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Abstract

We studied the effect of shear forces in a two-dimensional fluid flow experimentally
and computationally by forcing fluid in a sinusoidal pattern known as Kolmogorov
flow. Both the experimental and numerical data show the expected qualitative change
in behavior, with the flow changing from the laminar solution to a lattice of interlock-
ing vortices as the Reynolds number is increased. Experimentally, we modeled the
flow by electromagnetically forcing a thin layer of fluid. We extracted information
about the flow using particle image velocimetry, and found the bifurcation to occur
at a critical Reynolds number of 85. This result agrees reasonably well with similar
experiments, which have yielded critical Reynolds numbers of 61 [1] and 70 [2]. Sig-
nificant error is caused by the friction between the working fluid and the bottom of
the tray. Numerically, we developed two codes, one time-independent and the other
time-dependent. Both successfully demonstrated the initial bifurcation. Using the
time-dependent code, we simulated the Kolmogorov flow in both a rigid box with no
slip boundary conditions, and in a periodic cell. From these simulations, we observed
the qualitative motion of the fluid, and created bifurcation diagrams, both of which
showed a strong correlation to the experimental data.





Introduction

Fluid dynamics is a vast and well-storied branch of physics that has progressed a
huge amount in the last century. In addition to physics, it is a field of interest for
both engineering and mathematics. Fluid dynamics encompasses both liquid and
gas flows, making it useful in many engineering problems, from aerodynamics to
fluid cooling mechanisms. The governing equations of fluid dynamical systems are
nonlinear, making them interesting and incredibly difficult mathematical problems,
with chaotic and turbulent solutions.

In this project I experimentally and computationally model 2-dimensional fluid
flows. While a 2-dimensional fluid cannot actually exist in our 3-dimensional universe,
solving 2-dimensional fluid dynamics problems can be surprisingly useful. Systems
such as Earth’s oceans and atmosphere, or just a thin layer of fluid in the lab can often
be accurately approximated as 2-dimensional systems owing to the fact that their
area is many times greater than their depth. I chose to work with a 2-dimensional
thin fluid layer because it is much easier to work with than a 3-dimensional system.
Experimentally, a 2-dimensional system enables me to place and view tracer particles
on the surface instead of mixed throughout the fluid. Computationally, 2-dimensional
systems are also far easier to model, requiring a simpler code, and significantly less
computational power. This allowed me to write a program that I could run on a
regular personal computer.

The system I worked with is called a 2-dimensional Kolmogorov flow. This system,
first studied by Soviet physicist and mathematician A. N. Kolmogorov, is defined by
a sinusoidal forcing pattern along one axis, and no forcing along the other. In an x-y
coordinate system, this is described by the equation

~f(x) = A sin (bx)ŷ, (1)

as shown by the vectors in Figure 1.1, where A is the amplitude of the forcing, b is
its spatial frequency.

This creates anti-parallel bands of flow, which exert a shear force on one another.
The magnitude of this shear is determined by the forcing strength and viscosity of the
fluid, which are both captured in the Reynolds number. The Reynolds number is a
constant that arises in the governing equations of fluid dynamics derived in Chapter
2. When the Navier-Stokes momentum equation is nondimensionalized, constants are
combined into a single value. Convention defines this as the inverse of the Reynolds
number, the independent variable in my experiment. Physically, the Reynolds Num-
ber represents the relative importance of fluid inertia and viscous dampening [1]. Low
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Reynolds numbers would be assigned to slow moving, viscous fluids like a pipe full of
maple syrup, while high Reynolds numbers would correspond to fast, turbulent flows.
As the Reynolds number increases, so does the shear force, resulting in a drastic,
qualitative change in the overall movement of the fluid, called a bifurcation. The
Reynolds number is a universal construct, and is essential to describing the behavior
of any fluid dynamical system.

In this experiment I am examining the bifurcations of the Kolmogorov system. As
mentioned above, a bifurcation point is a point where, while varying some parameter,
the system experiences some qualitative change of behavior [3]. An example of this
would be a beam snapping under too much stress, or a population exploding once
the number of predators is lowered below a critical value. These changes represent
a shift in the stable state of the system. Generally, when we observe a system, it is
either moving towards, or has arrived at its most stable form. Because of this, we can
describe the long term behavior of a system by studying its fixed points, points at
which the system’s behavior will stay fixed over time. Stable fixed points are points
where, after a small perturbation, the system will return to its initial state, like the
lowest point of a pendulum’s swing. Unstable fixed points are fixed points at which
a small perturbation will result in movement away from the fixed point, like a pencil
balanced on its point.

A bifurcation diagram allows us to visualize the behavior of a system as some
parameter is varied. These diagrams are simply plots of fixed points as a function
of the independent variable. Stable fixed points are represented by solid lines, while
unstable fixed points are represented as dotted lines.

An extremely simple example would be the mass on a rod example from [3].
Here, a mass can slide horizontally on a rigid rod. The mass is attached to a spring,
connecting it to a solid platform directly below it, as pictured in Figure 1. The
independent variable here is platform height, which can be raised or lowered. The
spring can be compressed or extended about some natural length, xc. With the
platform well below xc, the only fixed point for the mass is directly above the platform.
Any perturbation from this point will cause it to oscillate and eventually return to the
center. When the platform is raised to within a distance xc from the rod, the system
changes. Now, with the spring compressed, the point directly above the platform is
unstable. While the mass can be balanced at this point, any perturbation will cause
it to move outwards and eventually settle at one of the two new stable fixed points on
either side of the center. This is shown in Figure 1, along with a bifurcation diagram
for the system. This is called a supercritical pitchfork bifurcation similar to the one
we are looking for in the Kolmogorov system [1, 3, 2]. This bifurcation is defined by
the fact that at some critical value, a stable fixed point becomes unstable, spawning
two new stable fixed points on either side.

As stated above, the bifurcation diagram for Kolmogorov flow contains a super-
critical pitchfork, where the laminar solution become unstable. If Reynolds number
continues to increase, we get a Hopf bifurcation [4], turning from a steady flow to a
limit cycle. Here, the flow moves through a periodic pattern of fixed points, result-
ing in an oscillating lattice of vortices. These are fairly common types bifurcation
presented in [3]. The expected results I am using demonstrate these bifurcations
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Figure 1: An example bifurcation diagram for an over-damped pendulum with a rigid
rod. The x-axis is some arbitrary parameter that does not affect the fixed points, like
size or color of the mass, and the y-axis is angle θ. The pendulum is over-damped,
so it will not swing past its lowest point.

using several different experimental setups that simulate Kolmogorov flow. Each ex-
periment has frictional damping, a source of error that is difficult to account for,
which causes the points at which these bifurcations occur to vary from experiment to
experiment.

0.1 Some Numerical Background

New techniques for analyzing nonlinear systems paired with a few important techno-
logical developments have revolutionized fluid dynamics over the last century. Fluid
dynamical systems are usually difficult to solve analytically, so were effectively un-
solvable until computers became powerful enough to provide numerical solutions [5],
and experimental measuring tools were precise enough to provide an accurate model
of a fluid flow [6]. Below I provide some historical background and basic information
about both of these important developments.

The Navier-Stokes equations are the governing equations of fluid dynamics. These
equations are based off of conservation of mass, energy, and momentum and were
derived in the first half of the nineteenth century separately by M. Navier and G.
Stokes [5]. These equations were derived by applying these classical conservation
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laws to an infinitesimal volume of fluid. These equations are derived in Chapter 2,
Theory.

Computational Fluid Dynamics became a viable way to analyze fluid systems in
the mid 1960s [5]. At this time the Cold war was in full swing and a huge amount of
research was going into making better aerodynamics for both Intercontinental Ballistic
Missiles and space travel technology. Before this time, the only options were analytic
solutions, which were extremely rare due to the nonlinearity of the Navier-Stokes
equations, and physical tests, either outdoors or in giant wind tunnels, which were
difficult and impractical, especially to model things moving at supersonic speeds.
Numerical solutions on the other hand are limited only by the amount of information
we can input into the computational model and the amount of information a computer
can process, both of which have increased enormously over the last fifty years.

As part of my study, I developed two different programs in Mathematica to solve
an idealized 2-dimensional Kolmogorov flow system. The code is in Appendices A
and B, and an explanation of the techniques used can be found in Chapter 2.

0.2 Some Experimental Background

Experimental fluid dynamics faced similar issues. The principles of flow visualization
through particle tracking have been around since the early twentieth century, when
Ludwig Prandtl observed mica particles on the surface of a flowing fluid [6]. Although
this allowed him to visualize the patterns in a moving fluid, techniques for extracting
quantitative data did not emerge until much later. Advanced optics such as lasers and
fluorescent particles created bright and easily imaged particles. Better resolution and
high-speed cameras allowed these images to be accurately captured. Finally, better
computer software enabled huge amounts of this data to be analyzed simultaneously.
The Von Karman Institute in Brussels first developed these techniques in the early
1980s [6].

0.3 Format

This thesis has two main portions. The first is the experimental section, where I
applied forcing to a thin layer of fluid and used Particle Image Velocimetry to analyze
the resulting flow fields. The second portion is entirely computational. I worked
on codes in Mathematica to model the Kolmogorov system using several different
techniques. These two portions represent very different ways to deal with a nonlinear
system. Each method has strengths and weaknesses, and together should give a more
complete picture of Kolmogorov flow.

The main results I am looking for in both the experimental and numerical sections
is a qualitative picture of the bifurcation, with behavior matching those described
in [1], [7], and [4]. Once the qualitative behavior of the fluid is confirmed in the
numerical and experimental systems, I will look at my data more quantitatively. For
the experimental portion, I will calculate the Reynolds numbers that correspond to
different forcing amplitudes, and estimate the Reynolds number at which the system
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bifurcates. I can compare this to the results found in [1]. I will analyze the bifurcation
both experimentally and numerically, creating a bifurcation diagram for each method.
I will compare these diagrams, and classify the bifurcation as well as possible.

In Chapter 1, Experimental Methods, I describe my experimental setup and the
techniques I used in detail. I explain the techniques used in Particle Image Velocime-
try to quantitatively measure fluid flow, and describe the specific setup I used to
create these flows. Chapter 2 describes the governing equations and fluid dynamics
and computational methods that I used to simulate the experimental flow. I derive
the Navier-Stokes equations that govern the moving fluid, and explain how these are
integrated into a computer program and solved numerically. Chapter 3 describes the
results of both the experiment and simulations, and how the data generated in each
piece was analyzed. Finally, Chapter 4 summarizes the important results and sources
of error, and discusses possible extensions to expand and improve on this project.





Chapter 1

Experimental Methods

1.1 Experimental Concepts

Although 2-dimensional flows are impossible in nature, they can be modeled by thin
fluid layers, like our atmosphere which is much thinner in its vertical extent than in its
other two dimensions. For practical reasons, I am using a thin layer of fluid in a box.
This section describes a few basic concepts necessary for this experiment. First is the
forcing method. Some common ways to apply a force to a fluid are with pressure,
friction, and electromagnetism. Pressure is used mainly in experiments involving 3-
dimensional flows, such as the flow through a pipe. In the driven cavity problem,
a cavity full of fluid is driven by a moving boundary, which uses friction to drag
along the nearby fluid. The problem I am working with requires a more complicated,
sinusoidal forcing, described by Equation 1, so using an electromagnetic force is ideal.

The method used here is based on the Lorentz force. This is the basic electro-
magnetic principle that describes how a charged particle moving through a magnetic
field experiences a force equal to the cross product of its velocity and the magnetic
field. This is illustrated by the Lorentz equation. The current form of this equation
gives the force, ~F , acting on a moving charge distribution, and is written

~F = ~J × ~B. (1.1)

Here, ~J is the current density, a vector equal to the charge density times its
velocity, and ~B is the magnetic field vector. The direction of the force is easily found
by calculating the cross product or by using the right hand rule. From this equation, it
is clear that particles in a sinusoidal magnetic field pointing in the z-direction, shown
by the red and blue stripes in Figure 1.1, will yield a sinusoidal forcing pattern, shown
by the vector arrows, when a uniform sheet of current travels from left to right. The
force will in be in sinusoidal, anti-parallel stripes, as depicted in Figure 1.1, and
described by Equation 1.

In my computational model, the fluid layer can be made infinitely thin, and its
motion across the bottom of the tray frictionless. In reality, there is significant fric-
tion between the fluid and the bottom of the tray, making it difficult to match the
experiment to numerical data. One way to get around this is to put a layer of denser,
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Figure 1.1: A picture of the forcing pattern over the magnetic field. Blue represents
a magnetic field into the page, while red is field out of the page. The forcing pattern,
indicated by the arrows, is sinusoidal and represented by Equation 1.

hydrophobic liquid between the fluid and the tray, as done in [8]. This is important
if you are trying to match your experiment very closely to a numerical model.

1.2 Setup

The setup I used is based on the one described by Kelley and Ouellette [1]. It consists
of a tray containing a thin layer of electrolyte resting on a configuration of magnets.
Rows of magnets alternating in polarity will create a roughly sinusoidal magnetic
field. An electrical current is driven through the fluid perpendicular to the field,
yielding the desired forcing pattern. Figure 1.2 shows a diagram of this setup, the
main elements of which are described below.

To create the magnetic field, I used circular neodymium-iron-boron grade N52
magnets from K & J Magnetics. These magnets have a diameter of 12.7 mm and
a thickness of 3.18 mm. The manufacturer’s specifications list the magnetic field at
the surface to be 0.3309 T. The magnets are held in a grid made of two sheets of
3.15 mm thick acrylic. With our mechanist, Jay Ewing’s help, I laser cut circles into
the topmost sheet and epoxied the two sheets together, creating a magnet holding
grid. The center to center spacing between grid points is 19 mm. I then arranged the
magnets into the grid in stripes of alternating polarity, covering finished rows with
thin strips of painter’s tape to keep the magnets in place. The fluid tray was also
made using the laser cutter and sealant (entirely by Jay). The tray is 29.5 mm, much
larger than the magnet grid. While the size of the tray will affect the flow towards
the edges of the grid, I made sure to only observe the flow near the center of the tray,
where the boundary conditions will not be as important. The bottom was painted
black for better contrast with the particles I will use to image the flow. Two pieces of
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DC Power Supply

Copper Electrodes

Magnet Grid

Figure 1.2: The basic experiment plan. The magnets are arranged in rows of alternat-
ing polarity under the tray, and the copper electrodes are connected to a DC power
supply.

copper bent over opposite sides of the tray were used as electrodes, and connected to
a Tektronix PS280 DC Power Supply using alligator clips to drive a current through
the fluid layer. The experimental setup is shown in Figure 1.3.

