That’s “image” in the mathematical sense (i.e. the subset that contains the output of a function).
The shorthand for this is im f for function f .



2.2. Cubical homology 25

boundary elements in Ck(X) by Bk(X). Once again,

Bk(X) := im ∂X
k+1 = ∂k+1(Ck+1(X)) ⊂ Ck(X). (2.5)

We can now say more precisely what we wanted before; we want to characterize

holes by chains that have zero boundary (i.e. k-cycles, the elements of Zk(X)) but

are not themselves the boundary of other chains. The set of all k-chains that rep-

resent boundaries of other chains is Bk(X), so we want to count the elements of

Zk(X) that are not in Bk(X), and this will define our set of k-dimensional holes.

This is easily done by taking the quotient group of Zk(X) by Bk(X) but this re-

quires that Bk(X) be a subgroup of Zk(X). By Proposition 2.2.4, ∂c = z implies

∂z = ∂2c = 0, therefore every boundary is a cycle and Bk(X) is a subgroup of

Zk(X) so we may rightfully proceed to the most important definition of this sec-

tion.

Definition 2.2.13. The kth cubical homology group of X is the quotient group

Hk(X) := Zk(X)/Bk(X).

The homology of X is the collection of all homology groups of X. The shorthand

for this is

H∗(X) := {Hk(X)}k∈Z.

For a cubical set X ⊂ R
d we can show that, for i = 0, . . . , d − 1,

Hi(X) = Z
βi ⊕ Zb1

⊕ Zb2
⊕ · · · ⊕ Zbk

,

where βi is a nonnegative integer, Zb is the group of integers modulo b, bi > 1

provided k > 0, and bi divides bi+1 for i ∈ {1, 2, . . . , k − 1} provided k > 1. The ⊕

operator denotes a direct sum. For i ≥ d we have Hi(X) = 0.

Integer βi is known as the ith Betti number of X and b1, b2, . . . , bk are the torsion

coefficients of Hi(X). In general, βi := rank(Hi(X)). Spaces with dimension d ≤ 3

do not have torsion coefficients, just Hi(X) = Z
βi , so we need not worry about

them for our purposes [21].

This is certainly a great abstraction from what we started with before, con-

nected pieces and holes in a topological space, but here is some geometrical in-

tuition. As previously indicated, the Betti numbers encode some geometrical in-

formation. β0 is equal to the number of connected pieces of X, β1 is the number of
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holes (or loops) if d = 2 or the number of tunnels if d = 3. β2 equals the number of

cavities if d = 3.

Example 2.2.2. An ordinary bike tube (a torus) has β0 = 1, the single connected

piece of rubber; β1 = 1, one hole in the center; and β2 = 1, the hollow cavity inside

the tube.

The mathematical tour-de-force that we’ve just undertaken might seem like

major overkill. After all, here we are merely concerned with counting geomet-

ric structures that could theoretically be eyeballed (tedious as that may be). I ar-

gue, however, that the homology maintains some nice features for us. For one, it

provides a mathematically rigorous definition of the structures in question. Fur-

thermore, the homology of any structure is unchanged in any higher-dimensional

space (e.g. the homology groups of an empty square are the same in R
2 as in R

3

or R
4 for that matter). Homology is not concerned with size or shape of any ob-

ject either; the homology of a coffee mug is identical to that of Figure 2.3a. The

theory reduces the amount of information required to describe an object to a few

topological quantities which may be difficult to grasp visually. Analysis of higher

dimensional data, such as a 4D construction of medical imaging data, which would

require a great amount of thought to assess visually, is completely feasible through

cubical homology [5]. Due to its dimension-independent formulation, the appli-

cations of cubical homology are limited only by the ability to construct sensical

topological information. In the following chapter, we shall see how the homology

theory described here can be applied to analyze patterns of the Gray-Scott system.
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Methods and Procedures

In this section, the methods for extracting homology information, i.e. Betti num-

bers, from images generated by simulating the Gray-Scott system are outlined.

