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Abstract

Technical: A Taylor-Couette system is a system that contains fluid in the
gap between two co-axial rotating cylinders. A Taylor-Couette system undergoes
a transition from a smooth laminar flow, known as circular Couette flow, into a
vortex flow, known as Taylor vortex flow, when the rotation rates of the cylin-
ders reach the critical Reynolds number, Rec. The Reynolds number, Re, is a
function of angular velocity, which describes when the centrifugal forces overcome
the viscous damping and the system transitions. This transition is known as the
primary instability, and is affected by the geometry of the Taylor-Couette system.
Through the use of 3-D printed shells that are attached to the inner cylinder, this
project examined how the primary instability threshold is affected by changing
the radius ratio of the cylinders. We then measured the angular velocities, and
calculated the Rec, where the transition between circular Couette flow into Tay-
lor vortex flow occurred. Our data suggest that increasing the radius ratio also
increases the Rec.

General: The Taylor-Couette system is made up of two rotating cylinders,
an inner cylinder and an outer cylinder. In between the inner and outer cylinders
is a gap filled with fluid. Depending on the rotations rates of the cylinders, the
fluid in the gap exhibits specific flow states. At low rotations rates, the fluid state
is a smooth laminar flow. As the rotation rates of the cylinders increase past a
specific angular velocity, the fluid state transitions to a vortex flow. This transition
is known as the primary instability of the system. The primary instability is
influenced by the geometry of the system. Therefore, by adjusting the radii of
the cylinders, we can change the angular velocity needed to cause the system
transition from laminar to vortex flow. This project examined how the primary
instability threshold is affected by adjusting the radii of the cylinders through the
use of 3D printed shells that attach to the inner cylinder. We then measured the
angular velocities needed to cause the system to undergo transition and found
that if the radius ratio increases, so does the angular velocity needed to cause
transition.
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1 Introduction

Turbulent flow refers to a flow regime that is random, nonlinear, diffusive, dissi-
pative, and has high levels of fluctuating vorticity. Turbulence is present within a
variety of natural occurring flows like ocean currents, and man-made flows, such
as the wake left behind a boat. Turbulence occurs when the inertial forces within
a flow become strong enough to overcome the effects of viscosity [CKA07]. The
relative importance of inertial effects compared to viscous effects is captured by
the dimensionless quantity known as the Reynolds number, Re. A small Re indi-
cates that the viscous forces are stronger than the inertial forces, and results in a
laminar flow. A laminar flow is characterized by layers of fluid that slide over one
another resulting in an overall smooth flow. As Re becomes larger, the inertial
forces overcome the viscous forces and the laminar flow changes into a turbulent
flow [Eck07].

Knowing when a particular flow is going to become turbulent is useful for a
variety of practical reasons. For example the prediction of when turbulence will
occur is used in weather prediction. Deriving a general theory that is able to
predict when a flow will become turbulent is not only important but it is still
ongoing. The transition from laminar to turbulent flow was studied in the past1,
and is still is being studied. Research into this problem led scientists to look for
easier to control, and mathematically tractable, systems to study turbulence with.
The search for systems that followed these criteria eventually lead to the discovery
of the Taylor Couette system [Tag94].

The Taylor Couette system is a widely studied flow system consisting of two
co-axial independently rotating cylinders. The configuration of the cylinders are
shown in Fig. 1.1. Where h is the height of the system, ri is the radius of the
inner cylinder, and ro is the radius of the outer cylinder. In between the inner
and outer cylinders, there is a gap where the fluid flow is located. This system
is well known for its ability to produce a wide variety of flow states depending

1One example of this is the research of Bénard cells [Kos93] and [BE]. More recent research
has focused on the subcritical transition to turbulence in shear flows. This is discussed in [Cha02]
and [BC12]
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Figure 1.1: An example of a basic Taylor Couette system. There are two inde-
pendently rotating cylinders, an outer one and an inner one. In between the two
cylinders is a gap where fluid is able to flow. As for the variables, h is the height
of the system, ri is the radius of the inner cylinder, and ro is the radius of the
outer cylinder.