The working fluid is a mixture of water, copper sulfate (to make it more conduc-
tive), and glycerol (to make it more viscous). Our solution is 10% CuSO4 by mass and
20% glycerol by volume as described in [1]. To get quantitative measurements out of
this setup, I needed to put tracer particles into the fluid, record their movements, and
analyze these recordings in Matlab. The particles that I used are S60 microscopic
glass bubbles from 3M. I recorded the motion of these particles using a Canon T5i
DSLR camera supported by a ring stand over the tray of fluid. I wrapped all reflective
surfaces above the fluid in black cloth to reduce any glare on the bottom of the tray.
The camera was switched to video mode, with all settings left at automatic, except
the standby function, which was turned off to stop it from interrupting the focusing
process, and the focusing, which was switched to manual. I recorded at a resolution
of 1920×1080 pixels, at 30 frames per second.

For my lighting setup, I used three 38cm × 38cm square white-light emitting diode
(LED) panels made by iOS Light, Venice, CA. These were arranged around the tray
as shown in Figure 1.3, connected in series and powered by another 12V DC power
supply, which can be seen to the left of Figure 1.3. This worked very well for the
particle setup I used. For recording at higher currents, and therefore higher particle
velocities, it is common to use strobed LEDs. I attempted to use a strobe set up
made of a powerful blue LED connected to a waveform generator. By flashing at the
same speed as the frame rate of the camera, the effective shutter speed of the camera
is reduced to the duration of the strobe flash. With a bright enough strobe, this is
a good way to get high resolution images, with less blur than a longer shutter speed
would give. I tried this method first, but had a lot of trouble getting the lighting
bright enough, and evenly distributed across the tray. I also ran into some problems
with the camera’s indexing. If the period of the strobe light is not perfectly lined up
with the frame rate of the camera, you get bands of doubly-exposed or unexposed
sections that travel up and down the screen. This is a result of how the camera
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records records each pixel, and makes for unusable data.

Light panels

Forcing power source

lighting power 
source

Leveling platform
Electrode

Tray and fluid

Camera

Setup in operation 

Figure 1.3: The experimental setup with key components labeled.

1.3 Data Collection

To collect data, I first made sure the grid of magnets was level using an adjustable
leveling platform. I then aligned the camera with the magnet grid to ensure that
the lines of magnets were parallel to the edges of the frame on the camera viewer.
I centered the camera on a (roughly) 8.5 cm by 13 cm section at the center of the
magnet grid, and used a level to make sure the camera was also level, pointing di-
rectly downwards. Next, I positioned the tray over the magnets, attached the copper
electrodes and connected the alligator clips from the electrodes to the power source.
After pouring in 450 mL of fluid, I measured the fluid depth at the center of the tray
using Pittsburgh sliding electronic precision calipers. I then seeded the fluid with
tracer particles by sprinkling them on top little by little, and then mixing until aver-
age particle spacing looked to be approximately 0.3 mm. Next, I used the camera’s
digital zoom to focus, zooming in and focusing for maximum particle resolution, and
zooming back out to the original sized window. The exact size of the window was
not important, as long as the final video held at least a few periods of the forcing
pattern, to get a full sample of the motion. Usually this turned out to be about 8
rows of magnets.

Next, I recorded the particles’ motion at different Reynolds numbers. I varied
the Reynolds numbers by changing the electrical current (since this is much easier
to adjust than the fluid’s viscosity). I turned on the current to 20 mA and began
recording. I then slowly turned to current up in intervals of 10 or 20 mA, giving the
flow one minute to settle into its new pattern. After the fluid had settled, I recorded
for an additional 5 seconds, noting the time on the camera recording and the current
coming out of the power source, and then raised the current again. I repeated this as
many times as possible, until the current source could not go any higher. This ended
up being at about 220 mA.
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This setup could be improved by using better cameras, light sources and fluores-
cent particles, but all of these things are expensive and not entirely necessary for the
type of results I am looking for.

1.4 PIV Methods

While creating the fluid flow that effectively mirrors what you want to measure is
difficult, extracting quantitative data from the flow also poses a challenge.

There are a few different adjustable parameters we can change in a particle imag-
ing setup to get the best possible results. Different flow systems require different
conditions for particle-based data collection to be effective. Some important param-
eters include particle size, particle material, density of particles within the fluid, the
particles’ effectiveness at scattering light, as well as the lighting itself and the quality
of the recording device.

Luckily, in a 2-dimensional fluid flow, a particles’ material is much less of a concern,
making it much easier to find good particles. This is because we are only tracking
the surface of the flow, so as long as the particles are made of a material that is less
dense than the fluid, they will stay on the surface.

In all particle tracking systems, smaller particles, better image quality, and better
lighting with more luminescent particles result in more accurate tracking. While small
particles more faithfully follow a flow without interfering with the motion of the fluid
[6], particles also must be big enough to show up on camera. With regards to lighting
and image quality, as explained above, these things can definitely always be improved
through more expensive cameras and brighter lighting to achieve more precise results.

The final criterion for particle tracking, density of particles within the fluid, de-
pends on the tracking technique being used. In traditional particle tracking, the
trajectories of individual particles are followed. The drawback of this method is that
it requires a very high image frame rate, low velocity, or low particle density. This is
because individual particles are indistinguishable. If a particle moves too far from its
initial position between frames, the tracking algorithm has no way of distinguishing it
from another particle that moved towards its previous location. This means particles
must be sparse and slow, resulting in a less well-resolved velocity field.

Particle Image Velocimetry, or PIV, is a newer method that allows us to use
a higher particle density than traditional particle tracking methods. PIV software
divides each image into tiny “interrogation windows,” each consisting of a tiny group
of particles. The unique distribution of particles in each window is distinguishable,
and moves fairly homogeneously between frames. PIV software tracks each of these
configurations using statistical methods to determine the overall motion of the fluid.

PIV Statistical Methods

The statistical methods themselves can be pretty complex. A complete description
can be found in the third chapter of [6]. Here I explain a very simplified version,
covering the basic concepts and techniques a PIV system uses. This technique involves
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Frame 1 Frame 2 Frame 2 shifted

Figure 1.4: A comparison of interrogation windows in two adjacent frames. Black dots
represent particles (in reality particles would be white spots on a dark background).
Initially the PIV software shifts the interrogation window to track the overall motion
of the window. The leftmost image shows frame two shifted left, leading to some
correlation (the bottom two points).

first assigning a value to each pixel according to its brightness. In the gray-scale
input image, lighter pixels are given higher numerical values, to create an image
intensity field. The program then breaks the entire area being analyzed down into
“interrogation windows”, smaller boxes which it will look for in adjacent frames. The
program then attempts to pick out the same pattern in the next frame, shifting and
warping the original interrogation window to try to find the best correlation with the
same window in the new frame. This process is described in greater detail below.

The first thing a PIV program does is create an intensity field. In theory, this
should be fairly simple. The computer would just need to pick out two different
gradient values; the infinitely bright, white particles on a black background. In reality,
there is a lot more to this. To mathematically represent an intensity distribution, a
program must take into account both the input image, and the point spread function.
The point spread function is the function that describes how a single point spreads
out when imaged. For an ideal, well focused lens, the point spread function is the Airy
function [6], which looks similar to (and is commonly approximated as) a Gaussian
function. PIV software can also take into account defects in the lens and in the image,
like scratches and reflections in the tray. I tried to minimize these defects, but did
not worry about tailoring the software specifically to my experiment, since the error
from these small defects was not significant compared to errors from other aspects of
my setup.

After creating an image intensity field, the PIV program needs to create the
cross-correlation function. In an extremely steady flow, there would be no warping
of interrogation windows. Each window would move along, with the internal particle
configuration staying the same from frame to frame. This is obviously not the case,
but some correlation can be found simply by shifting the window around its previous
location. This is depicted in Figure 1.4.

The numerical method for actually determining the correlation between two win-
dows involves multiplying their intensity fields at each point, and summing over the
entire window. One window is then shifted and the process repeated, yielding a corre-
lation value for each shift. This is pretty effective, since configurations in which more
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high intensity values (particles) from two windows overlap will have larger numbers
being multiplied together, and therefore will yield higher correlations. The end result
of this shifting around is a 2-dimensional grid, with each discrete point representing a
single pixel shift. The value associated with each point represents the cross-correlation
of the window in the new frame shifted by the given amount, with the interrogation
window from the original frame. This can be visualized as a 3-dimensional graph,
with spikes protruding from a plane. Taller spikes represent better correlation for a
given shift. A possible set of peaks is shown in Figure 1.5.

Figure 1.5: A hypothetical plot of cross correlations. The peak corresponds to a good
correlation, revealing the shift of an interrogation window.

From here, the program is able to guess the general motion of the window, ignoring
any shear or distortion. By comparing the general motion of nearby windows, the
software can estimate how each window is distorted. This allows it to compute a
distortion function. A rough sketch of this is shown in Figure 1.6.

Shift for some correlation 
calculated at each frameNearby frames observed Distortion function created

Figure 1.6: The black squares represent interrogation windows, three of which contain
configurations of particles. The left image shows the movement of three adjacent
windows from frame 1 (gray) to frame 2 (black). The center image show general
shift of each window observed, as explained above. The rightmost image shows the
resulting distortion function for the center window.
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With general shift and distortion roughly figured out, the PIV program can put
these together, applying both distortion and shift to the new interrogation window
in the second frame, and checking for correlation. This process can be repeated
for multiple iterations until the correlation peak reaches a certain threshold. A good
correlation, after shift and distortion, is depicted in Figure 1.7. The plot of correlation
peaks for this idealized example (or any good correlation) would look like a single tall
peak, with little noise around it. Because the frame can only move in discrete shifts
(of one pixel), a plot of correlation peaks may have a high peak made up of a set of
adjacent, different sized peaks. To find the actual movement, the software fits the
correlation peaks to a Gaussian, whose maximum provides a more exact result, with
sub pixel resolution.

Frame 1 Frame 2 Frame 2 shifted Frame 2 shifed and distoreted

Figure 1.7: An idealized depiction of two consecutive frames. The shift is applied
to frame 2 in the third figure and the distortion in the fourth, resulting in a perfect
correlation.

The specific program we used is called Prana, a free, open-source PIV package
for Matlab. This can be downloaded at http://sourceforge.net/projects/qi-tools/files/.
This program was originally developed at the AEThER Laboratory at Virginia Tech.
It accepts consecutive gray-scale frames of a video, and returns matrices of x and y
velocity values. To get our raw videos into a form that the software would accept,
I cropped each video to a 2-3 second section for each driving current, and wrote a
simple Mathematica code that extracts, gray-scales, and exports the first few frames.
We then ran sets of frames through the code, each of which took a few hours total.
We did two passes, the first with larger interrogation windows, 32 pixels by 32 pixels,
the second with smaller 24 by 24 windows. The two pass method allows the program
to narrow down the motion even further. It was important not to go below 24 by
24 pixels, since it is important to have at least 10 particles per window, to give each
a unique signature. Prana also eliminates spurious vectors that sometimes occur by
comparing them to the median of neighboring vectors and looking for outliers, using
the technique presented in [9]. Finally, the resulting vector field is smoothed out with
a Gaussian filter.



Chapter 2

Theory

2.1 The Navier-Stokes Equations

The Navier-Stokes equations are the governing equations of fluid dynamics. They
were developed independently by M. Navier and G. Stokes near the beginning of the
19th century [5]. These equations are essential to understanding fluid dynamics and
are at the very heart of the code. The derivation presented here loosely follows the
derivation found in the second chapter of [5].

The governing equations of fluid dynamics are based on three fundamental prin-
ciples. These are the conservation of mass, the conservation of momentum, and the
conservation of energy. I am not including the derivation for the energy equation,
since it is not necessary for my analysis. The Navier-Stokes equations take the place
of Newton’s laws for fluid dynamics, and are based on applying Newton’s second law
to an infinitesimal fluid element.

2.1.1 Tools and concepts

The infinitesimal fluid element is the first concept we will need to derive and under-
stand these equations. For rigid bodies, a force on one side moves the entire body
as a single unit. This is obviously not the case with fluids. The way we can deal
with nonrigid materials is to divide them into lots of minuscule boxes. There are two
different ways to do this.

The first method looks at fluid using a finite control volume. For this method, we
are looking at a tiny control volume fixed in space, with fluid flowing freely through
it. The second method uses the infinitesimal fluid element. Here, we are looking at a
tiny box of fluid as it flows around in time and space. I will be primarily discussing
the infinitesimal fluid element method, but the distinction between the two will be
important later.

The next tool we will need is the substantial derivative. This is really just the
full derivative (as opposed to the partial derivative). This is the derivative we would
use for the infinitesimal fluid element. For one of these chunks of fluid, as it moves
through our stationary reference frame, its position (x,y), and time are all changing.
This means that any of its properties, such as pressure, temperature, or x-velocity
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(each functions of position and time) moving over the time interval [t1, t2] can be
written

T (x1, y1, t1) −→ T (x2, y2, t2), (2.1)

where the T is temperature, x1 and y1 are the x and y coordinates at t1, and x2 and
y2 are the x and y coordinates at t2. From here, we can write a first order Taylor
approximation for point 2 using point 1.

T2 = T1 + (t2 − t1)

(
∂T

∂t

)∣∣∣∣
x1,y1,t1

+ (x2 − x1)

(
∂T

∂x

)∣∣∣∣
x1,y1,t1

+ (y2 − y1)

(
∂T

∂y

)∣∣∣∣
x1,y1,t1

.

(2.2)
Rearranging this yields,

T2 − T1

t2 − t1
=

(
∂T

∂t

)∣∣∣∣
x1,y1,t1

+
x2 − x1

t2 − t1

(
∂T

∂x

)∣∣∣∣
x1,y1,t1

+
y2 − y1

t2 − t1

(
∂T

∂y

)∣∣∣∣
x1,y1,t1

. (2.3)

Now, taking the limit as ∆t = t2 − t1 goes to zero yields

DT

Dt
=
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
, (2.4)

where D
Dt

defines the substantial derivative. This could be extended into as many
dimensions as we need. My thesis only deals with 2, but it is easy to write the
substantial derivative more generally as

D

Dt
≡ ∂

∂t
+
(
~v · ~∇

)
. (2.5)

This is enormously useful for looking at properties of the infinitesimal fluid ele-
ment. Besides being used to find the element’s pressure and temperature as it moves
through time, the substantial derivative is what we need to define the acceleration
of the infinitesimal fluid element. For a moving fluid element, the acceleration in the
x-direction can be written

ax =
Dvx
Dt

. (2.6)

This follows from the definition of the substantial derivative, since the acceleration of
a box of fluid is the rate of change of velocity for our fluid element moving through
time and space.

2.1.2 Conservation of mass

With the concepts and tools above we can start applying some basic physics principles
to fluids. First, we will deal with conservation of mass. To express this principle, I
am using the first method for looking at fluid elements; the finite control volume.
Both methods could yield useful equations, but the tiny box fixed in space with fluid
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passing through it will give the conservative form of the mass continuity equation,
which is the form that we will need later.

So, picturing a tiny box fixed within the fluid, assuming mass is conserved allows
me to state that the rate of change of the mass within the box will be equal to the
amount of mass exiting or entering the box through the surface. This must be the
case, since there are no magical sources or sinks of mass inside our tiny cube.