Section 3.1 describes the process of preparing the images for computation of Betti

numbers and the considerations and problems that arise. Section 3.2 describes how

the Betti numbers are used to calculate the entropy of the Gray-Scott system as pa-

rameters are varied. For information on how the pattern images were generated in

the first place, see Section 1.2.

3.1 Obtaining Betti numbers

Given the complicated overview of cubical homology theory given in Section 2.2,

one might expect extracting the Betti numbers from an image to be a difficult un-

dertaking. Fortunately, CHOMP, (Computational Homology Project), a homol-

ogy software package developed by the group of Konstantin Mischaikow (Math-

ematics ’79) at Rutgers University (formerly at Georgia Tech), facilitates this pro-

cess [23]. Furthermore, the way it works is extremely intuitive, essentially counting

clusters of adjacent pixels. CHOMP requires a 2-bit binary image as input.1 Since

the images output by the Gray-Scott simulation are greyscale (see Section 1.2), they

must first be converted to 2-bit images.

1That is, an image with only black and white pixels.
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3.1.1 Thresholding

The output of the Gray-Scott simulation is a series of 8-bit greyscale images, i.e.

there are 256 possible shades of grey (0 is black, 255 is white). The color map is such

that concentrations Vmin = 0.0 → 255 and Vmax = 0.4 → 0. In other words, white

and black indicate low and high concentration of V respectively.2 Each image is

then thresholded at some value T ∈ [0, 255]. That is, all pixels with intensity less

than T are now black and those with intensity greater than T are now white.

A logical choice for T is the median pixel intensity of the image [20]. But, in the

case of sparse patterns like α and ǫ (Figures 1.2a and 1.2e respectively), this results

in a completely black image since the median is very high. Although other adap-

tive methods of thresholding exist [6], the definitive answer to thresholding prob-

lems is persistent homology, a more sophisticated computational homology tech-

nique which requites a large leap in terms of complexity and is outside the scope

of this thesis [24]. This approach is concerned with the “birth” and “death” of ho-

mology components as the threshold is varied in a way that circumvents the need

for a threshold altogether. Persistent homology has recently seen great success in

analyzing large sets of nonlinear data [25].

Short of persistent homology, another reasonable choice would be to split right

down the middle, T = 128, but as Figures 3.1 and 3.2 illustrate, some information

can be lost in the process. Thus the optimal choice of threshold depends entirely

on the characteristics of the image. The patterns produced by the Gray-Scott sys-

tem are varied and no single value of T is ideal for all (F, k), but emperically, T

that is near 128 better agrees with the characteristics of the original pattern. After

experimentation, the value T = 144 was chosen to perform all the calculations for

Gray-Scott patterns of chemical V.

Provided in the CHOMP software package is a method for simply thresholding

images, chomp-greyscale-to-cubical. This takes a single image input, a thresh-

old value, and an output filename and returns a text file which contains the coor-

dinates of white pixels.

2Vmax was chosen based on the average maximum of V ≈ 0.4 for all the patterns examined.
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(a) α in greyscale. (b) γ in greyscale. (c) β in greyscale.

(d) α, T = 112. (e) γ, T = 112. (f) β, T = 112.

(g) α, T = 128. (h) γ, T = 128. (i) β, T = 128.

(j) α, T = 144. (k) γ, T = 144. (l) β, T = 144.

Figure 3.1: Patterns α, γ, and β at various thresholds. Some features of less stable
patterns such as γ and β are lost when thresholded. Thresholds slightly higher
than 128 tend to capture the features of the original pattern better.
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3.1.2 Computational homology

Once the images are thresholded at some value, the CHOMP method chomp-cubical

processes and returns Betti numbers β0, β1, and β2. A single calculation of Betti

numbers takes about 1-3s on a 4.2 GHz Intel i7 processor constituting the greatest

bottleneck in the process. Figure 3.3 shows the intermediate stages of calculating

Betti numbers for a single choice of F, k values. This process is performed for each

of 2,500 text files produced by thresholding to generate a single CSV file of the Betti

numbers β0, β1, and β2 for each time step.3

(a) (b)

Figure 3.3: On the left is a spiral pattern with (F, k) = (0.035, 0.060) while the
figure on the right shows the pattern thresholded at T = 144. The Betti numbers
for this pattern, as calculated by CHOMP, are β0 = 32, β1 = 5.