on the rotation rates and relative sizes of the cylinders [ALS86]. As one or more
of the cylinders begins to rotate slowly, the resulting flow in between the two
cylinders becomes a laminar flow known as circular Couette flow. If the cylinder
rotation rates continue to increase, then the laminar flow changes to a vortex flow
called Taylor vortex flow. The point where circular Couette flow changes into
a Taylor vortex flow is known as the primary instability of the system. As the
rotation rates of one or more of the cylinders increases, the vortex flow becomes
increasingly unstable and more chaotic [Tag94].

Various factors can influence the onset of primary instability of the Taylor
Couette system. These factors not only include the rotation rates of the cylinders,
but also the geometry of the system characterized by Γ, the height of the test cell
over the gap width, and η the radius ratio, given by radius of the inner cylinder
divided by the radius of the outer cylinder [Tag94]. Most research; however,
focuses on the parts of the cylinders that are easier to control, such as the rotation
rates of the system. This leaves the effect the system’s geometry has on the
primary instability relatively untested.2

My thesis looks at the effect eta has on transition between circular Couette flow

2The radius ratio dependance was previously studied by Taylor who used wax to form the
inner cylinder [Tay23]. This was also researched by [LTK+87] and [MPGL14] later.
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and Taylor couette flow. The next chapter focuses on the background information
related to my thesis.
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2 Background

This section focuses on what Taylor Couette flow is, its related equations, and
what the primary instability is and how η effects it.

2.1 Taylor Couette Flow

Taylor Couette flow refers to the fluid flow within the system that was originally
designed in 1888 by A. Mallock [Mal88] and M. Couette [PBCP94]. Originally
used for examining the viscous behavior of fluids, a Taylor Couette system con-
sists of two independently rotating cylinders as shown in Fig. 1.1. The flow
created between rotating cylinders is interesting because small increases to the
inner cylinder’s angular velocity can produce easily distinguishable fluid states of
increasing complexity [ALS86]. These fluid states vary considerably. A low inner
angular velocity results in a simple featureless flow. This flow is referred to as
circular Couette flow and can be seen in Fig. 2.1. As the speed of the inner
cylinder increases past a critical point, the circular Couette flow changes to a flow
characterized by toroidal vortices [Kos93].

This change from an axially symmetric flow to a stack of toroidal vortices was
studied by G.I. Taylor in 1923, where he was able to quantitatively predict and
experimentally confirm the existence of a flow instability based on the speed at
which the inner cylinder rotates. Taylor found that as the flow became unstable, it
was replaced with a pattern where the fluid traveled in layered vortices following
helical paths around the cylinder [Tay23]. The vortices are a result of inertial
forces pushing fluid outwards until the fluid meets the outer cylinder. When this
happens, the fluid is forced to overturn on itself, which creates the vortex pattern
[Tag94]. These vortex patterns are now known as Taylor vortices, which can be
seen in Fig. 2.2.

Initial experiments using the system were done by only rotating the inner
cylinder. However, a wide variety of flow regimes can be found by simply varying
the rotation rates of one or both of the cylinders [ALS86]. The rotation rates
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of the cylinders are not the only factors that can influence which flow regime is
exhibited within the Taylor Couette system, the geometry of the system can also
play a role.

Figure 2.1: An example of circular Couette flow within a basic Taylor Couette
system. h is the height of the system, ri is the radius of the inner cylinder, ro is
the radius of the outer cylinder, and Ωi and Ωo are the angular velocities of the
inner and outer cylinders, respectively. The darkest purple represents the inner
cylinder while the light blue represents the outer cylinder wall.