When written mathematically, the change in mass of the cube is

δMinside = − ∂

∂t

∫
V

ρ dV (2.7)

and the flow of mass through its surface is

δMthrough surface =

∮
V

ρ~v · ~dS. (2.8)

Here, ~v is the velocity vector, with a component in each direction at each point
in space, and ρ is the density of the fluid, with a scalar value at each point in space.
In Equation 2.7, we are integrating over the volume of our box of fluid, with dV =
dxdydz. In 2.8, we are integrating over the closed surface of the control volume, with
the directional area element ~dS pointing perpendicular out of each face. Equation
2.8 can be rewritten as a volume integral using the vector divergence theorem;∮

V

ρ~v · ~dS =

∫
V

~∇ · (ρ~v) dV. (2.9)

We can also rewrite Equation 2.7 as

− ∂

∂t

∫
V

ρ dV = −
∫
V

∂ρ

∂t
dV, (2.10)

since the volume of the box is fixed in time. Setting equations 2.10 and 2.9 equal to
each other by the logic explained above, we can rearrange, and combine the volume
integrals to yield; ∫

V

[
∂ρ

∂t
+ ~∇ · (ρ~v)

]
dV = 0. (2.11)

This is essentially saying that the change of mass within some volume is equal to
the total divergence of the mass flux inside that volume. Since Equation 2.11 must
hold for any choice of volume, it is clear that

∂ρ

∂t
+ ~∇ · (ρ~v) = 0. (2.12)

This is the general form of the mass continuity equation but it is not entirely nec-
essary for our system. Because our fluid moves at relatively slow speeds at relatively
low pressures, we can assume it is incompressible, meaning that its density, ρ is con-
stant in both time and space. This simplifies Equation 2.12 into the incompressibility
condition:

~∇ · ~v = 0. (2.13)
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2.1.3 Conservation of momentum

While mass conservation is considered a Navier-Stokes equation, the name usually
refers to the Navier-Stokes momentum equation. This is the equation at the heart of
my computer code, and is derived by applying Newton’s Second Law to the infinites-
imal moving fluid element. Applying Newton’s law in just the x-direction for now
yields

Fx = max. (2.14)

Here, Fx is the total force in the x-direction, m is the mass of the fluid element, and
ax is the acceleration of the fluid element in the x-direction.

Dealing with only the left hand side for now, the total force accelerating a fluid ele-
ment in the x-direction will be equal to the body force on the element plus the surface
forces from the flow around it. The body force is the force pulling on each molecule of
the fluid. This could be something like gravity, pulling down on each particle, or an
electromagnetic force like the one in my experiment. This force affects each particle
regardless of the motion of other particles around it and can be represented (in 2
dimensions) as force per unit area (fx), a vector with the x-component

Fx, body =

∫
V

fx dxdy. (2.15)

The surface force can be further divided into shear, normal, and pressure surface
forces. A normal surface force in the x-direction would be a force acting on the
x = 0 and x = dx faces of the element as depicted in Figure 2.1 (the y-z plane
for a 3-dimensional fluid element). This force would be perpendicular to the face,
pushing or pulling the box of fluid. In contrast, the x-component of shear will be a
force in the x-direction acting on the y = 0 and y = dy faces of the element (the
x-y and x-z planes of a 3-dimensional fluid element) through viscous friction. This
force is shown in Figure 2.1, with the y = 0 arrow pointing left and the y = dx
arrow pointing right. The directions are just to follow the convention that a positive
velocity gradient increases in the positive direction. This creates a shear force in
which the top is moving to the right and the bottom is moving left relative to overall
motion of the fluid element. Finally, the pressure surface force pushes inwards on the
fluid element from both sides. All of these forces are shown for a 2-dimensional fluid
element in Figure 2.1.

Notice that each of the surface forces above acts on opposite sides of the fluid
element, so naturally the net surface force will depend on the difference between the
two sides, and therefore the gradient of pressure and velocity in our fluid.

Combining all of these forces, the net surface force per volume in the x-direction
can be written
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Figure 2.1: A diagram of the forces on an infinitesimal 2-dimensional fluid element.

Net surface force in the x direction =

[
p−

(
p+

∂p

∂x
dx

)]
dy︸ ︷︷ ︸

pressure difference

+

[(
τxx +

∂τxx
∂x

dx

)
− τxx

]
dy︸ ︷︷ ︸

normal stress difference

+

[(
τyx +

∂τyx
∂y

dy

)
− τyx

]
dx︸ ︷︷ ︸

shear stress difference

.

Where τij is the force in the j direction on the surface perpendicular to the i axis.
After canceling and combining with the body force, this becomes

Fx =

[
−∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+ fx

]
dxdy. (2.16)

Combining this, Equation 2.6 and the mass per volume of a 2-dimensional infinites-
imal fluid element, m = ρ dxdy, Newton’s second law (in the x-direction) becomes

−∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+ fx︸ ︷︷ ︸
~F per volume

= ρ
Dvx
Dt︸ ︷︷ ︸

m~a per volume

. (2.17)

This is the x-component of Navier-Stokes momentum equation in conservative
form, which will govern the motion of the fluid in my setup. All that is left now is
to define the τ terms and then apply some assumptions we can make about our flow.
This will allow us to rearrange the equation into an easier to use form.

2.1.4 Assumptions and rearranging

The first assumption we can make is that the fluid that I am using is Newtonian.
This means the shear stress is proportional to the velocity gradient. For these fluids,
Stokes found the τ elements are
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τxx = λ~∇ · ~v + 2µ
∂vx
∂x

(2.18)

and

τyx = µ
∂vy
∂x

+ µ
∂vx
∂y

(2.19)

[5], where µ is a constant known as the viscosity of the fluid and λ is the bulk viscosity
coefficient, which often stated to be −2

3
µ, and will drop out of our solution when we

enforce incompressibility.
Because we can assume the fluid to be incompressible, Equation 2.13 states that

~∇ · ~v = 0. This eliminates the first part of the τxx term, reducing it to τxx = 2µ∂vx
∂x

.
Taking the derivatives of these terms necessary for Equation 2.17 yields

∂τxx
∂x

+
∂τyx
∂y

= 2µ
∂2vx
∂x2

+ µ
∂2vy
∂x∂y

+ µ
∂2vx
∂y2

, (2.20)

which can be rearranged and rewritten as

µ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
+ µ

∂

∂x

(
∂vx
∂x

+
∂vy
∂y

)
= µ∇2vx + µ

∂

∂x

(
~∇ · ~v

)
. (2.21)

Again, the divergence term can be eliminated by enforcing incompressibility, leaving
only the Laplacian term.

Plugging equations 2.5 and 2.21 into Equation 2.17, and dividing by density, ρ,
gives

∂vx
∂t

+ (~v · ~∇)vx = −1

ρ

∂p

∂x
+ ν∇2vx +

1

ρ
fx, (2.22)

where ν is the kinematic viscosity, equal to µ
ρ
. Finally, this can be applied to each

dimension of vector ~v simultaneously by writing it as

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
∇p+ ν∇2~v +

1

ρ
~f, (2.23)

the final form of the Navier-Stokes momentum equation. The last thing we have to
do to make this equation usable in our code is to make it unitless through nondimen-
sionalization. To do this, each variable will be rewritten according to scales that are
intrinsically part of the Kolmogorov system. The length scale will be the wavelength
of the sinusoidal forcing. Time scales will be determined by the velocities of the fluid,
(U) using U = length

time
, which in turn will allow us to determine mass using the viscosity

(µ) using µ = mass
length time

. These scales can be combined to create the pressure and

density scales from p = mass
length time2

and ρ = mass
length3 (here I am using 3-dimensional units

for familiarity). Defining the nondimensional variables v = v′ L
T

, x = x′L, t = t′T ,

p = p′ M
LT 2 , ρ = M

L3 , ∇ = ∇′ 1
L

and ν = ν ′L
2

T
, where L is the length scale, M the mass
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scale, and T the time scale. Also note that ~f is force per volume, so ~f = ~f ′ M
T 2L2 .

With these new nondimensionalized terms, 2.23 becomes(
L

T 2

)
∂~v′

∂t′
+

(
L

T 2

)
(~v′ · ∇′)~v′ = −

(
L

T 2

)
∇′p′ +

(
L

T 2

)
ν ′∇′2~v′ +

(
L

T 2

)
~f ′. (2.24)

Dividing through by L
T 2 , cancels all dimensions, leaving the flow parameter ν ′,

which we will denote as one over the Reynolds number, giving the nondimensionalized
Navier-Stokes equation:

∂~v′

∂t′
+ (~v′ · ∇′)~v′ = −∇′p′ +

(
1

Re

)
∇′2~v′ + ~f ′, (2.25)

The Reynolds number is unitless, and can be rewritten in terms of our scale param-
eters as ν

UL
, a unitless quantity which compares inertial and viscous effects.

2.2 Computational Methods

I am simulating 2-dimensional Kolmogorov flow using two different programs in Math-
ematica. The first is a time-independent code, meaning that it assumes the system
is not changing in time. For this I started from a code posted on the Wolfram Blog,
[10]. The second method does not assume time independence. It begins with no flow
at all, and calculates the flow at each time-step for an arbitrary number of time-steps.
For this code, I followed the methods from the University of Michigan’s Computa-
tional Fluid Dynamics I course from 2001 [11], in which they wrote a time-dependent
driven cavity flow solver in Matlab. Driven cavity flow is a common fluid dynamics
problem in which an enclosed cavity of fluid is being driven by a moving boundary.
It was extremely helpful to follow a recipe I knew would work, since these codes (the
time-dependent ones especially) can be very temperamental and can easily become
unstable, yielding impossibly huge results. Below, I explain the methods required to
write each code.

2.2.1 Discretization and finite difference approximations

In order to get a computer to simulate a fluid dynamics problem, there are a few
concepts that we need. These methods will allow the computer to approximate and
solve complex functions to an arbitrary degree of accuracy. Firstly, discretization is
a method around which all of my computation is based. The Navier-Stokes equation
is extremely hard to solve analytically, except in some special cases, so in order to
solve it on our 2-dimensional surface, we break the surface up into a grid of discrete
points and solve it numerically. More points will give an answer of higher resolution,
but will make the code more computationally demanding. The positions on the grid
are represented as an n× n matrix, at each of which the equation will be solved.

The next tool that I am using is the finite difference approximation for derivatives.
In the most basic sense, a derivative is the slope of a function at a single point. To
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find this, we can use a Taylor expansion to approximate the value of a function f at
a point just past x0,

f(x0 + dx) = f(x0) +
df

dx

∣∣∣∣
x0

dx+O(dx2). (2.26)

From this we can approximate the derivative at x0 as

df

dx

∣∣∣∣
x0

≈ f(x0 + dx)− f(x0)

dx
. (2.27)

Since any continuous function can be represented by a Taylor series to arbitrary
accuracy, we can extend these finite difference approximations out to be as accurate
as needed. This process for approximating derivatives is called the finite difference
method. Generally, the first order approximation is fine. We can use this to calculate
first and second partial derivatives in two dimensions based solely off of nearby points.
On our 2-dimensional grid, dx will be our grid spacing. Ignoring higher order terms,
the finite difference approximations can be written as

∂fi,j
∂x
≈ fi+1,j − fi,j

dx
(2.28)

and
∂2fi,j
∂x2

≈
(
∂fi+1,j

∂x
− ∂fi,j

∂x

)
1

dx
=
fi+1,j − 2fi,j + fi−1,j

dx2
(2.29)

where fi,j represents f for the grid point at the in the ith column (x-coordinate) and
the jth row (y-coordinate). Note that the second derivative is essentially the slope
of the slopes on either side of x0. The first derivative can easily be extended out to
second order accuracy by averaging the derivatives on either side of x0, making it
second order accurate;

∂fi,j
∂x
≈ fi+1,j − fi−1,j

2dx
. (2.30)

These can be changed to y partials, or any other partial, by modifying the index
associated with that variable (j for the y partial, instead of i). Equation 2.30 is

called the midpoint formulation of
∂fi,j
∂x

, since it finds this derivative using the values
on either side of it. Equation 2.28 would be considered an endpoint approximation,
since it approximates the derivative at a point using only points to one side of it.
Approximations can be made to arbitrary accuracy for both midpoint and endpoint
approximations.

For the time-independent code, I extended the accuracy out to fourth order terms
in space using [12], which contains an algorithm to find the fourth order approxi-
mations, and a table of fourth order weights. For the time-dependent code, which
is much more computationally intensive, I left it at first and second order, as is the
standard procedure [13, 11, 14].

One final thing to mention is how points at the boundaries of the grid are dealt
with. To create solid boundary walls like those at the edges of our experimental tray,
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we would enforce a no-slip boundary condition. This means the points at the bound-
ary are held fixed in space, with velocities set to zero. This accurately approximates a
realistic solid boundary, as the adhesive forces holding molecules touching a boundary
will force them to move at the same speed.

2.2.2 The time-independent solver

The first method I looked at to solve my system was a time-independent solver. This
method relies on the assumption that the flow has reached a steady solution that
is not changing in time. For this code, I modified the code from [10]. The original
code was designed to solve the 2-dimensional driven cavity problem. To make it
representative of Kolmogorov flow, I fixed the moving (driving) boundary so that
it was stationary, and added a forcing term at each point on the grid. The forcing
term I used is the one from Equation 1, which defines Kolmogorov flow, but it would
be simple change this to any desired forcing. I also generated my own fourth order
differential matrices, extending the ones from [13] out from second order and using
the appropriate endpoint approximations on the boundaries, instead of using a pre-
programmed Mathematica function. This code can be found in Appendix A.

The code works by discretizing the area into an n×n grid of arbitrary resolution.
Each grid-point holds a unique x and y velocity value, and a pressure value in a
stationary reference frame. These variables are written as a single n2 long vector of
variables, which can be re-fitted onto the grid by applying an indexing function [13];

g(i, j) = (j − 1)n+ i. (2.31)

The finite difference derivatives expressed above are written at each point, making
it a linear combination of grid points around it. This means that for each point,
the derivative operator can be written as an n2 long vector, with finite difference
coefficients attached to the grid points (put into vector form using Equation 2.31)
around the point of interest. Taking the dot product of this n2 long vector and an n2

vector of variables on the grid will yield the derivative at that point. For example,
the vector for a finite difference derivative in x at point p dotted with the x-velocity
vector would yield ∂vx

∂x
|p.

To find the derivative at every point, we create an n2 long derivative vector at
for each of the n2 points, and combine them into an n2 × n2 derivative operator
matrix. These operators act on a vector of variables through matrix multiplication,
resulting in an n2 vector of derivatives, which can then be indexed to an n × n grid
of derivative values. The code I wrote (Appendix A) generates fourth-order accurate
first and second derivative operator matrices, using fourth order accurate midpoint
formulas [12] for the points in the bulk of the fluid, and the appropriate endpoint
formulas near the edges. This makes finding derivatives on a discrete grid into the
matrix problem below;

Ax ~vx = ~ax, (2.32)

where ~vx is the vector of x-velocities at each point, length n2, Ax is the n2 × n2

x-derivative operator matrix, and ~ax is a vector of ∂vx
∂x

values, also length n2.
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Since even at fourth order accuracy each derivative vector only has 5 terms [12],
the entire matrix Dx will only have 5×n2 of the n4 terms be non-zero. This means it
will be a “sparse” matrix, and allows us to use the SparseArray command to create
them, and some simplified techniques to deal with them.

