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Abstract

General Abstract: Turbulence in fluids is not well understood but has
many implications for the scientific and industrial communities. By utilizing a
Taylor-Couette system, a fluid dynamics system that allows for controlled induc-
ing of turbulence, we studied how turbulence evolves from disturbances to smooth
flows. The Taylor-Couette system consists of two independently-rotating concen-
tric cylinders with a fluid filled gap. By rotating the outer cylinder at varying
rotational velocities, the Reynolds number, a value that describes a flow’s be-
havior, was adjusted. At set Reynolds numbers, the smooth Taylor-Couette flow
was agitated by an injection system which produces a jet of fluid from the inner
cylinder of the system. By perturbing the laminar flow, it is possible to draw con-
clusions regarding how strong a perturbation is required to induce turbulence at
specific Reynolds numbers. By conducting this experiment, conclusions can then
be drawn regarding how natural-world fluid systems of varying Reynolds numbers
react to perturbations.

Technical Abstract: Turbulence is characterized by complex spatiotemporal
dynamics within a fluid and because of this extreme complexity, turbulence is not
a well understood phenomenon. This complexity is caused by flows constantly
changing velocity and direction making for chaos. Alternatively, laminar flows
have fluid that smoothly slides past itself. The Reynolds number is a dimension-
less quantity that tells whether a fluid’s motion is viscosity or inertia dominated.
As the Reynolds number increases, the spatiotemporal dynamics of a flow become
increasingly complex and become more likely to give way to turbulence super-
critically. A subcritical transition to turbulence is when a stable laminar flow
suddenly erupts into turbulence due to a perturbation or disturbance in a flow.
By utilizing a Taylor-Couette system, a system composed of two concentric and
independently-rotating cylinders with a fluid filled gap, this question can be ana-
lyzed. The Taylor-Couette produces flows by rotating one or both of the cylinders.
By rotating only the outer cylinder, a linearly stable flow is created. By perturb-
ing this flow, subcritical transitions to turbulence were analyzed to understand the
relationship between the minimum perturbation amplitude to induce turbulence
and the Reynolds numbers at which that turbulence was induced.
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1 Introduction

In the natural world, the state of fluids is largely dominated by turbulence, a
chaotic state with complex spatiotemporal dynamics. In many cases, this turbu-
lence erupts suddenly from a previously smooth, or laminar, flow. The transition
to turbulence in a majority of these flows is not well understood, but in experimen-
tal settings with controlled environments, it can be studied. One such controlled
environment is the Taylor-Couette system which was utilized in the studies doc-
umented in this thesis.

One of the greatest questions in the area of fluid dynamics is ”why and how
does turbulence evolve from seemingly stable laminar flows?” There is very little
understanding with regards to the transition to turbulence, but different types of
transitions are identifiable. The supercritical transition occurs through bifurca-
tions leading to ever-increasing levels of complexity in the flows until the flow is
so complex that it is turbulent. A subcritical transition to turbulence, however,
occurs nearly instantaneously in settings that are not particularly conducive to
the evolution of turbulence and is thus fairly mysterious.

During a supercritical transition to turbulence, a value called the Reynolds
number Re increases along with the complexity of the flow whereas the complex-
ity of a subcritical transition stagnates until it seemingly randomly erupts into
turbulence via a subcritical transition. The Reynolds number is a key parameter
when studying flows as it describes whether a flow is dominated by the viscosity
of the fluid or the inertia of the fluid’s movement. To briefly describe how the
Reynolds number affects a flow, it can be said that as the Reynolds number for a
flow increases, the complexity of the flow increases. An easy to visualize example
of this is a sink faucet. If the faucet is not fully open, the water will drip out
slowly. As the faucet is opened more, the water will begin to flow out in a clear
and smooth line. Usually, when the faucet is opened all the way, the water will
appear bubbly, less smooth, and chaotic; this is turbulence.