3.2 Calculating entropy

In physics, entropy usually denotes the amount of “disorder” of a system. Shan-

non’s entropy, S(X), indicates the average amount of information that an observer

gains after measuring a realized outcome x of the random variable X [26]. We wish

to use homology information to provide a sense of how predictable (how complex)

the dynamics of the Gray-Scott system are for a given choice of parameters (F and

k). In general, the Shannon entropy S of some variable X with possible values

3The Betti number β2 is included only for posterity; β2 = 0 for all time steps since the images are
only 2D.
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{x1, . . . , xN} and probability distribution P(xi) = Pi is defined by

S(X) = −
N

∑
i=1

Pi log Pi. (3.1)

In our case, the Shannon entropy gives a picture of the average minimum number

of topological “states” required to describe the system based on the frequency of

the states explored by the system (i.e. how often some state occurs in the time

series).4 A state in this case is taken to be a unique pair of Betti numbers si =

{β0, β1}i at the ith time step. Although si does not in general describe a unique

pattern (any two states such that si = sj could look very different), it captures the

fundamental topology of the system at that moment. Furthermore, the set of states

within a given set of parameters (any F, k) is more meaningful. For example, if

we observe the topology of state si for pattern α, then we can make an informed

prediction as to what some other state sj might look like for that pattern (assuming

we know what the characteristic/steady-state pattern for α looks like). In general,

we would expect higher entropy for more dynamic, complex patterns.

For N total (non-unique) states equal to the number of time steps, the probabil-

ity Pi of state si given Ni, the number of times state si occurs, is simply

Pi =
Ni

N
. (3.2)

Figure 3.4 charts the twenty states, si, with the highest probability, Pi (i.e. the

twenty most probable states) for the pattern γ (Figures 1.2c and 3.1b). More dy-

namic patterns have a more even distribution of many states, each with lower Pi.

Patterns like µ (Figure 1.2l) that evolve slowly have a very small number of possi-

ble states each with high Pi and therefore a very low entropy.

Since we can use homology information, namely the time series of Betti num-

bers, to calculate the entropy of a single pattern, we might ask if we can use this

information to gain insight into the dynamics of the entire Gray-Scott pattern-

forming system. In the following chapter, we examine how the entropy changes

as parameters are varied, how it compares to Pearson’s analysis, and investigate

other information that can be derived from the time series of Betti numbers.

4The units of S are called “nats” when the log in (Eq. 3.1) is the natural logarithm.
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(F, k) = (0.022, 0.051). The entropy of this system is S = 5.43 nats. Interactive
charts for each pattern type are available online at http://joelhawkins.info/

thesis.
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Chapter 4

Results

4.1 Entropy maps

Looking back at the analysis of the Gray-Scott system by Pearson, in particular

Figure 1.3, the least stable regions of F, k occur near the bifurcation lines [9]. We

would expect that patterns with F, k in this region will be the most complex and

therefore have higher entropy. In order to elucidate information about the dy-

namics of the Gray-Scott system, the Shannon entropy (Eq. 3.1) is calculated for

all {F, k | F ∈ [0.004, 0.08], k ∈ [0.03, 0.07]} in an evenly spaced 20 × 20 grid (with

spacing dF = 0.004 and dk ≈ 0.002) corresponding to the domain of Pearson’s map

of F, k parameter space (Figure 1.3). The diffusion coefficients are fixed at du = 0.16

and dv = 0.08 for all points. There are then 400 initial values of F, k for which the

entropy S is calculated.