Using these derivative approximations and assuming the flow does not change in
time, the Navier-Stokes equation becomes an enormous set of solvable linear algebra
equations.

Expanding the nondimensionalized Navier-Stokes equation, (Equation 2.25), the
change in x-velocity with respect to time can be written

−∂vx
∂t

= vx

(
∂

∂x
vx

)
+ vy

(
∂

∂y
vx

)
+

(
∂

∂x
p

)
− 1

Re

(
∂2

∂x2
vx +

∂2

∂y2
vx

)
, (2.33)

with an analogous equation for ∂vx
∂t

. Here Re is the Reynolds number, defined earlier,
vx, vy and p are n2 vectors representing x and y velocities and pressure at each point
on the n × n grid, and the partial derivatives are given by the n2 × n2 matrices
described above.

For a steady solution, −∂vx
∂t

= 0. This means we are essentially finding the root
(zeros) of a huge system of linear algebraic equations represented by the right hand
side of the equation above.

After defining a unique variable at each grid point and creating the differential
matrices, Equation 2.33 is defined. The boundary variables are then set to 0, to
simulate the no-slip walls of the container. Finally, the roots are found using a
built in Mathematica FindRoot function. The resulting values, vx, vy, and p can be
plotted either as scalars on a grid in a contour plot, combined to create a vector field,
or plotted in a line integral convolution, as explained in the results section.

2.2.3 The time-dependent solver

As the driving is increased, the laminar solution to the Kolmogorov flow loses stabil-
ity and gives way to a vortex pattern [1, 2]. This pattern is initially steady in time,
so there a time-independent code works just fine. As explained in the Introduction,
Kolmogorov flow’s initial bifurcation from its steady, laminar state resembles a super-
critical pitchfork bifurcation [2], where the laminar flow becomes unsteady, and a new
flow pattern replaces it as the stable state of the system. At higher fluid velocities,
this steady pattern gives way to periodic and potentially chaotic flows [4]. At this
point the time-independent code becomes ineffective, and will give incorrect results.
The technique above becomes vastly more complex and computationally expensive
when we add in a temporal dimension. I wrote a time-dependent code using methods
described in [5], [1], and [11].

First, I need to the simplify the Navier-Stokes momentum equation into a form
that is easier to deal with. By taking the curl of the entire equation, I can eliminate
the pressure term, since the curl of a gradient is always zero. To simplify the result I
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can define vorticity as

~ω = ~∇× ~v =

(
∂vy
∂x
− ∂vx

∂y

)
ẑ, (2.34)

which is a vector, but points only in the ẑ direction for flow confined to the x,y plane.
After taking the curl, the nondimensionalized Navier-Stokes equation becomes

∂~ω

∂t
+ (~v · ~∇)~ω − (~ω · ~∇)~v = Re−1~∇2~ω + (~∇× ~f). (2.35)

To simplify further, we can define the stream function ψ as

vx =
∂ψ

∂y
(2.36)

and

vy = −∂ψ
∂x

. (2.37)

The physical meaning of the stream function is like a path that a moving infinites-
imal piece of fluid will follow. Isocontours of ψ act like flow “rails”, where a particle
riding on top of the fluid follows a path of constant ψ.

Now, we can rewrite the momentum Navier-Stokes equation in terms of only
vorticity and stream functions. Plugging in the stream function, the third term on
the left hand side of Equation 2.35 becomes

(~ω · ~∇)~v =

(
∂vy
∂x
− ∂vx

∂y

)
∂

∂z
~v = 0, (2.38)

since ~v does not depend on z. Inserting the stream function into the rest of the
Navier-Stokes equation yields

∂~ω

∂t
+
∂ψ

∂y

∂~ω

∂x
− ∂ψ

∂x

∂~ω

∂y
= Re−1~∇2~ω + ~f∇, (2.39)

where I have expanded out the second term on the left hand side of Equation 2.35 in
terms of the stream function, and defined a new forcing term ~f∇ as (~∇× ~f). Changing
the Navier-Stokes equation into this form is advantageous because we eliminated the
pressure term. Now instead of having vx, vy, and p as variables, we only have ~ω and
ψ. While ~ω is technically a vector, for 2-dimensional flow, it points exclusively in the
ẑ direction, and so can be treated like a scalar.

From here the problem breaks down into a few different steps. For each time-
step, first we find the stream function from the vorticity calculated in the previous
time-step, then we find the updated vorticity function.

Updating the stream function using SOR

Note that from equations 2.34, 2.36, and 2.37, we can write the vorticity as

~ω =

(
−∂

2ψ

∂x2
− ∂2ψ

∂y2

)
ẑ = Aψ, (2.40)



26 Chapter 2. Theory

so we can get ψ from a known ~ω. This is an example of an elliptic equation, and is
the governing equation of subsonic, incompressible flows [5, pp 84–85].

Rewriting this using finite difference second derivatives as in Equation 2.29 yields

ωi,j = −ψi+1,j − 2ψi,j + ψi−1,j

dx2
− ψi,j−1 − 2ψi,j + ψi,j−1

dy2
. (2.41)

Assuming an evenly spaced grid (dx = dy) we can combine terms to get

ωi,jdx
2 = −ψi+1,j − ψi−1,j − ψi,j−1 − ψi,j−1 + 4ψi,j. (2.42)

As in the time-independent section, we are solving a large system of linear equa-
tions. Like before, the finite difference derivative matrices are sparse. Unlike last
time, we need to solve this problem many times (once per time step), so it is much
faster to use an iterative method called successive over-relaxation, or SOR.

Successive over-relaxation is an iterative method for solving linear systems of equa-
tions. Mathematica’s LinearSolve or FindRoot functions solve systems of equations
by exact methods, such as Gaussian elimination. While these would still work, they
are much slower than iterative methods, which can be incredibly fast, but do not
find exact solutions. Iterative methods make an initial guess and iterate, quickly
converging on the solution until it is within some specified accuracy.

As explained in [13, pp 279–281], the basic method here is to decompose A from
Equation 2.40 into three more easily invertible matrices; a matrix D containing only
elements along the diagonal of A, the strictly upper triangular matrix U contain-
ing only elements above the diagonal, and a lower triangular matrix L, containing
elements below the diagonal.

In this specific iterative method, the matrix is updated using

(D− βL)ψm+1 = ((1− β)D + βU)ψm + β(ωdx2) (2.43)

[13], where ψ and ω are n2 long vectors, representing each grid point indexed using
Equation 2.31, and D, U, and L are all n2×n2 square matrices. In Equation 2.43, m
represents the iteration number. Finally, β is the weighting term, which ensures the
solutions actually converge, and is set between 1 and 2 for SOR. For a single one of
the linear equations shown in Equation 2.44, it is clear that point ψi,j will fall along
the diagonal of A. From the indexing function, Equation 2.31, it is also clear that
ψi+1,j and ψi,j+1 will be located to the right of the diagonal, and therefore fall in the
upper triangular matrix, while ψi−1,j and ψi,j−1 will be to the left, and therefore fall
in the lower. 

[. . . A(i,j),(i,j) . . . . . .]




...
ψi,j

...

...

 = ωi,jdx
2 (2.44)

This means we can rewrite the SOR iteration much more simply as

4ψm+1
i,j − βψm+1

i−1,j − βψm+1
i,j−1 = (1− β)4ψmi,j + βψmi+1,j + βψmi,j+1 + βdx2ωmi,j. (2.45)
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which, solving for ψm+1
i,j can be rearranged into

ψm+1
i,j = β

1

4

(
ψm+1
i−1,j + ψm+1

i,j−1 + ψmi+1,j + ψmi,j+1 + ωmi,jdx
2
)

+ (1− β)ψmi,j. (2.46)

Since the stream functions are being solved in order, for the ψm+1
i,j step, ψm+1

i−1,j and

ψm+1
i,j−1 will have already been solved, allowing us to use these values in our derivation.

This is the final form of SOR used in my code. The program iterates this to get an
updated stream function until Equation 2.46 is satisfied to within a specified degree
of accuracy, set by a parameter called MaxError.

Boundary Conditions

I applied and analyzed two different sets of boundary conditions in my code. First
is solid boundary walls, which could easily be implemented by following the same
procedure from [11], since solid boundaries are a necessary part of the driven cavity
problem. For this, all we have to do is pin down the vorticity at the boundaries,
and we can update it everywhere else. As mentioned earlier, to create solid boundary
walls, we can assume that at points touching the wall (or infinitely close), the velocity
of the fluid will be the same as the velocity of the wall. For our fixed walls, this means
the stream function, the x and y derivatives of which correspond to y and x velocities,
is constant all along the boundary. Using Equation 2.40, it is clear that if vorticity is
fixed all along the left wall, ∂2ψ

∂y2
will be 0 all along that wall, leaving

~ωleft = −∂
2ψ

∂x2
. (2.47)

To get ~ωleft, I can follow the method explained in [11]. Here, they follow a routine
almost identical to the finite difference derivation, writing a Taylor approximation for
ψ one column away from the boundary as

ψ2,j = ψ1,j +
∂ψ1,j

∂x
dx+

∂2ψ1,j

∂x2

dx2

2
+ higher order terms. (2.48)

Noting that
∂ψ1,j

∂x
= −vy and ψ1,j are both zero at the boundary, combining with

Equation 2.47 above, I can rearrange this into

~ωleft = − 2

dx2
ψ2,j. (2.49)

This is a function we can solve, since ψ2,j is not a boundary stream function, and has
been calculated by SOR. This approximation is repeated for all of the boundaries,
allowing for usable ~ωboundaries in the update. This is important because it gives the
code an updated starting point to work from.

Although the tray does have solid boundary walls, I am focusing on a section
in the middle, mostly unaffected by boundary conditions. Here, the fluid can be
approximated as part of an infinite plane, which can be more accurately modeled
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Figure 2.2: A figure describing how the stream function was calculated for periodic
boundary conditions.

by periodic boundary conditions. This means a particle of fluid can exit out the
right and come back in the left side, maintaining its same speed and trajectory. I
eventually implemented these boundary conditions on the sides, top and corners of
the system. The resulting code can be found in Appendix B. Basically I followed
the same procedure as at points in the bulk of the flow, but wrote three separate
procedures for each group of boundary points; one for the top and bottom, one for
the left and right, and one for the corners. The code has one grid point of overlap
on all of the boundaries, meaning points on the leftmost boundary are equal to those
directly across on the rightmost boundary. This is shown in Figure 2.2. Because
of the overlapping opposite sides, the boundary stream function only needed to be
calculated on two of the boundaries, once for top and bottom, and once for left and
right, and one more time for all four corners. Since this only needs to be done 2n+ 1
times, I do not use an iterative method, and instead simply solve Equation 2.42 for
ψi,j at the boundary points.

Update

Lastly, the vorticity update is calculated by solving 2.39 for ∂~ω
∂t

and using standard
finite difference approximations, equations 2.28 and 2.29. This creates the update

∂~ω

∂t
= −∂ψ

∂y

∂~ω

∂x
+
∂ψ

∂x

∂~ω

∂y
+ Re−1~∇2~ω + ~f∇, (2.50)

which, after applying finite difference derivative approximations and removing the
forcing term that is added to the vorticity later with the update, becomes
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ωi,j update =

ψmi,j−1 − ψmi,j+1

2dy

ωmi+1,j − ωmi−1,j

2dx
+
ψmi+1,j − ψmi−1,j

2dx

ωmi,j+1 − ωmi,j−1

2dy

+Re−1
ωmi+1,j − 2ωmi,j + ωmi−1,j

dx2

ωmi,j+1 − 2ωmi,j + ωmi,j+1

dy2
.

I create a separate updated variable to ensure that the newly updated points are
not used yet. I also created separate update terms for the sides and corners. Each
update is then multiplied by dt (since the updates are actually ∂~ω

∂t
) and added to

the old vorticity along with the curl of the forcing term. The sides, corners and
center points are updated separately, and the resulting grid of vorticity and stream
functions are stored. Finally, the time step is updated by adding dt, and the vorticity
and stream functions are set to the new, updated values for the next time step. The
last feature I added was a progress-meter, which prints the percentage of the code
that has been completed at certain intervals.

The actual code could be cleaned up, especially the periodic boundary conditions.
I did not investigate the possibility of using iterative methods in more places, but
this should be considered if the code is being run at higher resolutions where it will
take longer. I feel like there is still a huge amount of work I could do to improve this
simulation, and hope to continue to upgrade and refine it in the future. Both codes
and experiment yielded promising results, as described in Chapter 3.





Chapter 3

Results

3.0.4 Experimental

From each set of experimental data, the PIV program generated an enormous flat-
tened matrix, giving the x and y velocities at each point. Vector fields depicting
these results are shown in Figure 3.1. These fields clearly show the motion of the
fluid before and after the bifurcation, with the initial laminar solution mirroring the
arrangement of magnets, and later being replaced by stable interlocking vortices as
the forcing is increased.

To get more quantitative results, I calculated the root mean square (rms) of x-
velocities in Mathematica to gauge the deviation from the laminar flow, which mimics
the forcing and is only in the ŷ direction. I repeated this process at each electrical
current, with the end result being a single rms x-velocity value for each electrical
current measurement. To make this into a more universally understandable and
useful set of data, I can approximate the Reynolds number (Re) associated with each
current.

Here I get Reynolds numbers using a handful of parameters from my experimental
setup and series of approximations. I follow the steps laid out by Kelley and Ouellette
[1] to arrive at the correct expression for Re. As mentioned in the Introduction,
Reynolds number is the relative importance of fluid inertia and viscous damping.
“Relative importance” can be translated to the ratio of these two terms. Viscous
damping is represented by the damping time scale L2

ν
, where L is our length scale

(here the period of the forcing, or experimentally, the distance between two rows of
magnets), and ν is the kinematic viscosity measured with a viscometer and shown in
Table 3.1. Fluid inertia is captured by the advective timescale, equal to L

U
, where the

velocity scale, U can be set to the total rms speed of the system, 〈~v · ~v〉 12 , with the
triangular brackets representing a mean [1]. Therefore, the Reynolds number can be
expressed as

Re =
L2

ν
L
U

=
UL

ν
. (3.1)

Note that the units of kinematic viscosity (ν) are length2

time
, making the Reynolds number

unitless, as expected. To use this method, I needed to make sure the measurements
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Figure 3.1: Experimental vector fields at different driving current values. These were
created in Mathematica using the PIV data. The laminar solution (at 40 mA) devi-
ates from straight channels (100 mA) and eventually forms a pattern of interlocking
vortices (180 mA).

that I used have units that cancel correctly. Firstly, the velocities the PIV software
returned were not in conventional units. These values were in pixels per frame, since
the program measured shifts in pixels, over the time elapsed between two frames. To
correct this I measured the number of pixels across one period of the forcing pattern
in a frame of the laminar solution. Because it is difficult to see where exactly the
center of a channel is, I measured over two periods to get an average width. The
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period of forcing is a known distance, and allows me to find the number of pixels per
meter by measuring the magnet spacing. Using this, along with the fact that we were
recording at 30 frames per second, the velocity vectors returned by the PIV software
can be appropriately scaled by

meters

second
=

pixels

frame
× meters

pixel
× frames

second︸ ︷︷ ︸
velocity correction term

. (3.2)

I measured the kinematic viscosity of the working fluid using a Cannon-Fenske
Routine Viscometer. This involved measuring the time for a fluid to travel through
a small capillary, and comparing the result with the same measurement for water.
From this, I found the working fluid to have a kinematic viscosity 2.54 times that of
water. The accepted kinematic viscosity (ν) of water is given by ν = η

ρ
where η is the

dynamic viscosity, (or coefficient of viscosity), and ρ is the density. Obtaining these
values from [15], I found the νwater to be 1.00×10−6 m

s
, giving a value of 2.54×10−6 m

s

for the kinematic viscosity of the working fluid. This is shown in Table 3.1.