2.2 Navier-Stokes Equation and Reynolds Num-

bers

The movement of viscous fluids is governed by the Navier-Stokes equations. Be-
cause our flow is incompressible, the incompressible form of the Navier-Stokes
equation is used to find the Reynolds number. The Reynolds number is derived
by non-dimensionalizing the incompressible Navier Stokes equation [Tag94]

∂u

∂t
+ (u· ∇)u = −∇p+

1

Re
∇2u, (2.1)

where u is a velocity field, p is a pressure field, and the Reynolds number is Re.
The non-dimensional Reynolds number is expressed as [Tag94]

Re =
rΩd

v
, (2.2)
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Figure 2.2: An example of Taylor vortex flow within a basic Taylor Couette sys-
tem. Ωi is the angular velocity of the inner cylinder. Each purple ring represents
a vortex layer with the white arrows showing the direction.

where r is the radius of the cylinder, Ω is the cylinder’s angular velocity, d = ro−ri,
and ν is the kinematic viscosity of the fluid.

A Taylor Couette system has two Reynolds numbers, as there are two cylinders.
Rei is the Reynolds number for the inner cylinder, and Reo is used for the Reynolds
number of the outer cylinder. These two terms come from the inner cylinder
angular velocity, Ωi and the outer cylinder angular velocity Ωo. Therefore, the
two Reynolds numbers, Rei and Reo are

Rei =
riΩid

v
, (2.3)

and

Reo =
roΩod

v
, (2.4)

These definitions are convenient, because as long as the geometry of the sys-
tem does not change, the Reynolds number roughly corresponds to the non-
dimensional linear velocity of the respective cylinder’s surface. The Reynolds
number is used as a measure of the relative strength of the inertial to viscous
forces. So when, the Reynolds number reaches a certain value, the inertial forces
overcome the viscous forces and the flow transitions from circular Couette to Tay-
lor vortex [Tag94].
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The geometry of the Taylor Couette system can also influence what flow regime
is exhibited. Taylor Couette system geometry is h, ri, and ro. The quantities that
define the system are the two Reynolds numbers from before, Rei and Reo, η,
and Γ, the aspect ratio which is expressed as Γ = h

d
, where d = ro − ri [Tag94].

η captures the curvature of the flow while Γ captures the flow’s spanwise aspect
ratio [BE].

2.3 Primary Instability

As stated before, when the cylinders’ rotation rates reach a certain speed the
laminar circular Couette flow will transition to a Taylor vortex flow. The primary
instability occurs when the Taylor number, and by extension, the inner Reynolds
number, reaches a critical value. This is because the equation of the Taylor
number is a function of Rei. When the Taylor number reaches a critical number,
which is around 1700 [Kos93], the system undergoes transition. This number
is also referred to as the critical Taylor number, Tac. The Taylor number is a
dimensionless value described by the equation [Tag94]

Ta = 4(Rei)
2 1− η
1 + η

(
1− µ

η2

)
, (2.5)

where η is the ratio of the cylinders radii, µ is the ratio of angular velocities
of both cylinders, and Rei is the inner Reynolds number.

There are two things to note from Eq. 2.5. First, the Taylor number is
dependent on the Reynolds number, so when the inner Reynolds number reaches
a certain value the Taylor Couette flow will undergo transition. This Reynolds
number is known as Rec or the critical Reynolds number. Second, the Taylor
number is dependent on the geometry of the system. In particular, one can see
that η influences when the critical Taylor number is reached. This is because
the Taylor number is a function of η, µ, and Re. Therefore, the geometry of
the system has an effect on when the circular Couette flow will become unstable
[Tag94].