In order to increase the resolution of the entropy map, an adaptive resampling

method is implemented in the following manner. For any F, k pair of the original

400 points with S > 0.5, the entropy is calculated for the four adjacent points

(F ± dF/2, k) and (F, k ± dk/2) to form a 5 point stencil around the point. This of

course requires starting from the Gray-Scott simulation outlined in Section 1.2 and

performing the homology calculations for each new F, k pair.

The results of the entropy calculation agree well with our expectations. The

plot in Figure 4.1 shows the entropy S of the Gray-Scott system for chemical V as

F, k is varied. Note that systems of higher S, the lighter regions of the plot, occur

more densely near the dotted line which indicates the Hopf bifurcation. Figure 4.2

shows the entropy S over the same domain for chemicals V and U, respectively,

without adaptive sampling (only the initial 400 grid points). These too agree with
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Figure 4.1: A plot of entropy S for the systems described by discrete values of F, k
for chemical V with T = 144. Adaptive resampling is implemented to increase
the resolution of the plot beyond the initial 400 grid points. The phase diagram in
Figure 1.3 is superimposed on the map to illustrate its agreement with Pearson’s
analysis. The system has higher entropy for F, k values in regions that Pearson
identifies as least stable (near the bifurcation lines) [9].

Pearson’s analysis and show that chemicals U and V exhibit similar dynamics.

With 2,500 time steps for each F, k, producing a map of the entropy over F, k

space requires over 1 million calls to chomp-cubical.1 Computed with eight paral-

lel processes on a 4.2GHz Intel i7 processor, this takes about 3-4 days of computa-

tion time.

4.2 Transient states

One consideration in these calculations is the existence of initial transient states. As

the Gray-Scott simulation runs, there are about 100 time steps in which the system

has not yet reached its steady-state. Figure 4.4 shows the pattern γ at time steps

1Computing the Betti numbers of the system is by far the slowest operation and significantly
bottlenecks the processing time.
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(b) Chemical U with T = 160.

Figure 4.2: A plot of entropy S for the systems described by discrete values of
F, k using only the initial 400 grid points; (a) and (b) show the entropy map for
chemicals V and U respectively. Without resampling, the results still agree well
with Pearson’s analysis; the system has higher entropy near bifurcations where it
is least stable. Furthermore, the entropy maps for each chemical species show near
perfect agreement.
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(b) Chemical U with T = 160

Figure 4.3: A plot of S over F, k space for both chemical V (a) and U (b) consid-
ering only time steps [100, 2500] to remove the possible effects of initial transient
states. The entropy for each chemical is slightly higher than that shown in Fig-
ure 4.2 where the initial 100 time steps are considered in the entropy calculation.
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(a) γ at t10. (b) γ at t50. (c) γ at t100.

Figure 4.4: Pattern γ for time steps t10, t50, and t100. Initial time steps are transient.
By time step t100, we begin to see features of the steady state pattern.

10, 50, and 100. The time series in Figure 3.2 shows how the Betti numbers change

as γ transitions to the steady-state pattern. Since these initial transient states are

not characteristic of the dynamics of the pattern, we may wish to exclude these

states in our analysis. The entropy maps in Figure 4.3 consider only the time steps

[100, 2500], ignoring the initial transient states that might affect the calculation of

S. We see that, in general, S is higher when the transient states are not considered.

This makes sense due to the fact that there are not only fewer states to begin with

but because the system is not likely to repeat a transient state. In other words, Pi

is very low for i ∈ [0, 100] and the reduction in N (a lower N in (Eq. 3.2)) serves

only to increase S. Either way, the calculation of S is not dramatically affected by

removing the transient states.