Table 3.1: A table of measurements taken from the experimental setup necessary to
determine Re.

Kinematic viscosity 2.54× 10−6 m2

s

Pixels per meter 18, 632.6
Frames per second 30
Length scale (L) 0.038 m

Using Equation 3.1, the correctly scaled velocity and length measurements, and
the measured viscosity, I calculated the Reynolds numbers. The parameters used
to calculate these are shown in Table 3.1. The calculated Reynolds numbers, along
with the corresponding currents are shown in Table 3.2. I plotted rms x-velocity as
a function of both the electrical currents and the estimated Reynolds numbers. This
yielded the plots shown in Figure 3.2.

These agree with the predictions presented by Kelley and Ouellette [1]. The
critical Reynolds number, the one at which the bifurcation occurs, has been found
to be around 61 [1], or 70 [2] in a similar experiment using driven soap films. The
damping effects of friction on the bottom of the tray are most likely the cause of
these discrepancies [1, 16, 2], as these can have a huge effect. A very simple model
of linear stability analysis predicts a critical Reynolds number of

√
2, or ≈ 1 [4, 2],

far off from any experimental results. Our experimentally measured value, around
85, seems to be fairly consistent with the previous experimental results. This result
could definitely be improved by using a smoother tray, or a thin layer of oil as done
in [17].

The current data seems to scale like a square root function, as expected [1]. As-
suming the bifurcated data scaled in the form y = xα, I found the exponent (α) by
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Table 3.2: A table of estimated Reynolds numbers with corresponding current values.

Current (mA) Reynolds number

20 23.7
40 37.6
60 64.9
80 85.0
100 100.5
110 106.4
120 112.4
130 116.4
140 126.1
150 130.8
160 135.5
180 141.8
200 150.9
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Figure 3.2: A bifurcation diagram made from experimental data. The left plot shows
rms x-velocities as a function of forcing current. The right plot shows rms x-velocities
as a function of Reynolds number. Both plots show best fit curves given by equations
3.3 and 3.4.

plotting the natural logarithms of rms velocities, current, and Reynolds numbers, and
calculated the slope of the resulting linear functions. This gave a best fit power of
α = 0.353 for the current data, and α = 0.2175 for the Reynolds number data. These
were linearly fitted to create the functions

−1.662 + 0.3595x0.353 (3.3)

and
−4.844 + 1.8421x0.2175 (3.4)

for rms x-velocities as functions of current and Reynolds numbers respectively. These
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yield R-squared values of 0.9946 and 0.9856. The functions are plotted with the
experimental data in Figure 3.2.

This implies that the Kolmogorov bifurcation is indeed a supercritical pitchfork.
While a root is still a good fit, the Reynolds number plot seems to scale almost
linearly. The results from [1] also seem to follow this trend. This error could maybe
be attributed to the friction of the fluid on the bottom of the tray. This friction
increases with velocity [2], so because we found Reynolds numbers experimentally
using observed velocity, we might expect higher forcing to yield disproportionately
small Reynolds numbers. This could cause the curve to appear more linear, and is
something worth investigating further.

3.0.5 Numerical

I ran both the time-independent and time-dependent codes describe in Chapter 2,
the latter with both no-slip and periodic boundary conditions.

The time-independent code captures the initial bifurcation very well, but could
not capture turbulent solutions, or instabilities and periodic solutions as they began
to form. Nonetheless, the time-independent code does show the qualitative motion
of the fluid fairly well. Figure 3.3 shows line integral convolution plots of the time-
independent data. These were done using Mathematica’s LineIntegralConvolutionPlot
function, as done by Mokhasi [10]. This introduces static of a specified color scheme
into the grid, and integrates each point along the path of the fluid, dragging the color
with it and creating easy to visualize fluid flows. Note that the time-independent code
does not allow us to determine if the image furthest to the right depicts a steady,
stable solution, a periodic or chaotic regime. This is something we can deal with
using the time-dependent code.

For the time-dependent code, I determined the optimal set of parameters, all of
which can be found in Table 3.3. I chose each of these after testing a wide range of
options. My goal was to make the code run as quickly as possible without losing too
much accuracy. I determined the ideal grid size to be 30 by 30. This seemed like
enough resolution to accurately capture the motion of the fluid over four full periods
of the sinusoidal forcing pattern, while usually not taking more than 30 minutes for
the code to run in its entirety. I confirmed that this was enough resolution by trying a
smaller grid, and making sure the macroscopic motion of the fluid progressed the same
way. This is the same strategy I used to determine most of the other parameters. For
time-step size (dt), I ran several tests over a variety of values for dt. I did this for the
most turbulent case, since faster moving fluid requires smaller time-steps to capture
its motion. I found the threshold at which a larger dt either causes an overflow, or
changes the behavior of the simulation to be above 0.0001 but below 0.001, so I used
the former value as my time-step size. By the same process, I varied the number of
time-steps until I reached a point where the code had settled down. I then changed
the Kv value, which is proportional to the inverse of the Reynolds number (Re−1)
and forcing amplitudes to find the point at which the bifurcation occurred. While
Kv does take the place of 1

Re
in the code, we can only say that the Re value here is

proportional to the actual Reynolds number, since forcing amplitude affects velocity
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Figure 3.3: Line integral convolution plots of the time-independent code. (a) The lam-
inar solution, visible at low Re. (b) The fluid after its initial bifurcation, and (c) The
flow at an even higher Reynolds number. Notice that by being time-independent, (c)
is unable to capture periodic or chaotic motion, and therefore generates an impossible
result.

timescales, and is not captured in Kv.
Each code generated a stream function and vorticity value at every grid point.

Plots of vorticity at different values of Kv (and at later time-steps) can be found in
Figure 3.4 for the solid boundary case and 3.5 for the periodic boundary case. Note
that the the laminar case looks like the initial forcing pattern, since the vorticity of
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Table 3.3: A table of parameters used for the time-dependent code.

Parameter Value for solid boundaries Value for periodic boundaries

Number of gridpoints (nxy) 30 30
Length of a time-step (dt) 0.0001 0.0001

Number of time-steps 3000 5000
Maximum SOR iterations 100 100

Kv (∝ to Re−1) variable: from 0.1 to 0.4 variable: from 0.02 to 0.2

Equation 1 will also give stripes. In each of these plots, red (positive vorticity) rep-
resents counter-clockwise rotation, and blue (negative vorticity) represents clockwise
rotation. This means the dark bands in the laminar vorticity plots actually represent
the areas between channels. The differences in band thickness and magnitude in the
laminar cases is a result of the sine wave pattern not being perfectly described by 30
grid points. Even though the forcing is exactly four periods, the grid points can fall
directly on the peaks, or off to the side, resulting in slightly different forcing across
the grid. This certainly introduces some error into the simulations, and could be
remedied by increasing the resolution.

From the stream functions, which are also generated by the simulation, I could
extract x and y velocities using equations 2.36 and 2.37. To take the derivative, I
used the fourth order differential matrices from the time-independent code, described
in Chapter 2. One check to make sure the code is performing realistically is to check
the incompressibility condition. As stated in Chapter 2, for an incompressible fluid,
∇ · ~v = ∂vx

∂x
+ ∂vy

∂y
= 0. Figure 3.6 is a plot of this value at each point, all of which

are very close to zero. Looking at the formula, this result should be obvious, since
we are essentially taking ∂

∂y
∂
∂x
ψ twice, which must always be zero.

With both velocities found, I can calculate the rms x-velocities, and plot them as
a function of 1

Kv
. Figures 3.7 and 3.8 show bifurcation diagrams of this data. I used

the points immediately after the bifurcation to calculate exponents for a function of
the form y = xα by the method described earlier. I got exponents of 0.42 for the
no-slip bounded code, and 0.40 for the periodic bounded code. These functions are
plotted for the steady bifurcation region in Figure 3.7 and 3.8. The plots exhibit the
same behavior as the experimental data with exponents between 0 and 1, confirming
that the time-dependent codes are performing correctly. The scaling factor here is
pretty close to the experimental data, with error most likely due to friction in the
experiment as described earlier.

The behavior of these plots at higher Reynolds numbers (Re ∝ 1
Kv

) is also very
revealing. In the no-slip boundary plot, Figure 3.7, points seem to fluctuate upwards
and downward in time without trending towards any particular value, implying that
the behavior here is either periodic or turbulent. The periodic bounded code seems
to generally display points in temporal order, implying that these values are trending
towards some value.
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Figure 3.4: Plots of vorticity generated from the time-dependent code with no-slip
boundary conditions. Each image is the result after 2,000 time-steps. Here, red
represents a positive vorticity, and blue a negative vorticity. Each plot shows the
results at a different value of 1

Kv
, a number proportional to the Reynolds number.

These observations seem to be a direct result of having solid boundaries. The
bounded fluid code settled into turbulent or steady motion much more quickly than
its periodic counterpart, and did so at lower Reynolds numbers. I suspect this is
caused by the fact that the bounded code is subjected to many more perturbations,
as the flow runs into, and is changed by the boundaries. It is also possible that given
enough time, even the extremely chaotic looking regions in the no-slip bounded code
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Figure 3.5: Plots of vorticity generated from the time-dependent code using peri-
odic boundary conditions. Each image is the result after 10,000 time-steps. Again,
each plot shows the results at a different value of 1

Kv
, a number proportional to the

Reynolds number.

would have eventually settled down into some other form of solution. Behavior after
extremely long times is definitely something worth investigating.

Because the experiment only looks at an area at the center of the forcing pattern,
the periodic bounded, time-dependent code with periodic boundary conditions mir-
rors it well. The bifurcation diagrams generated from the experimental data, Figure
3.2, and from the periodic bounded code, Figure 3.8, closely resemble each other, with
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Figure 3.6: A plot of the divergence of velocity at each point. These all being close
to zero means the code enforces the incompressibility condition.
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Figure 3.7: A bifurcation diagram for the no-slip boundary condition’s code, showing
rms x-velocities as function of 1

Kv
, after different numbers of timesteps.

a sharp bifurcation point. These two curves both scale as square root functions after
the bifurcation point, as described in Kelley and Ouellette’s experiment [1]. This
confirms that the flow undergoes a supercritical bifurcation as stated in [2]. While
we did not seem to reach the Hopf bifurcation that is expected to appear after the
steady regime [4], both the experiment and code should be able to demonstrate these
phenomena at higher Reynolds numbers.

The periodic bounded data could be improved by running out to further timesteps,
to see if it was in any sort of limit cycle. The data in Figure 3.8 shows rms x-velocities
trending in one direction in time, implying that they are going to stabilize, or are
moving in a slow limit cycle. Running the code out further in time could clarify
this. More timesteps could also be an improvement to the time-dependent, no-slip
bounded code, to confirm if the motion at later time steps is chaotic or some sort of
periodic limit cycle.

The next step in comparing these results would be matching a Reynolds number



41

Out[954]=

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

‡

‡

‡

‡

‡

‡

‡

‡

‡‡‡‡‡

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

ÏÏÏÏÏ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚÚÚÚ

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

ÙÙÙÙÙ

Á

Á

Á

Á

Á

Á

Á

Á

ÁÁÁÁÁ
5 10 15 20 25

1êKv

2

4

6

rms x-velocity

Ê t=10000
‡ t=9800
Ï t=9600
Ú t=9400
Ù t=9200
Á t=9000

Figure 3.8: A bifurcation diagram for the periodic bounded code, showing rms x-
velocities as function 1

Kv
, after different numbers of timesteps.

to the numerical data, and comparing this to the experiment. We would expect a
significant discrepancy in the scaling of the bifurcation diagrams, which would mostly
be attributed to friction on the bottom of the tray, allowing us to estimate and add
a friction parameter to the code. This parameter would be linearly dependent on
velocity [4, 2], a constant term we could estimate.





Chapter 4

Conclusions

I successfully demonstrated a 2-dimensional Kolmogorov flow bifurcation using an
experimental and numerical approach. The experiment yielded results consistent
with [1, 4, 2] qualitatively matching up with the patterns generated by their setups.
The experiment showed a bifurcation, shifting from the laminar solution to a set of
stable vortices.

For the experimental portion, I used Particle Image Velocimetry to analyze the
flow. I was able to show the motion of the fluid qualitatively in vector fields shown
in Figure 3.1 and quantitatively in a bifurcation diagram of root mean square x-
velocities, shown in Figure 3.2. The Reynolds numbers were approximated, leading
to a critical Reynolds number of around 85. This is reasonably close to the results
found in [1] and [2] of 61 and 70 respectively. The discrepancies in these measurements
are most likely due to damping from friction on the bottom of the tray, a source of
error that is difficult to avoid.

Numerically the problem was studied using two different numerical schemes. Ev-
ery variation of the code produced good results, each having its own strengths and
weaknesses. The time-independent code, modified from [10], was by far the fastest,
and generated very good results for the initial bifurcation of the system, as shown in
Figure 3.3. However, due to its time-independent nature, it could not show any peri-
odic or turbulent solutions, making its results of limited use without a time-dependent
code to confirm that the solutions are actually stable.

The time-dependent code, followed the technique from [11] and was implemented
using methods from [13]. This was able to show more interesting behavior, but was
much slower and therefore had to be run at lower resolution. Two different boundary
conditions were studied, both of which demonstrated the initial bifurcation. The
bounded code seemed to fall into periodic solutions and turbulence much more quickly,
while the periodic bounded code slowly settled to more stable flows.

There is still a lot of improvements that can be made to this experiment, and
additional extensions worth investigating. The code works well, but could definitely
be cleaned up to run more quickly.

The experiment could be made more accurate by implementing a more compli-
cated tray setup [8, 17]. New forcing patterns could also be investigated. For example,
concentric squares of magnet polarity with one electrode at the middle, and the other
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around the edge of the tray would yield anti-parallel concentric circles (or squares) of
forcing. This could create some very interesting new patterns.