Aside from purely scientific reasons, understanding the transition to turbu-
lence has vast practical applications. Due to the complexity of a turbulent fluid’s
dynamics, it is very good at mixing. Therefore, it would be helpful in settings
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that require mass homogenization such as ensuring that a chemical reaction has
taken place fully or that a mixture or solution has reached maximum homogene-
ity. Turbulence is also a player in determining the amount of drag on objects
that move through fluids. Because drag forces oppose the movement of an object
in the direction that it is travelling, it reduces efficiency in vehicles such as cars,
planes, trains, and boats. In industrial settings, being able to induce or halt the
evolution of turbulence is an invaluable resource.

To assist in the understanding of turbulence, developments in the apparatus
of studying fluid dynamics have been made. One such apparatus is the Taylor-
Couette system. Comprised of two rotating concentric cylinders with a fluid-
filled space between them, the Taylor-Couette system is an excellent resource
for studying transitions to turbulence. The Taylor-Couette system is capable of
creating a variety of flow types and producing turbulence both supercritically and
subcritically [Col65]. Because of these capabilities, the Taylor-Couette system
is very versatile in research applications. The variety of conditions that can be
created in a Taylor-Couette system are primarily results of the multitudinous
parameters that can be adjusted on the system.

Figure 1.1: The Taylor-Couette system’s physical attributes are numerous making
for a versatile system that is able to exhibit multiple behaviors dependent upon
its configuration. The parameters of the Taylor-Couette system are the inner
and outer radii (ri and r0), the length of the cylinders (L),the axial aspect ratio
(L/2ri/o) and the angular velocities of the inner and outer cylinders (ωi and ωo). A
final parameter is given by d which describes the gap width between the cylinders
(ro − ri) [MJG+14].
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Figure 1.1 shows a schematic of a Taylor-Couette system displaying the inner
and outer cylinders along with the dimensions of the system. All of the parameters
associated with the Taylor-Couette system (other than L) affect the Reynolds
number which is a key player in the study of transitions to turbulence. A hole
on the inner cylinder is present in the iteration of the Taylor-Couette system that
will be in use throughout this experiment. From the hole, jets of fluid can be
injected into the system to disturb the flow. Henceforth known as perturbations,
these disturbances of variable strength are introduced into otherwise laminar flows
and are used to induce turbulence through a subcritical transition. By triggering
turbulence in this way, we can see how the amplitude of the smallest perturbation
needed to induce turbulence scales with the Reynolds number which helps to
distinguish between different proposed mechanisms for transition.

Another feature of the Taylor-Couette system used for this experiment is the
addition of ring-shaped end caps attached to the inside of the outer cylinder to
adjust the height dimension of the system. The end caps will be on either side of
the jet to create the area that will be under examination in this experiment. By
using the jet in conjunction with the end caps, turbulence can be brought about
in a relatively controlled manner, and this is what the experiment outlined in this
thesis will focus on.

The rest of this thesis is structured as follows: Chapter 2 will discuss the
Reynolds number in depth and give an insight into how the Taylor-Couette system
functions. It will also discuss laminar and turbulent flows, how they relate to the
Reynolds number, and how they are created in a Taylor-Couette system. Chapter
3 will explain the experimental apparatus of the experiment and the experimental
procedure in detail. Chapter 4 will discuss the results of this experiment and
what future work may be made to produce more and better data. Lastly, Chapter
5 concludes the thesis with results and a brief discussion of the experiment’s
progress.
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2 Background

In this chapter, the Taylor-Couette system will be explained in more detail. Lam-
inar flows and turbulence will also be discussed along with how they are related to
and affected by the Reynolds number. Examples of previous work will be included
to better illustrate this material.