4.3 Domain size

The domain size of the simulation can have a great effect on the entropy of the

system. To illustrate this, simulations of patterns γ, ǫ, β, and δ are run with domain

sizes n = 256, 512, and 1024, the results of which are shown in Figure 4.5. We see

that the entropy always increases with n. This is simply due to the fact that there

is more space which has the potential to greatly increase the complexity of the

pattern. The entropy grows faster for some patterns as n increases; pattern δ shows

the greatest rate of change relative to the other patterns. The entropy of the other

patterns grows at a consistent rate. Figure 4.6 illustrates how varying the domain

size affects the observed pattern. It is important to note that although the domain

size is larger, the underlying dynamics of the system remain unchanged [9].
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Figure 4.5: Entropy S of patterns γ, ǫ, β, and δ as the domain size n is increased.
Intuitively, the entropy increases with the domain size since there is more space
and therefore greater possible complexity. We notice that S grows faster for some
patterns as n is scaled. Figure 4.6 shows pattern γ at the 2000th time step for each
domain size n.

4.4 Other systems

One of the virtues of computational homology is its flexibility in analyzing images.

To showcase this, we can examine the homology of a YouTube video. Figure 4.7

shows three frames from a YouTube video of a simulation of the SmoothLife au-

tomaton,2 a continuous spatial generalization of Conway’s “Game of Life” [27].

By extracting frames from the video in the form of PNG files and thresholding at

T = 128, we can calculate the time series of Betti numbers and from there compute

the entropy. We use N to indicate the total number of time steps after choosing

every dt frames. There are a total of 5400 frames in the video, so the frame step

size dt = 4, for example, gives N = 1351 time steps when considering the entire

3m36s video length. Table 4.1 gives the entropy S for dt = 3, dt = 4, and dt = 5.

The entropy is highest for dt = 3, S = 6.82, which is also greater than any S in the

Gray-Scott entropy map in Figure 4.1. This is unsurprising since the SmoothLife

simulation video is extremely dynamic.

2As of this writing, the video is available at https://youtu.be/KJe9H6qS82I.

https://youtu.be/KJe9H6qS82I
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(a) n = 256 (b) n = 512 (c) n = 1024

Figure 4.6: The pattern γ at the 2000th time step as the domain size is varied. The
spatial complexity increases greatly as n is grows. A plot of the entropy S for each
n = 256, 512, 1024 is given in Figure 4.5.

Table 4.1: The entropy S of the SmoothLife simulation video for different step sizes
and number of time steps.

dt, N 3, 1800 4, 1351 5, 1081

S 6.82 6.67 6.54

(a) β0 = 52, β1 = 40 (b) β0 = 67, β1 = 41 (c) β0 = 78, β1 = 43

Figure 4.7: Three near-consecutive frames from a video of a SmoothLife simula-
tion (before thresholding). The Betti numbers β0, β1 are given for reference. In
this case, β0 and β1 consider white and black respectively. Computing the Betti
numbers of every 3 frames gives S = 6.82 which is highly entropic. Images
adapted from S. Rafler, “Generalization of Conway’s “Game of Life” to a continu-
ous domain—SmoothLife,” arXiv preprint arXiv:1111.1567, 2011. Video available at
https://youtu.be/KJe9H6qS82I.

https://youtu.be/KJe9H6qS82I


Conclusion

Throughout this thesis, we have tread the territory of nonlinear dynamics, compu-

tation, topology, and combinatorics. We have shown how the combination of these

theories can produce novel and compelling results when presented with complex

information. By examining patterns at their lowest level, looking closely at the

fundamental geometric structures that make up the dazzling images we see, we

can extract meaningful information and elucidate their properties. In this case, the

analysis of the Gray-Scott system led us to calculate the entropy of the system over

a wide range of parameters which both complements and confirms the analysis

derived directly from the physics of the system.

The homology theory presented here has given us interesting insight into the

dynamics of at least one pattern-forming model, but as I have endeavored to show,

one can extend these techniques to any topological object. This may be a single

image, a video of an experiment, or a 4D construction of medical imaging data; the

tools of homology are amazingly resilient and as computational methods evolve,

these techniques may take precedence in the field of image analysis.