Armed with the time-dependent code, any future extensions could be tested fairly
quickly using the simulation, before reconstructing the whole experiment. The two
pieces of this thesis together provide an excellent set of tools for analyzing any sort
of two-dimensional fluid flow.

While no piece of this project is perfect, it served as an excellent introduction
to fluid dynamics. I was able to study a subject I had never really seen before, and
make sense of it using the physics and math I had learned over the last few years. I
honestly had a really great time moving through this turbulent thesis process, and
hope to keep working on wild and exciting fluid systems far into the future.



Appendix A

Differential Matrices and
Time-independent Code

This appendix shows a time-independent Kolmogorov solver code, modified from [10],
and differential matrices, modified from [13] using finite difference approximations
from [12]. The code here generates ∂

∂x
, ∂
∂y

, ∂2

∂x2
, and ∂y

∂y2
differential operator matrices.
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Time-independent code

Below, grid and Reynolds number (Rey) defined (again, forcing amplitude and other parameters

are not taken into account, so the actual value of Rey here is not too meaningful).
In[54]:= pts = 25;

Nx = N@ptsD;

Ny = N@ ptsD;

dx = 1.0� Hpts - 1L;

dy = 1.0� Hpts - 1L;

nx = Table@a * dx, 8a, 0, HNx - 1L<D;

grid = Flatten@Table@8nx@@aDD, nx@@bDD<, 8a, 1, Ny<, 8b, 1, Nx<D, 1D;

Rey = 200;

Differential matrices created.
In[2]:= top@x_D := 0;

bottom@x_D := 0;

left@y_D := 0;

right@y_D := 0;

In[23]:= 8DX, bx< = D1Xmat@Nx, Ny, dx, dy, left, rightD ;

8DY, by< = D1Ymat@Nx, Ny, dx, dy, top, bottomD;

8D2X, b2x< = D2Xmat@Nx, Ny, dx, dy, left, rightD ;

8D2Y, b2y< = D2Ymat@Nx, Ny, dx, dy, top, bottomD;

Variables defined (for x-velocity, y-velocity, pressure, and forcing).
In[27]:= nL = Length@gridD;

varsU = Table@Unique@u$D, 8nL<D;

varsV = Table@Unique@v$D, 8nL<D;

varsP = Table@Unique@p$D, 8nL<D;

varsF = Flatten@Table@i, 8i, 1, pts<, 8j, 1, pts<DD;

Navier-Stokes momentum equations defined (for ∂v
∂t

), along with the incompressibility condition.
In[42]:= eqnsU = varsU * HDY.varsUL + varsV * HDX.varsUL + DY.varsP -

H1 � ReyL * HHD2Y + D2XL.varsUL ;

eqnsV = varsU * HDY.varsVL + varsV * HDX.varsVL + DX.varsP - H1 � ReyL * HHD2Y + D2XL.varsVL +

100* Sin@H6 Pi � 20L varsFD;

eqnsCont = DY.varsU + DX.varsV ;

No-slip boundaries defined.
In[39]:= boundaries =

DeleteDuplicates �
Flatten@Position@grid, ðD & �� 880., y_<, 81., y_<, 8x_, 0.<, 8x_, 1.<<D ;

topBndry = Flatten � Position@grid, 8x_, 1.<D ;

bndryComp = Complement@boundaries, topBndryD;

Boundaries applied.
In[42]:= eqnsU@@boundariesDD = varsU@@boundariesDD ;

eqnsU@@topBndryDD = varsU@@topBndryDD ;

eqnsV@@boundariesDD = varsV@@boundariesDD ;

eqnsCont@@topBndry@@1DD DD = varsP@@topBndry@@1DD DD ;

Equations joined into a single expression.
In[46]:= govExpr = Join@eqnsU, eqnsV, eqnsContD ;

allVars = Join@varsU, varsV, varsPD;

Equations solved vie root finding (to find where ∂v
∂t

, and divergence are zero).

sol = allVars �. FindRoot@govExpr, Thread@8allVars, 1<DD ;

Solutions put into plot-able form
8usoltemp, vsoltemp, psoltemp< = Partition@sol, nLD ;

usol = Interpolation� Join@grid, Transpose� List� usoltemp, 2D ;

vsol = Interpolation� Join@grid, Transpose� List� vsoltemp, 2D ;

psol = Interpolation� Join@grid, Transpose� List� psoltemp, 2D ;

Solutions plotted in a line integral convolution plot.
In[136]:= LineIntegralConvolutionPlot@

88usol@x, yD, vsol@x, yD<, 8"noise", 1000, 1000<<,

8x, 0, 1<, 8y, 0, 1<, LineIntegralConvolutionScale ® 3,

ColorFunction ® "AlpineColors"D

Differential matrices
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In[10]:= D1Xmat@Nx_, Ny_, dx_, dy_, left_, right_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, j, k, k2,

k3, k4<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@indey = 1, indey £ Ny, indey = indey + 1,
j = g@1, indeyD;
k = g@2, indeyD;
k2 = g@3, indeyD;
k3 = g@4, indeyD;
k4 = g@5, indeyD;
retmat@@j, j DD += H-25.0ê12L êdx;
retmat@@j, k DD += 4.0êdx;
retmat@@j, k2 DD += -3.0êdx;
retmat@@j, k3 DD += H4.0ê3L êdx;
retmat@@j, k4 DD += H-1.0ê4L ê dx;
bside@@ j DD += left@indey dyD êdx;
i = g@1, indeyD;
j = g@2, indeyD;
k = g@3, indeyD;
k2 = g@4, indeyD;
k3 = g@5, indeyD;
retmat@@j, i DD += H-1.0ê4L êdx;
retmat@@j, j DD += H-5.0ê6L êdx;
retmat@@j, k DD += H1.5L êdx;
retmat@@j, k2 DD += H-1.0ê2L êdx;
retmat@@j, k3 DD += H1.0ê12L êdx;
bside@@ j DD += left@indey dyD êdx;
For@index = 3, index £ Nx - 2, index = index + 1,
i2 = g@index - 2, indeyD;
i = g@index - 1, indeyD;
j = g@index, indeyD;
k = g@index + 1, indeyD;
k2 = g@index + 2, indeyD;
retmat@@j, i2DD += H1.0ê12L êdx;
retmat@@j, iDD += H-2.0ê3L êdx;
retmat@@j, jDD += 0.0;
retmat@@j, kDD += H2.0ê3L êdx;
retmat@@j, k2DD += H-1.0ê12L êdx;D;

i3 = g@Nx - 4, indeyD;
i2 = g@Nx - 3, indeyD;
i = g@Nx - 2, indeyD;
j = g@Nx - 1, indeyD;
k = g@Nx, indeyD;
retmat@@j, k DD += H1.0ê4L êdx;
retmat@@j, j DD += H5.0ê6L êdx;
retmat@@j, i DD += H-1.5L êdx;
retmat@@j, i2 DD += H1.0ê2L êdx;
retmat@@j, i3 DD += H-1.0ê12L êdx;

i4 = g@Nx - 4, indeyD;
i3 = g@Nx - 3, indeyD;
i2 = g@Nx - 2, indeyD;
i = g@Nx - 1, indeyD;
j = g@Nx, indeyD;
retmat@@j, i4 DD += H1.0ê4L êdx;
retmat@@j, i3 DD += H-4.0ê3L êdx;
retmat@@j, i2 DD += 3.0êdx;
retmat@@j, i DD += -4.0êdx;
retmat@@ j, jDD += H25.0ê12L êdx;
bside@@ jDD += -right@indey dyD êdx;

D;
Return@8retmat, bside<D;D

D1Ymat@Nx_, Ny_, dx_, dy_, top_, bottom_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, j, k, k1,

k2, k3, k4<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@index = 1, index £ Nx, index = index + 1,
j = g@index, 1D;
k = g@index, 2D;
k2 = g@index, 3D;
k3 = g@index, 4D;
k4 = g@index, 5D;
retmat@@j, j DD += H-25.0ê12L êdy;
retmat@@j, k DD += 4.0êdy;
retmat@@j, k2 DD += -3.0êdy;
retmat@@j, k3 DD += H4.0ê3L êdy;
retmat@@j, k4 DD += H-1.0ê4L ê dy;
bside@@ j DD += bottom@index dxD êdy;
i = g@index, 1D;
j = g@index, 2D;
k = g@index, 3D;
k2 = g@index, 4D;
k3 = g@index, 5D;
retmat@@j, i DD += H-1.0ê4L êdy;
retmat@@j, j DD += H-5.0ê6L êdy;
retmat@@j, k DD += H1.5L êdy;
retmat@@j, k2 DD += H-1.0ê2L êdy;
retmat@@j, k3 DD += H1.0ê12L êdy;
bside@@ j DD += bottom@index dxD êdy;

For@indey = 3, indey £ Ny - 2, indey = indey + 1,

i2 = g@index, indey - 2D;
i = g@index, indey - 1D;
j = g@index, indeyD;
k = g@index , indey + 1D;
k2 = g@index , indey + 2D;
retmat@@j, i2DD += H1.0ê12L êdy;
retmat@@j, iDD += H-2.0ê3L êdy;
retmat@@j, jDD += 0.0;
retmat@@j, kDD += H2.0ê3L êdy;
retmat@@j, k2DD += H-1.0ê12L êdy;

D;
i3 = g@index, Ny - 4D;
i2 = g@index, Ny - 3D;
i = g@index, Ny - 2D;
j = g@index, Ny - 1D;
k = g@index, NyD;
retmat@@j, i3DD += H-1.0ê12L êdy;
retmat@@j, i2 DD += H1.0ê2L êdy;
retmat@@j, i DD += H-1.5L êdy;
retmat@@j, j DD += H5.0ê6L êdy;
retmat@@ j, kDD += H1.0ê4L êdy;
bside@@ jDD += -top@index dxD êdy;
i4 = g@index, Ny - 4D;
i3 = g@index, Ny - 3D;
i2 = g@index, Ny - 2D;
i = g@index, Ny - 1D;
j = g@index, NyD;
retmat@@j, i4 DD += H1.0ê4L êdy;
retmat@@j, i3 DD += H-4.0ê3L êdy;
retmat@@j, i2 DD += 3.0êdy;
retmat@@j, i DD += -4.0êdy;
retmat@@ j, jDD += H25.0ê12L êdy;
bside@@ jDD += -top@index dxD êdy;

D;
Return@8retmat, bside<D;D
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In[10]:= D1Xmat@Nx_, Ny_, dx_, dy_, left_, right_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, j, k, k2,

k3, k4<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@indey = 1, indey £ Ny, indey = indey + 1,
j = g@1, indeyD;
k = g@2, indeyD;
k2 = g@3, indeyD;
k3 = g@4, indeyD;
k4 = g@5, indeyD;
retmat@@j, j DD += H-25.0ê12L êdx;
retmat@@j, k DD += 4.0êdx;
retmat@@j, k2 DD += -3.0êdx;
retmat@@j, k3 DD += H4.0ê3L êdx;
retmat@@j, k4 DD += H-1.0ê4L ê dx;
bside@@ j DD += left@indey dyD êdx;
i = g@1, indeyD;
j = g@2, indeyD;
k = g@3, indeyD;
k2 = g@4, indeyD;
k3 = g@5, indeyD;
retmat@@j, i DD += H-1.0ê4L êdx;
retmat@@j, j DD += H-5.0ê6L êdx;
retmat@@j, k DD += H1.5L êdx;
retmat@@j, k2 DD += H-1.0ê2L êdx;
retmat@@j, k3 DD += H1.0ê12L êdx;
bside@@ j DD += left@indey dyD êdx;
For@index = 3, index £ Nx - 2, index = index + 1,
i2 = g@index - 2, indeyD;
i = g@index - 1, indeyD;
j = g@index, indeyD;
k = g@index + 1, indeyD;
k2 = g@index + 2, indeyD;
retmat@@j, i2DD += H1.0ê12L êdx;
retmat@@j, iDD += H-2.0ê3L êdx;
retmat@@j, jDD += 0.0;
retmat@@j, kDD += H2.0ê3L êdx;
retmat@@j, k2DD += H-1.0ê12L êdx;D;

i3 = g@Nx - 4, indeyD;
i2 = g@Nx - 3, indeyD;
i = g@Nx - 2, indeyD;
j = g@Nx - 1, indeyD;
k = g@Nx, indeyD;
retmat@@j, k DD += H1.0ê4L êdx;
retmat@@j, j DD += H5.0ê6L êdx;
retmat@@j, i DD += H-1.5L êdx;
retmat@@j, i2 DD += H1.0ê2L êdx;
retmat@@j, i3 DD += H-1.0ê12L êdx;

i4 = g@Nx - 4, indeyD;
i3 = g@Nx - 3, indeyD;
i2 = g@Nx - 2, indeyD;
i = g@Nx - 1, indeyD;
j = g@Nx, indeyD;
retmat@@j, i4 DD += H1.0ê4L êdx;
retmat@@j, i3 DD += H-4.0ê3L êdx;
retmat@@j, i2 DD += 3.0êdx;
retmat@@j, i DD += -4.0êdx;
retmat@@ j, jDD += H25.0ê12L êdx;
bside@@ jDD += -right@indey dyD êdx;

D;
Return@8retmat, bside<D;D

D1Ymat@Nx_, Ny_, dx_, dy_, top_, bottom_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, j, k, k1,

k2, k3, k4<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@index = 1, index £ Nx, index = index + 1,
j = g@index, 1D;
k = g@index, 2D;
k2 = g@index, 3D;
k3 = g@index, 4D;
k4 = g@index, 5D;
retmat@@j, j DD += H-25.0ê12L êdy;
retmat@@j, k DD += 4.0êdy;
retmat@@j, k2 DD += -3.0êdy;
retmat@@j, k3 DD += H4.0ê3L êdy;
retmat@@j, k4 DD += H-1.0ê4L ê dy;
bside@@ j DD += bottom@index dxD êdy;
i = g@index, 1D;
j = g@index, 2D;
k = g@index, 3D;
k2 = g@index, 4D;
k3 = g@index, 5D;
retmat@@j, i DD += H-1.0ê4L êdy;
retmat@@j, j DD += H-5.0ê6L êdy;
retmat@@j, k DD += H1.5L êdy;
retmat@@j, k2 DD += H-1.0ê2L êdy;
retmat@@j, k3 DD += H1.0ê12L êdy;
bside@@ j DD += bottom@index dxD êdy;

For@indey = 3, indey £ Ny - 2, indey = indey + 1,

i2 = g@index, indey - 2D;
i = g@index, indey - 1D;
j = g@index, indeyD;
k = g@index , indey + 1D;
k2 = g@index , indey + 2D;
retmat@@j, i2DD += H1.0ê12L êdy;
retmat@@j, iDD += H-2.0ê3L êdy;
retmat@@j, jDD += 0.0;
retmat@@j, kDD += H2.0ê3L êdy;
retmat@@j, k2DD += H-1.0ê12L êdy;