The primary instability is indicated by the red line in Fig. 2.3. Early exper-
iments often only rotated one cylinder. This means that only Rei or Reo was
varied, not both [PBCP94]. When Rei reaches a certain value, the flow will tran-
sition from circular Couette flow, below the red line, to Taylor vortex flow, above
the red line [ALS86]. As stated earlier, η and Γ influence the system. This means
for different values of η and Γ, the critical value at which the system transitions
from circular Couette to Taylor vortex will also change.
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Figure 2.3: Phase diagram shows different flow regimes at varying values for Rei

and Reo. The horizontal axis is Reo, and the vertical axis is Rei. A negative Reo

indicates counter rotation. The primary instability is highlighted by the red line.
The system had an η value of 0.883 and a Γ value of 30. This phase diagram is
taken from [ALS86].
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2.3.1 Primary Instability and the relation to η

The effect η has on the transition to turbulence is relatively untested1. Most
experiments involving a Taylor Couette system vary the rotation rates of the
cylinders as the means to study the system. Rather than changing the geometry
of the system multiple times for each experiment, it is far easier to vary the
rotation rates of the individual cylinders. If, however, one wanted to change the
inner radius, one would have to use different sized inner cylinders for each data set.
Similarly, if one wanted to adjust the aspect ratio Γ, one would have to physically
adjust the height of both cylinders. In the next chapter we will discuss how we
went about increasing η and conducting the experiment.

1See [Tay23], [LTK+87], and [MPGL14].
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3 Methods

3.1 Preparing the Taylor Couette System

My project was to measure the effect that the geometry of the system has on the
transition to turbulence. To accomplish this I needed to be able to adjust the radii
and height of the system. Traditionally, this would have not only been incredibly
time consuming, but it would have also been very expensive as it would require
replacing the cylinders themselves. However, this was accomplished by using 3D
printed cylindrical shells. These shells allow the radius of the inner cylinder to be
adjusted. However, when we are manipulatingη, the quantity that directly affects
Ta, we also affect Γ, the aspect ratio. Γ, however, is something that needs to
remain constant even though it does not directly effect Ta. This is because Γ has
an effect on the stability of the flow, therefore it needs to remain constant[Avi12].
Looking back on the equation Γ = h

d
. Γ can be kept constant by manipulating

the height of the system. Fig. 3.2 shows the Taylor Couette system used in this
experiment. In between the two white rings is the test section. These white rings
can be moved up and down, and by adjusting them, the height of the system can
be set. Through the use of the 3D printed cylindrical shells and by adjusting the
distance in between the white rings, η can be manipulated without changing Γ.

A small problem occurred when creating the 3D printed cylindrical shells. The
shells had a very rough surface as can be seen on the left part of Fig. 3.1. A jagged
surface can influence the flow of the Taylor Couette system. Therefore there was
a need to smoothen the surface of the shells. This was done through a process
known as acetone finishing. ABS plastic, the plastic the 3D printer uses, melts
when exposed to acetone. So cold acetone vapors were used to melt the outer
layer of the shell and smoothen it out. The radii of the cylinder before the shell
was attached was 47.305±0.005 cm for the inner radius. After attaching the shell
the inner cylinder’s radius was 51.245 ± 0.005 cm. Finally the outer cylinder’s
radius was 59.44± 0.005 cm.

The fluid used in the system was a combination of shaving cream, glycerine,
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Figure 3.1: Picture is of the 3D printed cylindrical shells. An unfinished shell with
the rough surface is to the left. On the right is a shell after undergoing acetone
finishing. The holes in the center of the shells are there to attach the shell to the
inner cylinder.

Figure 3.2: The Taylor Couette apparatus used in this thesis. The inner cylinder
was built by previous summer research students working for Professor Borrero.
The rest was built at the University of Texas at Austin. The outer cylinder is
clear and the inner cylinder is black to increase the visibility of the flow in between
the two cylinders. The test section is located between the two white rings, the
distance in between the two white rings is the system’s height, h.
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and water. Shaving cream was used because shaving cream contains reflective
particles that make it easier to see the various fluid states produced. The viscosity
of the solution was measured through the use of a viscometer. The viscosity was
measured at 20◦ Celsius. The viscometer’s constant at 20 degrees Celsius was
0.1405 mm2/s. The kinematic viscosity measured was 10.89 ± 3 mm2/s.

The motors, the black boxes on the top of the system shown in Fig. 3.2, are
attached to a computer and are controlled by a program created in LabView. Each
motor is attached to a cylinder, allowing the program to rotate both the inner
and outer cylinders at specific velocities. The motors are able to both co-rotate
and counter rotate the cylinders.