Of course, the findings in this thesis point towards many more avenues for

further investigation of homology. One of the major problems confronted in this

thesis is finding an appropriate threshold for which to perform the Betti number

calculations. This could be solved with the implementation of an adaptive thresh-

olding algorithm or, with a large leap in complexity, applying persistent homology

(a relatively young theory at this time). Another interesting extension would be to

use the time series information to derive more telling mathematical quantities such

as the Lyapunov exponent which would confirm the chaotic dynamics of a system.

It is certain that the applications of homology theory have not yet been exhausted;

one of the virtues is that homology is so fundamental, its applications are wide

open. It is my hope that the reader is convinced of its usefulness in the wake of

increasingly complex data.
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Supplemental Math

A.1 Extra definitions and theorems

Definition A.1.1. The free abelian group generated by a finite set

S = {s1, s2, . . . , sn}

is the set of all functions f : S → Z, with the pointwise addition

( f + g)(si) := f (si) + g(si), i = 1, 2, . . . , n.

Definition A.1.2. The free abelian group generated by a possibly infinite set S is the

subgroup of Z
S, consisting of all functions f : S → Z satisfying

f (s) = 0 for all but finitely many s ∈ S.
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Code

B.1 Gray-Scott simulation code

The following code is written in the Python language. It requires the Numpy pack-

age which allows for easy and intuitive manipulation of matrices as well as Mat-

plotlib to display the simulation. The procedure RUNGS takes four arguments: du,

dv, F, and k. By default, the domain size n is set to 256.

import numpy as np

import matplotlib.pyplot as plt

def runGS(Du, Dv, F, k):

n = 256

# create a structured n+2 by n+2 array of double precision floats

Z = np.zeros((n+2,n+2), [(’U’, np.double), (’V’, np.double)])

U,V = Z[’U’], Z[’V’]

# u, v represent the concentrations of U, V

u,v = U[1:-1,1:-1], V[1:-1,1:-1]

# set initial conditions

r = 20

u[...] = 1.0 # set all u to 1.0

U[n/2-r:n/2+r,n/2-r:n/2+r] = 0.50

V[n/2-r:n/2+r,n/2-r:n/2+r] = 0.25

# ’sprinkling’ of random noise

u += 0.05*np.random.random((n,n))

v += 0.05*np.random.random((n,n))
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# set up plot

plt.ion()

# plot options

size = np.array(Z.shape)

dpi = 120.0

figsize= size[1]/float(dpi),size[0]/float(dpi)

fig = plt.figure(figsize=figsize, dpi=dpi, facecolor="white")

fig.add_axes([0.0, 0.0, 1.0, 1.0], frameon=False)

cmap = plt.cm.binary # this is a greyscale colormap

im = plt.imshow(V, interpolation=’bicubic’, cmap=cmap) # show V in the plot

plt.xticks([]), plt.yticks([])

# run simulation for 25000 time steps

for i in xrange(25000):

# discretized Laplacian matrix for u

Lu = ( U[0:-2,1:-1] + U[2: ,1:-1] +

U[1:-1,0:-2] + U[1:-1,2: ] - 4*U[1:-1,1:-1] )

# discretized Laplacian matrix for v

Lv = ( V[0:-2,1:-1] + V[2: ,1:-1] +

V[1:-1,0:-2] + V[1:-1,2: ] - 4*V[1:-1,1:-1] )

uvv = u*v*v # the nonlinear term uv^2

# change the concentrations in place

u += (Du*Lu - uvv + F *(1-u))

v += (Dv*Lv + uvv - (F+k)*v )

if i % 10 == 0: # show only every 10 steps on the plot

im.set_data(V)

im.set_clim(vmin=0.0, vmax=0.4) # set color limits

plt.draw()

# to save each figure

plt.savefig(’./gs/gs-%04d.png’ % (i/10) ,dpi=dpi)

plt.ioff()

plt.close()
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B.2 Entropy calculation code

The code below is used to calculate the entropy maps shown in Figures 4.1 and 4.3.