2.1 The Navier-Stokes Equation and Reynolds

Number

The Reynolds number is a dimensionless value used to describe whether a fluid’s
movement is dominated by viscosity or inertia. This value can be derived from
the Navier-Stokes equation in the context of an incompressible fluid. The Navier-
Stokes equation is essentially Newton’s Second Law F = ma or F/V = aρ in the
context of fluid dynamics and is given in dimensional form by

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u (2.1)

where ρ is the density of the fluid, V is the volume of the fluid, and u is the
velocity of the fluid. This yields the pressure gradient and the viscous stresses
respectively which equate to the force over unit volume. Essentially, this equation
describes the forces on a small volume of fluid within a flow.

To non-dimensionalize this equation, non-dimensional scaling factors can be
chosen for each of the parameters. So, in Equation 2.1, because u can be thought
of as a function of x and t, scaling factors must also be chosen for these variables.
The scaling factors usually take the form of

u = u′U, x = x′L, t = t′
L

U
, and p = p′P (2.2)
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where p is the local pressure that the volume of fluid is experiencing from
the flow around it. The volume may experience stresses normal to its surface or
viscous stresses caused by the flows around it pulling or pushing it parallel to its
surface. Once the scaling factors are plugged in for their respective values, the
constants of the equation can be eliminated yielding the form

∂u’

∂t
+ (u’ · ∇′)u’ = − P

ρU2
∇′p′ + µ

ρUL
∇2u’ (2.3)

where µ is the dynamic viscosity of the fluid.

By allowing P to equal ρU2 and letting Re = ρUL
µ

= UL
ν

where ν is the
kinematic viscosity of the fluid, the final non-dimensional form of the Navier-
Stokes equation with the Reynolds number included is

∂u’

∂t
+ (u′ · ∇′)u′ = −∇p′ + 1

Re
∇2u′ (2.4)

Despite the Reynolds number being an effective quantifiable trait of a fluid
mechanical system and a fluid’s flow, whether or not it defines a critical point
at which a fluid becomes turbulent is contextual to the type of flow. Reynolds
numbers are used to predict when or if a fluid will become turbulent, but there
are cases in which a high Reynolds number does not correspond to turbulence.
For example, in studies of a viscous fluid flowing through circular pipes, the range
of Reynolds numbers at which the pipe flow transitioned to turbulence has a very
large span. Reynolds numbers for the transition to turbulence in pipe flows have
been found to range from near 1000 to greater than 3000 [Eck07]. This means that
for some Reynolds numbers that should have indicated the presence of turbulence,
a laminar flow was present and vice versa, which is very problematic if one wishes
to define a critical Reynolds number for the transition to turbulence in a system.

In the context of a Taylor-Couette system, the Reynolds numbers are

Rei =
riωid

ν
,Reo =

roωod

ν
(2.5)

where Rei and Reo represent the inner and outer cylinders’ Reynolds numbers,
respectively. The inner and outer radii are represented by ri and ro, the angular
velocities of the cylinders by ωi and ωo, the width of the gap between the cylinders
d, and the kinematic viscosity of the fluid by ν.

In a flow with viscosity-dominated movement, indicating a Reynolds number
lower than one, the fluid is likely to be laminar. This could be due to a high
viscosity, or in the context of a Taylor-Couette system, a low angular velocity or
small gap between the cylinders. However, in the case of a high Reynolds number,
the nature of the fluid’s motion is more suitable for the evolution of turbulence.
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A laminar flow state occurs when a fluid is able to cleanly and smoothly slide
past itself in layers [Bat67]. These layers can be conceptualized by imagining a
very viscous fluid such as molasses. If molasses was sliding down an incline, layers
of the fluid would be moving over other layers slowly and smoothly. The flow
of the molasses would be very predictable and not exciting to witness, and this
is due to its dynamics’ low level of spatiotemporal complexity. By and large, a
laminar flow will remain laminar unless the flow conditions are altered. In theory,
some laminar flows will remain laminar for any Reynolds number.

In a fluid exhibiting complex turbulent dynamics, the Reynolds number is
relatively high, certainly greater than one, indicating an inertia dominated flow.
The dynamics of a turbulent fluid are complex because different regions of the
fluid are continually changing in both velocity and direction in a chaotic manner.