3.2 Performing the experiment

The system was fully assembled and is shown in Fig. 3.2, and the prepared fluid
filled the gap in the apparatus. Through the use of the LabView program, the
outer cylinder was then rotated at various velocity settings.

At each outer cylinder velocity setting, the inner cylinder was first rotated at
a speed that resulted in circular Couette flow, the current inner angular velocity
became ωfloor. After waiting 5 - 10 minutes to confirm that rotating at ωfloor

resulted in circular Couette flow, the rotation rate was then increased and the
system was run at this speed for 5 - 10 minutes. If the flow state was circular
Couette flow, then the current inner angular velocity is the new ωfloor and the
speed was increased again. This process repeated until the system underwent
transition to Taylor vortex flow. The transition can be seen by eye as shown in
Fig. 3.3. This velocity was noted as ωceil, and then the inner cylinder rotation
rate returned to the ωfloor. The system was run at ωfloor for 5-10 minutes before
we increased the rotation rate to some point in between ωceil and ωfloor. If the
system did not undergo transition, then ωfloor is now the current inner cylinder
velocity. If the system did undergo transition, then the current velocity became
the new ωceil and the velocity of the inner cylinder was slowed down to ωfloor, After
another 5 - 10 minutes we increased the inner angular velocity again. This process
repeats until ωceil and ωfloor were nearly equal, for example ωceil = 1020 Pos/s and
ωfloor = 1030 Pos/s. Then the median in between ωceil and ωfloor was recorded as
the critical inner angular velocity for the corresponding outer angular velocity, for
example the critical inner velocity was 3216 Pos/s and the outer velocity was -800
Pos/s. This process was repeated for various outer cylinder angular velocities and
each critical inner velocity being recorded in a spreadsheet.

The system was changed by attaching the 3D printed shell to the test zone.
The adjusted testing zone can be seen in Fig. 3.4. Then the testing process was
repeated once more using the same outer cylinder velocities. The critical inner
velocities were recorded in a spreadsheet.
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Figure 3.3: Image of what circular Couette flow and Taylor vortex flow look like
in the apparatus. The left is circular Couette flow, and the right is Taylor vortex
flow.

Figure 3.4: Image of the test zone with and without a shell attached. The left
side is the test zone without the shell, the right side is the test zone with the shell
attached. Notice that the heights are not the same as Γ needs to be kept constant.
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4 Results

4.1 Calculation of Reic

A Matlab program was used to calculate each Reic using the formula Re = rΩd
ν

,
with r being the inner cylinder’s radius (mm), Ω being the inner critical velocity
(rad/s), d being the gap between the inner and outer cylinders (mm), and ν being
the kinematic viscosity of the solution (mm/s2). The kinematic viscosity of the
fluid used was 10.88 ± 3 mm2/s. The original ri was 47.30 ± 1 mm. ro was a
constant 59.44 ± 0.1 mm. This resulted in an η value of 0.796 for the original
system. The Γ of the original system was 4.97. After the shell was attached and
the system was adjusted accordingly, ri became 51.24 ± 1 mm. This resulted
in an η value of 0.862 and a Γ of 4.19. The Γ difference is from some problems
encountered in the acetone finishing process that made the shell’s height shorten.
The results of the Reic calculations are summarized in Fig. 4.1.

4.2 Implications

Figure 4.1 indicates that the manipulation of η will cause the primary instability’s
corresponding critical Reynolds number to increase or decrease. This is dependent
on whether η was increased or decreased. If η was increased, Reic should increase
as well. Similarly if η decreases, Reic should decrease as well. In addition if
compared to Fig. 2.3 where the η value was 0.883 and Γ was 30, the shape of
curves in Fig. 4.1 match the corresponding part, where Reo is near zero, of the
primary instability curve. Both have similar shapes to a parabola. The curve for
η = 0.862 however, seems to indicate that changing η values does have some effect
on the slope of the curve. However, the main difference seems to be that changing
η values affect whether Reic increases or decreases.