It is also written in the Python language and relies on a few extra packages. The

procedure BETTILIST examines pairs of Betti numbers contained in a CSV file with

rows of the form time-step,b0,b1 where b0,b1 indicate β0 and β1. MAKEP I uses

this list to count the number of times each pair {b0,b1} occurs in the CSV (like

a histogram). This list is normalized by the total number of pairs (equal to the

number of time steps) to give a list Pi for each pair. The procedure ENTROPY takes

the list of Pi and returns the entropy for the system, S. With the use of these three

procedures, SAVEENTROPYCSV simply exports this information to a single CSV

with rows of the form F,k,S.

import os

import subprocess

import numpy as np

from collections import Counter

import csv

# calculates entropy given a list of P_i

def entropy(P_i):

S = 0.0

for i in P_i:

S += -(i*np.log(i)) # the natural log

return S

# creates a list of all Betti number pairs {b0, b1} given a CSV file

def bettiList(csvfile):

betti = []

with open(csvfile, ’rU’) as file:

reader = csv.reader(file, delimiter=’,’)

for row in reader:

b0b1 = row[1: 3] # convert the b0, b1 part to a string like ’[b0 b1]’

b0b1str = ’,’.join(b0b1)

betti.append(b0b1str)

file.close()

return betti

# makes a list of the probability of each state, P_i

def makeP_i(csvfile):

betti = bettiList(csvfile)

N = len(betti)
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hist = Counter(betti).items() # counts how many times each state occurs

hist.sort(lambda x, y: cmp(x[1], y[1]), reverse=True) # largest P first

# normalize

P_i = np.array([np.divide(pair[1], N, dtype=np.float) for pair in hist])

return P_i, hist, N

# saveEntropyCSV creates a CSV of entropies for each F, k pair

# input is a folder of CSVs (one for each F, k pair)

# containing {b0, b1} at each time step

def saveEntropyCSV(infolder, outfile):

filelist = os.listdir(infolder)

subprocess.call([’touch’,outfile])

csv = open(outfile, ’r+’)

for csvfile in filelist:

P_i = makeP_i( infolder + ’/’ + csvfile )[0]

S = entropy(P_i)

F = csvfile.split(’_’)[0] # e.g. ’0.044_0.038.csv’

k = csvfile.split(’_’)[1][ :-4] # remove ’.csv’

csv.write( F + ’,’ + k + ’,’ + str(S) + ’\n’)

csv.close()
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[4] S. Hui and S. Żak, “Discrete Fourier transform based pattern classifiers,” Bul-

letin of the Polish Academy of Sciences: Technical Sciences, vol. 62, no. 1, pp. 15–22,

2014.

[5] T. Kaczynski, K. M. Mischaikow, and M. Mrozek, Computational Homology,

vol. 157. Springer Science & Business Media, 2004.

[6] M. Niethammer, A. N. Stein, W. D. Kalies, P. Pilarczyk, K. Mischaikow, and

A. Tannenbaum, “Analysis of blood vessel topology by cubical homology,” in

Proceedings of International Conference Image Processing, vol. 2, pp. 969–972.

[7] M. Gameiro, K. Mischaikow, and W. Kalies, “Topological characterization of

spatial-temporal chaos,” Physical Review E, vol. 70, no. 3, p. 035203, 2004.

[8] A. Szymczak, A. Stillman, A. Tannenbaum, and K. Mischaikow, “Coronary

vessel trees from 3d imagery: a topological approach,” Medical Image Analysis,

vol. 10, no. 4, pp. 548–559, 2006.

[9] J. E. Pearson, “Complex patterns in a simple system,” Science, vol. 261,

no. 5118, pp. 189–192, 1993.

http://www.karlsims.com/rd.html
http://www.karlsims.com/rd.html


50 References

[10] A. M. Turing, “The chemical basis of morphogenesis,” Philosophical Transac-

tions of the Royal Society of London. Series B, Biological Sciences, vol. 237, no. 641,

pp. 37–72, 1952.