2.2 Transitions to Turbulence

While not precisely the objective of the experiments outlined in this thesis, the
discussion of a critical Reynolds number offers a helpful perspective in under-
standing the transition to turbulence. As the Reynolds number is increased, the
fluid’s state becomes gradually more dominated by the inertia of the fluid rather
than being kept laminar by its viscosity. Eventually, when the Reynolds number
becomes high enough and reaches a critical point, the fluid will transition from
a laminar flow to turbulence [ME05]. A supercritical transition to turbulence
is characterized by the presence of increasingly complex spatiotemporal dynam-
ics in the fluid as the Reynolds number increases and approaches a value that
corresponds to the fluid being entirely characterized as turbulent. Supercritical
transitions are observed in a multitude of flows such as specific Taylor-Couette
flows and in certain instances of plane channel flows [STS91] [ALS86].

Unlike the transition to turbulence observed in supercritical scenarios, subcrit-
ical transitions occur without a gradual increase in the complexity of the fluid’s
dynamics. Instead, the fluid remains stably laminar with no evolution of regions
of complex spatiotemporal dynamics and then, when perturbed at a Reynolds
number that allows turbulence to form, erupts into turbulence. As discussed ear-
lier, however, the Reynolds number can vary greatly. This makes it extremely
difficult both to predict turbulence in such flows and understand why and how
turbulence evolves from a laminar flow in such an abrupt fashion. Subcritical
transitions occur in flows such as pipe flows and Taylor-Couette flows dominated
by rotation of the outer cylinder when perturbations are introduced to the flows
[BC12].

]Laminar versus Turbulent Flows
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Figure 2.1: The subcritical transition to turbulence evolves from a perturbation
and, in a Taylor-Couette system can form patterns such as spiral turbulence.
Spiral turbulence can occur from perturbations in large Taylor-Couette systems
when the outer cylinder rotates independently [BC12].

A laminar flow state occurs when a fluid is able to cleanly and smoothly slide
past itself in layers [Bat67]. These layers can be conceptualized by imagining a
very viscous fluid such as molasses. If molasses was sliding down an incline, layers
of the fluid would be moving over other layers slowly and smoothly. The flow
of the molasses would be very predictable and not exciting to witness, and this
is due to its dynamics’ low level of spatiotemporal complexity. By and large, a
laminar flow will remain laminar unless the flow conditions are altered. In theory,
some laminar flows will remain laminar for any Reynolds number.

In a fluid exhibiting complex turbulent dynamics, the Reynolds number is
relatively high, certainly greater than one, indicating an inertia dominated flow.
The dynamics of a turbulent fluid are complex because different regions of the
fluid are continually changing in both velocity and direction in a chaotic manner.

2.3 Transitions to Turbulence

While not precisely the objective of the experiments outlined in this thesis, the
discussion of a critical Reynolds number offers a helpful perspective in under-
standing the transition to turbulence. As the Reynolds number is increased, the
fluid’s state becomes gradually more dominated by the inertia of the fluid rather
than being kept laminar by its viscosity. Eventually, when the Reynolds number
becomes high enough and reaches a critical point, the fluid will transition from
a laminar flow to turbulence [ME05]. A supercritical transition to turbulence
is characterized by the presence of increasingly complex spatiotemporal dynam-
ics in the fluid as the Reynolds number increases and approaches a value that
corresponds to the fluid being entirely characterized as turbulent. Supercritical
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transitions are observed in a multitude of flows such as specific Taylor-Couette
flows and in certain instances of plane channel flows [STS91] [ALS86].