This agrees with the Taylor number equation, Eq. 2.5 because if η increases,
both 1−η

1+η
and 1 − µ

η2
decrease. This means that for Tac to stay the same, Reic

must increase to compensate.
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Figure 4.1: Critical Reynolds numbers for different η values. This graph depicts
the Reo and their corresponding Reic for both η = 0.796 and η = 0.862.
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5 Discussion

5.1 Replication and further research

Adding more sets of data with different η values is the next step for this research.
The main problem with this research was it took too much time to create the 3D
printed shells. We only managed to get one workable shell out of 16 tries. The
3D printer can take around four hours to print one cylindrical shell. However, the
main time sink occurred during the acetone finishing process, which could take
up to three days at the longest.

The original reason acetone finishing was used was to smoothen the rough
surface of the shells. However, while this process does smoothen out the surface
of the shells, it also creates small blemishes. After acetone finishing, the surface
of the shell would often have small holes, uneven surfaces, or even bubbles. When
these problems occurred, we had to reprint the shell and acetone finish the shell
again. In addition, the shells were printed so that they would have a tight fit
around the inner cylinder, so that the shell would not be lopsided when attached.
Often times, the shells would fit tightly, to inner cylinder before finishing, but after
finishing they would no longer fit, which would cause us to have to create another
shell. It is because of this that we have come to the conclusion that 3D printed
shell, while a cheap and fast way to replicate changes to the inner cylinder, are
not a great way to increase the radius of the inner cylinder. For better accuracy
specially crafted exchangeable inner cylinders would be a better option; however,
these would be far more expensive.

5.2 Smaller η values

There was a severe limitation to how we could manipulate the η values in this
experiment because we were attaching a shell to the inner cylinder. The η values
we could manipulate could only be equal to 0.796 or greater. So further experi-
mentation could be done on a system with lower η values than 0.796. From this
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experiment’s results it would seem to indicate that increasing the η values would
also increase Rec but this my not be true for η values less than 0.796. This requires
further experimentation.

5.3 Kinematic Viscosity

Kinematic viscosity is a constant used in calculations for the Reynolds numbers.
However, kinematic viscosity does actually change in response to temperature. As
the Taylor Couette system currently has no way to regulate the temperature of
the fluid, the viscosity could be changing and creating noisy data. If some way to
regulate the temperature of the fluid was found, tests could be done with constant
temperatures. Tests could even be done at different temperatures which may also
generate interesting data.
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6 Conclusion

The primary instability of the Taylor Couette system is the point that the smooth
laminar circular Couette flow transitions into the Taylor vortex flow. The primary
instability occurs when Ta > Tac, and because Ta is a function of Re, the primary
instability also occurs when Re > Rec. We studied a Taylor Couette system before
and after η increased through the used of 3D printed cylindrical shells. These
shells attach to the inner cylinder, increasing the inner cylinders radius, thereby
increasing η. Through the use of these shells we found that when η is increased,
Rec also increases. We believe this is to compensate for both the 1−η

1+η
and the

1− µ
η2

terms in the equation for Ta decreasing. This general trend is depicted in
the curves shown in Fig. 4.1.

However, the data samples taken within this experiment are small because the
shells used to increase η took too long to make. In addition to taking a long time
to create the shells, the data are likely slightly inaccurate because the process
used to finish the shells was extremely inconsistent, which may have made the
surface of the shells uneven. Thus, further testing is needed, both for increasing
η and decreasing it. Therefore, while it may take longer and be more expensive
to create, we would suggest having specially made inner exchangeable cylinders.
These cylinders will have a greater chance of having more consistent and accurate
data than the hastily made shells of inferior quality. With better and more thor-
ough data we may be able to gain a greater understanding on when the primary
instability in a Taylor Couette system will occur which will greatly increase our
knowledge about fluid dynamics.
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