D;
i3 = g@index, Ny - 4D;
i2 = g@index, Ny - 3D;
i = g@index, Ny - 2D;
j = g@index, Ny - 1D;
k = g@index, NyD;
retmat@@j, i3DD += H-1.0ê12L êdy;
retmat@@j, i2 DD += H1.0ê2L êdy;
retmat@@j, i DD += H-1.5L êdy;
retmat@@j, j DD += H5.0ê6L êdy;
retmat@@ j, kDD += H1.0ê4L êdy;
bside@@ jDD += -top@index dxD êdy;
i4 = g@index, Ny - 4D;
i3 = g@index, Ny - 3D;
i2 = g@index, Ny - 2D;
i = g@index, Ny - 1D;
j = g@index, NyD;
retmat@@j, i4 DD += H1.0ê4L êdy;
retmat@@j, i3 DD += H-4.0ê3L êdy;
retmat@@j, i2 DD += 3.0êdy;
retmat@@j, i DD += -4.0êdy;
retmat@@ j, jDD += H25.0ê12L êdy;
bside@@ jDD += -top@index dxD êdy;

D;
Return@8retmat, bside<D;D
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D2Xmat@Nx_, Ny_, dx_, dy_, left_, right_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, i5, j, k, k2, k3, k4, k5<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@indey = 1, indey £ Ny, indey = indey + 1,
j = g@1, indeyD;
k = g@2, indeyD;
k2 = g@3, indeyD;
k3 = g@4, indeyD;
k4 = g@5, indeyD;
k5 = g@6, indeyD;
retmat@@j, j DD += H15.0ê4L êdx ^2;
retmat@@j, k DD += H-77.0ê6L êdx ^2;
retmat@@j, k2 DD += H107.0ê6L êdx ^2;
retmat@@j, k3 DD += H-13.0L êdx ^2;
retmat@@j, k4 DD += H61.0ê12L êdx ^2;
retmat@@j, k5 DD += H-5.0ê6L êdx ^2;
bside@@ j DD += -left@indey dyD êdx ^2;
i = g@1, indeyD;
j = g@2, indeyD;
k = g@3, indeyD;
k2 = g@4, indeyD;
k3 = g@5, indeyD;
k4 = g@6, indeyD;
retmat@@j, i DD += H5.0ê6L êdx ^2;
retmat@@j, j DD += H-5.0ê4L êdx ^2;
retmat@@j, k DD += H-1.0ê3L êdx ^2;
retmat@@j, k2 DD += H7.0ê6L êdx ^2;
retmat@@j, k3 DD += H-1.0ê2L êdx ^2;
retmat@@j, k4 DD += H1.0ê12L êdx ^2;
bside@@ j DD += -left@indey dyD êdx ^2;
For@index = 3, index £ Nx - 2, index = index + 1,
i2 = g@index - 2, indeyD;
i = g@index - 1, indeyD;
j = g@index, indeyD;
k = g@index + 1, indeyD;
k2 = g@index + 2, indeyD;
retmat@@j, i2DD += H-1.0ê12L êdx ^2;
retmat@@j, iDD += H4.0ê3L êdx ^2;
retmat@@j, jDD += H-5.0ê2L êdx ^2;
retmat@@j, kDD += H4.0ê3L êdx ^2;
retmat@@j, k2DD += H-1.0ê12L êdx ^2;D;

i4 = g@Nx - 5, indeyD;
i3 = g@Nx - 4, indeyD;
i2 = g@Nx - 3, indeyD;
i = g@Nx - 2, indeyD;
j = g@Nx - 1, indeyD;
k = g@Nx, indeyD;
retmat@@j, i4DD += H1.0ê12L êdx ^2;
retmat@@j, i3 DD += H-1.0ê2L êdx ^2;
retmat@@j, i2 DD += H7.0ê6L êdx ^2;
retmat@@j, i DD += H-1.0ê3L êdx ^2;
retmat@@ j, jDD += H-5.0ê4L êdx ^2;
retmat@@ j, kDD += H5.0ê6L êdx ^2;
bside@@ jDD += -right@indey dyD êdx ^2;
i5 = g@Nx - 5, indeyD;
i4 = g@Nx - 4, indeyD;
i3 = g@Nx - 3, indeyD;
i2 = g@Nx - 2, indeyD;
i = g@Nx - 1, indeyD;
j = g@Nx, indeyD;
retmat@@j, i5DD += H-5.0ê6L êdx ^2;
retmat@@j, i4DD += H61.0ê12L êdx ^2;
retmat@@j, i3 DD += H-13.0L êdx ^2;
retmat@@j, i2 DD += H107.0ê6L êdx ^2;
retmat@@j, i DD += H-77.0ê6L êdx ^2;
retmat@@ j, jDD += H15.0ê4L êdx ^2;
bside@@ jDD += -right@indey dyD êdx ^2;D;

Return@8retmat, bside<D;D

D2Ymat@Nx_, Ny_, dx_, dy_, top_, bottom_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, i5, j, k, k2, k3, k4, k5<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@index = 1, index £ Nx, index = index + 1,

j = g@index, 1D;
k = g@index, 2D;
k2 = g@index, 3D;
k3 = g@index, 4D;
k4 = g@index, 5D;
k5 = g@index, 6D;
retmat@@j, j DD += H15.0ê4L êdy ^2;
retmat@@j, k DD += H-77.0ê6L êdy ^2;
retmat@@j, k2 DD += H107.0ê6L êdy ^2;
retmat@@j, k3 DD += H-13.0L êdy ^2;
retmat@@j, k4 DD += H61.0ê12L êdy ^2;
retmat@@j, k5 DD += H-5.0ê6L êdy ^2;
bside@@ j DD += -bottom@index dxD êdy ^2;
i = g@index, 1D;
j = g@index, 2D;
k = g@index, 3D;
k2 = g@index, 4D;
k3 = g@index, 5D;
k4 = g@index, 6D;
retmat@@j, i DD += H5.0ê6L êdy ^2;
retmat@@j, j DD += H-5.0ê4L êdy ^2;
retmat@@j, k DD += H-1.0ê3L êdy ^2;
retmat@@j, k2 DD += H7.0ê6L êdy ^2;
retmat@@j, k3 DD += H-1.0ê2L êdy ^2;
retmat@@j, k4 DD += H1.0ê12L êdy ^2;
bside@@ j DD += -bottom@index dxD êdy ^2;
For@indey = 3, indey £ Ny - 2, indey = indey + 1,
i2 = g@index, indey - 2D;
i = g@index, indey - 1D;
j = g@index, indeyD;
k = g@index , indey + 1D;
k2 = g@index , indey + 2D;
retmat@@j, i2DD += H-1.0ê12L êdy ^2;
retmat@@j, iDD += H4.0ê3L êdy ^2;
retmat@@j, jDD += H-5.0ê2L êdy ^2;
retmat@@j, kDD += H4.0ê3L êdy ^2;
retmat@@j, k2DD += H-1.0ê12L êdy ^2;D;

i4 = g@index, Ny - 5D;
i3 = g@index, Ny - 4D;
i2 = g@index, Ny - 3D;
i = g@index, Ny - 2D;
j = g@index, Nx - 1D;
k = g@index, NxD;
retmat@@j, i4DD += H1.0ê12L êdy ^2;
retmat@@j, i3 DD += H-1.0ê2L êdy ^2;
retmat@@j, i2 DD += H7.0ê6L êdy ^2;
retmat@@j, i DD += H-1.0ê3L êdy ^2;
retmat@@ j, jDD += H-5.0ê4L êdy ^2;
retmat@@ j, kDD += H5.0ê6L êdy ^2;
bside@@ jDD += -top@index dxD êdy ^2;
i5 = g@index, Ny - 5D;
i4 = g@index, Ny - 4D;
i3 = g@index, Ny - 3D;
i2 = g@index, Ny - 2D;
i = g@index, Ny - 1D;
j = g@index, NxD;
retmat@@j, i5DD += H-5.0ê6L êdy ^2;
retmat@@j, i4DD += H61.0ê12L êdy ^2;
retmat@@j, i3 DD += H-13.0L êdy ^2;
retmat@@j, i2 DD += H107.0ê6L êdy ^2;
retmat@@j, i DD += H-77.0ê6L êdy ^2;
retmat@@ j, jDD += H15.0ê4L êdy ^2;
bside@@ jDD += -top@index dxD êdy ^2;D;

Return@8retmat, bside<D;D
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D2Xmat@Nx_, Ny_, dx_, dy_, left_, right_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, i5, j, k, k2, k3, k4, k5<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@indey = 1, indey £ Ny, indey = indey + 1,
j = g@1, indeyD;
k = g@2, indeyD;
k2 = g@3, indeyD;
k3 = g@4, indeyD;
k4 = g@5, indeyD;
k5 = g@6, indeyD;
retmat@@j, j DD += H15.0ê4L êdx ^2;
retmat@@j, k DD += H-77.0ê6L êdx ^2;
retmat@@j, k2 DD += H107.0ê6L êdx ^2;
retmat@@j, k3 DD += H-13.0L êdx ^2;
retmat@@j, k4 DD += H61.0ê12L êdx ^2;
retmat@@j, k5 DD += H-5.0ê6L êdx ^2;
bside@@ j DD += -left@indey dyD êdx ^2;
i = g@1, indeyD;
j = g@2, indeyD;
k = g@3, indeyD;
k2 = g@4, indeyD;
k3 = g@5, indeyD;
k4 = g@6, indeyD;
retmat@@j, i DD += H5.0ê6L êdx ^2;
retmat@@j, j DD += H-5.0ê4L êdx ^2;
retmat@@j, k DD += H-1.0ê3L êdx ^2;
retmat@@j, k2 DD += H7.0ê6L êdx ^2;
retmat@@j, k3 DD += H-1.0ê2L êdx ^2;
retmat@@j, k4 DD += H1.0ê12L êdx ^2;
bside@@ j DD += -left@indey dyD êdx ^2;
For@index = 3, index £ Nx - 2, index = index + 1,
i2 = g@index - 2, indeyD;
i = g@index - 1, indeyD;
j = g@index, indeyD;
k = g@index + 1, indeyD;
k2 = g@index + 2, indeyD;
retmat@@j, i2DD += H-1.0ê12L êdx ^2;
retmat@@j, iDD += H4.0ê3L êdx ^2;
retmat@@j, jDD += H-5.0ê2L êdx ^2;
retmat@@j, kDD += H4.0ê3L êdx ^2;
retmat@@j, k2DD += H-1.0ê12L êdx ^2;D;

i4 = g@Nx - 5, indeyD;
i3 = g@Nx - 4, indeyD;
i2 = g@Nx - 3, indeyD;
i = g@Nx - 2, indeyD;
j = g@Nx - 1, indeyD;
k = g@Nx, indeyD;
retmat@@j, i4DD += H1.0ê12L êdx ^2;
retmat@@j, i3 DD += H-1.0ê2L êdx ^2;
retmat@@j, i2 DD += H7.0ê6L êdx ^2;
retmat@@j, i DD += H-1.0ê3L êdx ^2;
retmat@@ j, jDD += H-5.0ê4L êdx ^2;
retmat@@ j, kDD += H5.0ê6L êdx ^2;
bside@@ jDD += -right@indey dyD êdx ^2;
i5 = g@Nx - 5, indeyD;
i4 = g@Nx - 4, indeyD;
i3 = g@Nx - 3, indeyD;
i2 = g@Nx - 2, indeyD;
i = g@Nx - 1, indeyD;
j = g@Nx, indeyD;
retmat@@j, i5DD += H-5.0ê6L êdx ^2;
retmat@@j, i4DD += H61.0ê12L êdx ^2;
retmat@@j, i3 DD += H-13.0L êdx ^2;
retmat@@j, i2 DD += H107.0ê6L êdx ^2;
retmat@@j, i DD += H-77.0ê6L êdx ^2;
retmat@@ j, jDD += H15.0ê4L êdx ^2;
bside@@ jDD += -right@indey dyD êdx ^2;D;

Return@8retmat, bside<D;D

D2Ymat@Nx_, Ny_, dx_, dy_, top_, bottom_D :=
Module@8g, retmat, bside, index, indey, i, i2, i3, i4, i5, j, k, k2, k3, k4, k5<,
g@n_, m_D := Hm - 1L*Nx + n;

retmat = SparseArray@8<, 8Nx Ny, Nx Ny<, 0.0D;
bside = Table@0.0, 8i, 1, Nx Ny<D;
For@index = 1, index £ Nx, index = index + 1,

j = g@index, 1D;
k = g@index, 2D;
k2 = g@index, 3D;
k3 = g@index, 4D;
k4 = g@index, 5D;
k5 = g@index, 6D;
retmat@@j, j DD += H15.0ê4L êdy ^2;
retmat@@j, k DD += H-77.0ê6L êdy ^2;
retmat@@j, k2 DD += H107.0ê6L êdy ^2;
retmat@@j, k3 DD += H-13.0L êdy ^2;
retmat@@j, k4 DD += H61.0ê12L êdy ^2;
retmat@@j, k5 DD += H-5.0ê6L êdy ^2;
bside@@ j DD += -bottom@index dxD êdy ^2;
i = g@index, 1D;
j = g@index, 2D;
k = g@index, 3D;
k2 = g@index, 4D;
k3 = g@index, 5D;
k4 = g@index, 6D;
retmat@@j, i DD += H5.0ê6L êdy ^2;
retmat@@j, j DD += H-5.0ê4L êdy ^2;
retmat@@j, k DD += H-1.0ê3L êdy ^2;
retmat@@j, k2 DD += H7.0ê6L êdy ^2;
retmat@@j, k3 DD += H-1.0ê2L êdy ^2;
retmat@@j, k4 DD += H1.0ê12L êdy ^2;
bside@@ j DD += -bottom@index dxD êdy ^2;
For@indey = 3, indey £ Ny - 2, indey = indey + 1,
i2 = g@index, indey - 2D;
i = g@index, indey - 1D;
j = g@index, indeyD;
k = g@index , indey + 1D;
k2 = g@index , indey + 2D;
retmat@@j, i2DD += H-1.0ê12L êdy ^2;
retmat@@j, iDD += H4.0ê3L êdy ^2;
retmat@@j, jDD += H-5.0ê2L êdy ^2;
retmat@@j, kDD += H4.0ê3L êdy ^2;
retmat@@j, k2DD += H-1.0ê12L êdy ^2;D;

i4 = g@index, Ny - 5D;
i3 = g@index, Ny - 4D;
i2 = g@index, Ny - 3D;
i = g@index, Ny - 2D;
j = g@index, Nx - 1D;
k = g@index, NxD;
retmat@@j, i4DD += H1.0ê12L êdy ^2;
retmat@@j, i3 DD += H-1.0ê2L êdy ^2;
retmat@@j, i2 DD += H7.0ê6L êdy ^2;
retmat@@j, i DD += H-1.0ê3L êdy ^2;
retmat@@ j, jDD += H-5.0ê4L êdy ^2;
retmat@@ j, kDD += H5.0ê6L êdy ^2;
bside@@ jDD += -top@index dxD êdy ^2;
i5 = g@index, Ny - 5D;
i4 = g@index, Ny - 4D;
i3 = g@index, Ny - 3D;
i2 = g@index, Ny - 2D;
i = g@index, Ny - 1D;
j = g@index, NxD;
retmat@@j, i5DD += H-5.0ê6L êdy ^2;
retmat@@j, i4DD += H61.0ê12L êdy ^2;
retmat@@j, i3 DD += H-13.0L êdy ^2;
retmat@@j, i2 DD += H107.0ê6L êdy ^2;
retmat@@j, i DD += H-77.0ê6L êdy ^2;
retmat@@ j, jDD += H15.0ê4L êdy ^2;
bside@@ jDD += -top@index dxD êdy ^2;D;

Return@8retmat, bside<D;D



Appendix B

Time-dependent Code

The time-dependent code, created by following techniques from [11] using methods
from [13]. The code shown here is the version in which I use periodic boundaries.