Unlike the transition to turbulence observed in supercritical scenarios, subcrit-
ical transitions occur without a gradual increase in the complexity of the fluid’s
dynamics. Instead, the fluid remains stably laminar with no evolution of regions
of complex spatiotemporal dynamics and then, when perturbed at a Reynolds
number that allows turbulence to form, erupts into turbulence. As discussed ear-
lier, however, the Reynolds number can vary greatly. This makes it extremely
difficult both to predict turbulence in such flows and understand why and how
turbulence evolves from a laminar flow in such an abrupt fashion. Subcritical
transitions occur in flows such as pipe flows and Taylor-Couette flows dominated
by rotation of the outer cylinder when perturbations are introduced to the flows
[BC12].

Figure 2.2: The subcritical transition to turbulence evolves from a perturbation
and, in a Taylor-Couette system can form patterns such as spiral turbulence.
Spiral turbulence can occur from perturbations in large Taylor-Couette systems
when the outer cylinder rotates independently [BC12].

When perturbed, a Taylor-Couette flow can experience a subcritical transition
to turbulence. In Figure 2.2, a subcritical transition to turbulence appears in
the form of spiral turbulence. In the case of this experiment, a perturbation was
induced into a Taylor-Couette flow created by rotating the outer cylinder. Spiral
turbulence was created and then dissipated in the photo on the right [BC12].

2.4 Taylor-Couette Flows

Taylor-Couette flows are defined by any flow occurring between two concentric
rotating cylinders [Tay23]. They are unlike most other types of flows due to their
ability to undergo both supercritical and subcritical transitions to turbulence.
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An example of the Taylor-Couette system’s ability to transition to turbulence
supercritically is the Taylor-Couette flow involving Taylor vortices.

Figure 2.3: Taylor vortices appear in horizontal bands along the axis of rotation
in a Taylor-Couette flow when the inner cylinder rotates, and the outer cylinder
remains stationary. This creates an outward centrifugal force on the fluid causing
it to get pushed to the outer wall and rotate back in on itself. In the case of this
figure, the Reynolds number is increasing from left to right creating increasingly
complex flows. The increase in the Reynolds number is achieved by increasing the
angular velocity of the inner cylinder [FSG79].

Illustrated in Figure 2.3, when the inner cylinder of a Taylor-Couette system
is rotated, it centrifugally forces the fluid outward into the wall of the outer
cylinder. Because the fluid has no other place to go, it spirals in on itself to
form stratified bands. When the Reynolds number Rei for the inner cylinder
is increased by increasing the angular velocity of the inner cylinder, the bands
become increasingly complex and time dependent. This means that over different
points in time, the same spatial point within the fluid will now have a different
flow behavior. Eventually, any recognizable pattern is lost, and the fluid behaves
with completely turbulent dynamics.

On the other side of the spectrum, a Taylor-Couette flow can quickly become
turbulent from a laminar flow when the outer cylinder is rotated by itself [Col65].
While this type of Taylor-Couette flow does not exhibit any bands or other in-
teresting dynamic formations, it provides a blank canvas of laminarity which one
can utilize for the purposes of studying transitions to turbulence.

In the case of this experiment, we will perturb a Taylor-Couette flow produced
by the rotation of just the outer cylinder with a jet of fluid from the inner cylin-
der to induce turbulence that will then subcritically evolve into a greater region
of turbulence. We will consider the minimum amplitude perturbation to induce
turbulence at a given Reynolds number to understand the stability of the flow
and when turbulence can be expected for certain Reynolds numbers. These ex-
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periments follow up on those conducted by Dr. Daniel Borrero-Echeverry for his
2014 Ph.D. thesis dissertation [BE14].
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3 Methods

This chapter will go into depth about the setup of the experimental apparatus and
performing the experiment. Specifically, it will discuss the perturbation system,
the Taylor-Couette system’s physical attributes, the flow visualization methods,
and the stepper motor automation. This chapter will also discuss the experimental
procedure.

3.1 Apparatus

The apparatus used to conduct this experiment has many variable parameters
and has been used in experiments by scientists such as G.I. Taylor to analyze the
stability of flows with solid boundaries [Tay23]. The particular Taylor-Couette
system used for this experiment allows the inner and outer cylinders to rotate
independently of one another and the perturbation strength to be adjusted.