[11] J. Bard and I. Lauder, “How well does Turing’s theory of morphogenesis

work?,” Journal of Theoretical Biology, vol. 45, no. 2, pp. 501–531, 1974.

[12] J. B. L. Bard, “A model for generating aspects of zebra and other mammalian

coat patterns,” Journal of Theoretical Biology, vol. 93, no. 2, pp. 363–385, 1981.

[13] J. Murray, “On pattern formation mechanisms for lepidopteran wing patterns

and mammalian coat markings,” Philosophical Transactions of the Royal Society

B: Biological Sciences, vol. 295, no. 1078, pp. 473–496, 1981.

[14] H. Meinhardt, Models of Biological Pattern Formation, vol. 6. Academic Press

London, 1982.

[15] E. Dabelsteen, K. Buschard, S.-I. Hakomori, and W. W. Young, “Pattern of

distribution of blood group antigens on human epidermal cells during matu-

ration,” Journal of Investigative Dermatology, vol. 82, no. 1, pp. 13–17, 1984.

[16] G. Turk, “Generating textures on arbitrary surfaces using reaction-diffusion,”

SIGGRAPH Computer Graphics, vol. 25, no. 4, pp. 289–298, 1991.

[17] A. Witkin and M. Kass, “Reaction-diffusion textures,” SIGGRAPH Computer

Graphics, vol. 25, no. 4, pp. 299–308, 1991.

[18] P. Gray and S. Scott, “Autocatalytic reactions in the isothermal, continuous

stirred tank reactor: Oscillations and instabilities in the system A+ 2B → 3B;

B → C,” Chemical Engineering Science, vol. 39, no. 6, pp. 1087–1097, 1984.

[19] S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry and Engineering, vol. 272. Westview Press, 2001.

[20] K. Krishan, H. Kurtuldu, M. F. Schatz, M. Gameiro, K. Mischaikow, and

S. Madruga, “Homology and symmetry breaking in Rayleigh-Bénard convec-

tion: Experiments and simulations,” Physics of Fluids, vol. 19, no. 11, p. 117105,

2007.

[21] M. F. Gameiro, Topological Analysis of Patterns. PhD dissertation, 2005. School

of Mathematics, Georgia Institute of Technology.



References 51

[22] 2Chainz, “2 Chainz (hairweavekiller),” 2015. Available at http://instagram.

com/hairweavekiller/.

[23] S. Harker, “Chomp,” 2015. Available at http://chomp.rutgers.edu/.

[24] H. Edelsbrunner and J. Harer, “Persistent homology—A survey,” Contempo-

rary Mathematics, vol. 453, pp. 257–282, 2008.

[25] S. Weinberger, “What is... persistent homology?,” Notices AMS, vol. 58, no. 01,

pp. 36–39, 2011.

[26] P. Grunwald and P. Vitnyi, “Shannon information and Kolmogorov complex-

ity,” arXiv preprint cs/0410002, 2004.

[27] S. Rafler, “Generalization of Conway’s “Game of Life” to a continuous

domain—SmoothLife,” arXiv preprint arXiv:1111.1567, 2011. Video available

at https://youtu.be/KJe9H6qS82I.

http://instagram.com/hairweavekiller/
http://instagram.com/hairweavekiller/
http://chomp.rutgers.edu/
https://youtu.be/KJe9H6qS82I

	Introduction
	Chapter 1: Reaction-Diffusion Systems
	The Gray-Scott model
	Numerical simulation

	Chapter 2: Computational Homology
	Homology overview
	Prior work

	Cubical homology

	Chapter 3: Methods and Procedures
	Obtaining Betti numbers
	Thresholding
	Computational homology

	Calculating entropy

	Chapter 4: Results
	Entropy maps
	Transient states
	Domain size
	Other systems

	Conclusion
	Appendix A: Supplemental Math
	Extra definitions and theorems

	Appendix B: Code
	Gray-Scott simulation code
	Entropy calculation code

	References