In[1]:= Vorticity@st0_, vort0_, dt_, Nt_, Kv_, Maxit_D :=
Module@8it, t, Nxy, dxy, retvort, retst, i, j, k, m, j0, k0, jj, kk, j3, k3, weq, vort,

upvort, st, upst, B, Errr, Maxerror, Fx, sweq, cweq, j4, j5<,H*First, everything is defined*L
Maxerror = 0.001;
B = 1.5;
t = 0.0;
Nxy = Length@st0D;
dxy = 1.0ê HNxy - 1L;
vort = vort0;
st = st0;
upvort = vort0;
upst = st0;
weq = Table@0, 8a, 1, Nxy<, 8b, 1, Nxy<D;
sweq = Table@0, 8a, 1, Nxy<, 8b, 1, 2<D;
retvort = Table@0, 8a, 1, Nt<D;
retst = Table@0, 8a, 1, Nt<D;
Fx = Table@Sin@H8 Pi êNxyL bD, 8a, 1, Nxy<, 8b, 1, Nxy<D;
Errr = 0.0;H*Begin timestep iteration*L
For@i = 1, i £ Nt, i++,
For@it = 1, it £ Maxit, it ++,
weq = st;H*Find center stream function by SOR*L
For@j = 2, j £ HNxy - 1L, j++,

For@k = 2, k £ HNxy - 1L, k++,
st@@j, kDD =H0.25L* B*Hst@@j + 1, kDD + st@@j - 1, kDD + st@@j, k + 1DD + st@@j, k - 1DD +Hdxy^2L*vort@@j, kDDL + H1.0 - BL*st@@j, kDD;D;D

Errr = 0.0;
For@j0 = 1, j0 £ HNxyL, j0 ++,
For@k0 = 1, k0 £ HNxyL, k0 ++,

Errr = Errr + Abs@weq@@j0, k0DD - st@@j0, k0DDDD;D;
If@Errr £ Maxerror, Break@DD;

D;H*Find boundary and corner stream function*L
For@m = 2, m £ Nxy - 1, m++,H*left*L
st@@1, mDD =H0.25L*Hst@@2, mDD + st@@Nxy - 1, mDD + st@@1, m + 1DD + st@@1, m - 1DD + dxy^2*vort@@1, mDDL;H*right*L
st@@Nxy, mDD = st@@1, mDD;H*top*L
st@@m, 1DD =H0.25L*Hst@@m + 1, 1DD + st@@m - 1, 1DD + st@@m, 2DD + st@@m, Nxy - 1DD + dxy^2*vort@@m, 1DDL;H*bottom*L
st@@m, NxyDD = st@@m, 1DD;D;H*corners*L

st@@1, 1DD =H0.25L*Hst@@2, 1DD + st@@Nxy - 1, 1DD + st@@1, 2DD + st@@1, Nxy - 1DD + dxy^2*vort@@1, 1DDL;
st@@Nxy, 1DD = st@@1, 1DD;
st@@1, NxyDD = st@@1, 1DD;
st@@Nxy, NxyDD = st@@1, 1DD;H*Calculate vorticity updates*L
For@j4 = 2, j4 £ HNxy - 1L, j4 ++,H*left and right*L
sweq@@j4, 1DD =
-0.25*HHst@@1, j4 + 1DD - st@@1, j4 - 1DDL*Hvort@@2, j4DD - vort@@Nxy - 1, j4DDL -Hst@@2, j4DD - st@@Nxy - 1, j4DDL*Hvort@@1, j4 + 1DD - vort@@1, j4 - 1DDLL ê Hdxy^2L +
Kv *Hvort@@2, j4DD + vort@@Nxy - 1, j4DD + vort@@1, j4 + 1DD + vort@@1, j4 - 1DD -

4.0*vort@@1, j4DDL ê Hdxy^2L;H*top and bottom*L
sweq@@j4, 2DD =
-0.25*HHst@@j4, 2DD - st@@j4, Nxy - 1DDL*Hvort@@j4 + 1, NxyDD - vort@@j4 - 1, NxyDDL -Hst@@j4 + 1, NxyDD - st@@j4 - 1, NxyDDL*Hvort@@j4, 2DD - vort@@j4, Nxy - 1DDLL ê Hdxy^2L +
Kv *Hvort@@j4 + 1, NxyDD + vort@@j4 - 1, NxyDD + vort@@j4, 2DD + vort@@j4, Nxy - 1DD -

4.0*vort@@j4, NxyDDL ê Hdxy^2L;D;H*corners*L
cweq =
-0.25*HHst@@1, 2DD - st@@1, Nxy - 1DDL*Hvort@@1, NxyDD - vort@@Nxy - 1, NxyDDL -Hst@@2, NxyDD - st@@Nxy - 1, NxyDDL*Hvort@@1, 2DD - vort@@1, Nxy - 1DDLL ê Hdxy^2L +
Kv *Hvort@@2, NxyDD + vort@@Nxy - 1, NxyDD + vort@@1, 2DD + vort@@1, Nxy - 1DD - 4.0*vort@@1, NxyDDL êHdxy^2L;H*center points*L

For@jj = 2, jj £ HNxy - 1L, jj ++,
For@kk = 2, kk £ HNxy - 1L, kk ++,

weq@@jj, kkDD =
-0.25*HHst@@jj, kk + 1DD - st@@jj, kk - 1DDL*Hvort@@jj + 1, kkDD - vort@@jj - 1, kkDDL -Hst@@jj + 1, kkDD - st@@jj - 1, kkDDL*Hvort@@jj, kk + 1DD - vort@@jj, kk - 1DDLL ê Hdxy^2L +
Kv *Hvort@@jj + 1, kkDD + vort@@jj - 1, kkDD + vort@@jj, kk + 1DD + vort@@jj, kk - 1DD -

4.0*vort@@jj, kkDDL ê Hdxy^2L;D;D;H*Apply updates*LH*sides*L
For@m = 2, m £ Nxy - 1, m++,
upvort@@m, 1DD = vort@@m, 1DD + dt *sweq@@m, 2DD + Fx@@m, 1DD;
upvort@@m, NxyDD = upvort@@m, 1DD;
upvort@@1, mDD = vort@@1, mDD + dt *sweq@@m, 1DD + Fx@@1, mDD;
upvort@@Nxy, mDD = upvort@@1, mDD;D;H*corners*L

upvort@@1, 1DD = vort@@1, 1DD + dt *cweq + Fx@@1, 1DD;
upvort@@Nxy, 1DD = upvort@@1, 1DD;
upvort@@1, NxyDD = upvort@@1, 1DD;
upvort@@Nxy, NxyDD = upvort@@1, 1DD;H*center*L
For@j3 = 2, j3 £ HNxy - 1L, j3 ++,
For@k3 = 2, k3 £ HNxy - 1L, k3 ++,

upvort@@j3, k3DD = vort@@j3, k3DD + dt *weq@@j3, k3DD + Fx@@j3, k3DD;D;D;H*Update timesteps, retain vorticities and stream functions, maybe print percent done*L
t = t + dt;
vort = upvort;
retvort@@iDD = vort;
retst@@iDD = st;
If@Mod@i, 500D ä 0, Print@iêNt *100.0DD;D;

Return@8retvort, retst<D;D
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In[1]:= Vorticity@st0_, vort0_, dt_, Nt_, Kv_, Maxit_D :=
Module@8it, t, Nxy, dxy, retvort, retst, i, j, k, m, j0, k0, jj, kk, j3, k3, weq, vort,

upvort, st, upst, B, Errr, Maxerror, Fx, sweq, cweq, j4, j5<,H*First, everything is defined*L
Maxerror = 0.001;
B = 1.5;
t = 0.0;
Nxy = Length@st0D;
dxy = 1.0ê HNxy - 1L;
vort = vort0;
st = st0;
upvort = vort0;
upst = st0;
weq = Table@0, 8a, 1, Nxy<, 8b, 1, Nxy<D;
sweq = Table@0, 8a, 1, Nxy<, 8b, 1, 2<D;
retvort = Table@0, 8a, 1, Nt<D;
retst = Table@0, 8a, 1, Nt<D;
Fx = Table@Sin@H8 Pi êNxyL bD, 8a, 1, Nxy<, 8b, 1, Nxy<D;
Errr = 0.0;H*Begin timestep iteration*L
For@i = 1, i £ Nt, i++,
For@it = 1, it £ Maxit, it ++,
weq = st;H*Find center stream function by SOR*L
For@j = 2, j £ HNxy - 1L, j++,

For@k = 2, k £ HNxy - 1L, k++,
st@@j, kDD =H0.25L* B*Hst@@j + 1, kDD + st@@j - 1, kDD + st@@j, k + 1DD + st@@j, k - 1DD +Hdxy^2L*vort@@j, kDDL + H1.0 - BL*st@@j, kDD;D;D

Errr = 0.0;
For@j0 = 1, j0 £ HNxyL, j0 ++,
For@k0 = 1, k0 £ HNxyL, k0 ++,

Errr = Errr + Abs@weq@@j0, k0DD - st@@j0, k0DDDD;D;
If@Errr £ Maxerror, Break@DD;

D;H*Find boundary and corner stream function*L
For@m = 2, m £ Nxy - 1, m++,H*left*L
st@@1, mDD =H0.25L*Hst@@2, mDD + st@@Nxy - 1, mDD + st@@1, m + 1DD + st@@1, m - 1DD + dxy^2*vort@@1, mDDL;H*right*L
st@@Nxy, mDD = st@@1, mDD;H*top*L
st@@m, 1DD =H0.25L*Hst@@m + 1, 1DD + st@@m - 1, 1DD + st@@m, 2DD + st@@m, Nxy - 1DD + dxy^2*vort@@m, 1DDL;H*bottom*L
st@@m, NxyDD = st@@m, 1DD;D;H*corners*L

st@@1, 1DD =H0.25L*Hst@@2, 1DD + st@@Nxy - 1, 1DD + st@@1, 2DD + st@@1, Nxy - 1DD + dxy^2*vort@@1, 1DDL;
st@@Nxy, 1DD = st@@1, 1DD;
st@@1, NxyDD = st@@1, 1DD;
st@@Nxy, NxyDD = st@@1, 1DD;H*Calculate vorticity updates*L
For@j4 = 2, j4 £ HNxy - 1L, j4 ++,H*left and right*L
sweq@@j4, 1DD =
-0.25*HHst@@1, j4 + 1DD - st@@1, j4 - 1DDL*Hvort@@2, j4DD - vort@@Nxy - 1, j4DDL -Hst@@2, j4DD - st@@Nxy - 1, j4DDL*Hvort@@1, j4 + 1DD - vort@@1, j4 - 1DDLL ê Hdxy^2L +
Kv *Hvort@@2, j4DD + vort@@Nxy - 1, j4DD + vort@@1, j4 + 1DD + vort@@1, j4 - 1DD -

4.0*vort@@1, j4DDL ê Hdxy^2L;H*top and bottom*L
sweq@@j4, 2DD =
-0.25*HHst@@j4, 2DD - st@@j4, Nxy - 1DDL*Hvort@@j4 + 1, NxyDD - vort@@j4 - 1, NxyDDL -Hst@@j4 + 1, NxyDD - st@@j4 - 1, NxyDDL*Hvort@@j4, 2DD - vort@@j4, Nxy - 1DDLL ê Hdxy^2L +
Kv *Hvort@@j4 + 1, NxyDD + vort@@j4 - 1, NxyDD + vort@@j4, 2DD + vort@@j4, Nxy - 1DD -

4.0*vort@@j4, NxyDDL ê Hdxy^2L;D;H*corners*L
cweq =
-0.25*HHst@@1, 2DD - st@@1, Nxy - 1DDL*Hvort@@1, NxyDD - vort@@Nxy - 1, NxyDDL -Hst@@2, NxyDD - st@@Nxy - 1, NxyDDL*Hvort@@1, 2DD - vort@@1, Nxy - 1DDLL ê Hdxy^2L +
Kv *Hvort@@2, NxyDD + vort@@Nxy - 1, NxyDD + vort@@1, 2DD + vort@@1, Nxy - 1DD - 4.0*vort@@1, NxyDDL êHdxy^2L;H*center points*L

For@jj = 2, jj £ HNxy - 1L, jj ++,
For@kk = 2, kk £ HNxy - 1L, kk ++,

weq@@jj, kkDD =
-0.25*HHst@@jj, kk + 1DD - st@@jj, kk - 1DDL*Hvort@@jj + 1, kkDD - vort@@jj - 1, kkDDL -Hst@@jj + 1, kkDD - st@@jj - 1, kkDDL*Hvort@@jj, kk + 1DD - vort@@jj, kk - 1DDLL ê Hdxy^2L +
Kv *Hvort@@jj + 1, kkDD + vort@@jj - 1, kkDD + vort@@jj, kk + 1DD + vort@@jj, kk - 1DD -

4.0*vort@@jj, kkDDL ê Hdxy^2L;D;D;H*Apply updates*LH*sides*L
For@m = 2, m £ Nxy - 1, m++,
upvort@@m, 1DD = vort@@m, 1DD + dt *sweq@@m, 2DD + Fx@@m, 1DD;
upvort@@m, NxyDD = upvort@@m, 1DD;
upvort@@1, mDD = vort@@1, mDD + dt *sweq@@m, 1DD + Fx@@1, mDD;
upvort@@Nxy, mDD = upvort@@1, mDD;D;H*corners*L

upvort@@1, 1DD = vort@@1, 1DD + dt *cweq + Fx@@1, 1DD;
upvort@@Nxy, 1DD = upvort@@1, 1DD;
upvort@@1, NxyDD = upvort@@1, 1DD;
upvort@@Nxy, NxyDD = upvort@@1, 1DD;H*center*L
For@j3 = 2, j3 £ HNxy - 1L, j3 ++,
For@k3 = 2, k3 £ HNxy - 1L, k3 ++,

upvort@@j3, k3DD = vort@@j3, k3DD + dt *weq@@j3, k3DD + Fx@@j3, k3DD;D;D;H*Update timesteps, retain vorticities and stream functions, maybe print percent done*L
t = t + dt;
vort = upvort;
retvort@@iDD = vort;
retst@@iDD = st;
If@Mod@i, 500D ä 0, Print@iêNt *100.0DD;D;

Return@8retvort, retst<D;D
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