3.1.1 Taylor-Couette System

The Taylor-Couette system is comprised of two independently rotating concentric
cylinders. The inner cylinder is a milled piece of aluminum that is anodized to
create a smooth surface with a radius of 4.72 cm. It was anodized black to improve
visualization of flows against it. Within the inner cylinder is a tubing to a port
on its outer perimeter from which fluid can be injected to create perturbations in
the gap between the two cylinders. The outer cylinder is made of clear polished
glass allowing for visualization of the flows within it. It has an inner radius of
5.94 cm. The bottom of the inner cylinder is on a bearing that is fitted into the
bottom end cap, and around the bottom perimeter of the outer cylinder is an
end cap that is mounted on a ring bearing. These two separate bearings allow
for independent rotation of each cylinder. At both the base and top of the outer
cylinder are o-rings to create a waterproof seal and prevent leakage. A valve is
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located at the bottom of the system to allow for filling the system with the desired
fluid.

Figure 3.1: Within the outer cylinder, the inner cylinder can be seen though
clouded by the shaving cream and water mixture. On top of the Taylor-Couette
system’s bracings are the stepper motors and timing pulley system. The tubing
that can be seen running from the top of the system is connected to the pertur-
bation system.

Attached to the inside of the outer cylinder are rings that allow for the ad-
justment of the size of the area that will be under analysis. To isolate the area
between them, the difference between the rings’ inner and outer radii is only
slightly smaller than the gap width between the inner and outer cylinders of the
Taylor-Couette system. The rings have vertical holes drilled in them so that fluid
may pass through them when the system is filled with them in place. Otherwise,
bubbles would form, and the system would not fill as efficiently and uniformly.
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3.1.2 Stepper Motors

The cylinders were independently driven by their own Phidgets 86STH156 NEMA-
34 Bipolar Gearless Large Stepper motor. The two motors were controlled by a
Phidgets Control Panel Program. This program was necessary to communicate
with the PhidgetStepper Bipolar HC board and allowed for easy adjustment of
the motors’ independent velocities and accelerations. The stepper motors had
a resolution of 200 steps per revolution, meaning that the motor will proceed
through 200 increments of 1.8◦ for one full rotation of its axle. The Phidgets pro-
gram works in increments of microsteps, however, meaning that the step number
is increased by a factor of sixteen. Therefore, there are effectively 3200 steps per
revolution of each motor’s axle and therefore 0.1125◦ per step.

Each motor was connected to its respective cylinder via a drive train consisting
of a timing pulley on the motor, a timing belt, and a timing pulley on top of the
cylinder. The timing pulleys on the cylinders are larger than those on the motors’
axles and create a gear ratio of 60:18 or effectively 10:3. For every ten turns of
the motor, the respective cylinder will rotate three times. This was necessary to
provide a greater torque to the cylinders as they must move the fluid along with
their own mass. This also gives more precise control of the cylinder’s velocities
because large changes in motor velocity equated to smaller changes in cylinder
velocity.

3.1.3 Perturbation System

As mentioned earlier, the inner cylinder has a port that allows for the introduction
of perturbations to the Taylor-Couette flow. To create said perturbations, there
must be sufficient pressure passing through the port, or else the perturbations
would not affect the flow in a substantial or meaningful way. To create enough
pressure and be able to make precise adjustments to it, we used a Harvard Appa-
ratus Syringe Infusion 22 syringe pump, shown in Figure 3.2 pump to induce the
perturbations. The syringe pump holds two syringes with 3D-printed mounts and
is controlled via a Python program for automation purposes. From the syringes,
Tygon vinyl tubing runs to a solenoid valve that leads to either a waste reservoir
or the top of the inner cylinder where it meets a pressure transducer and then
a rotary joint. The pressure transducer reads the strength of the perturbation,
and the rotary joint allows the inner cylinder to rotate while the top of the joint
remained stationary.
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Figure 3.2: The syringe pump can hold two syringes and is driven by a block on
a threaded rod that rotates with the stepper motor. On the front of the pump, a
number pad is present for manual input of the diameter of the syringes and the
desired flow rate. The units of the flow rate are also adjustable giving the option
to set it in microliters or milliliters per hour or per minute. The purple parts
on the syringes are 3-D printed mounts to hold the syringes in place during both
pumping and withdrawing fluid from the system.

Initially, the syringe pump’s timing pulley did not provide a fast enough flow
rate to produce vigorous perturbations that could actually cause turbulence. To
remedy this, I 3-D printed a new timing pulley to change the gear ratio from 2:1 to
1:1. This worked with smaller syringes, but to increase the flow rate further, larger
syringes were implemented. Unfortunately, the 1:1 gear ratio did not provide
enough torque to the pump, and the motor would consistently stall with the
larger syringes in place, so the original gear ratio was returned to. This return
was successful in that it provided enough torque to the pump to push the syringe’s
plungers, and the larger syringes with an outer diameter of 38.9 mm allowed for
a greater flow rate to produce strong enough perturbations to disturb the Taylor-
Couette flow.

To make the perturbations consistent and reproducible, a three-way solenoid
valve was used. The fluid pumped from the syringes goes into a waste reservoir to
allow the syringe pump to get up to speed and to allow for a discrete perturbation
to be introduced when the valve is activated. Upon activation of the valve, the
valve to the reservoir closes, and the valve to the injection system of the inner
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cylinder is opened, thus directing the fluid to the port where a perturbation then
occurs in the gap between the two cylinders. The valve was activated by a solenoid
driver transistor circuit that was powered by a 9 V power DC power supply, and
the relay was able to be triggered remotely by an Arduino Uno that was controlled
by Python code.

3.2 Computer Programs

To operate the Taylor-Couette system as a whole, some degree of programming or
software was necessary. Each component has a separate program. Ideally, these
would all be condensed into a single program for full automation.

3.2.1 Coding and Programming

The syringe pump was controlled through a Python program that utilized a serial
to USB connection. The pump itself requires specific language to operate, and I
used Python to create a program that would communicate with it via an RS-232
connection. This Python program contains commands to set the diameter of the
syringes, the flow rate of the syringes, a function to initiate pumping, a function
to run the pump in reverse to draw fluid back into the syringes, and a function to
halt the pump’s motor. The way the program was written allows for automation,
which is necessary to collect enough data to draw meaningful conclusions.

The transistor-basdd solenoid driver circuit for the valve was controlled via
an Arduino UNO R3 board. The board by itself could not be automated to the
full extent required, so it was necessary to access the Arduino with a Python
code. The Python code contains a function that sends a voltage to the relay for
a duration controllable with millisecond precision. When the relay has a small
voltage applied to it, the valve opens, and a perturbation occurs. After the voltage
is no longer supplied, the valve closes and directs the fluid back towards the waste
reservoir. This program and the program used to control the syringe pump can
be coordinated into one program that allows for the two functions to be timed to
repeatedly produce uniform perturbations.

The stepper motors are controlled by the Phidget22 Control Panel. This pro-
gram detected the Phidgets board and the motors connected to it. Within the
program, a GUI allows for easy control of the motor’s speeds, accelerations, and
allows for the motors to be engaged.
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3.2.2 Flow Visualization

To visualize the flow, we used a mixture of shaving cream and deionized water.
Deionized water was chosen because it has impurities removed and therefore pro-
vides a consistent and accurate viscosity. Specifically Barbasol brand shaving
cream was used due to its lack of extra features for a shaving experience and the
fact it contains stearic acid crystals which are reflective to light and are very close
to being neutrally buoyant in water. The stearic acid crystals allow for a rheo-
scopic fluid to be created when the shaving cream is added to water. A rheoscopic
fluid has particles that align themselves when in a particular flow that can be seen
when light reflects off them. The buoyancy is helpful because rather than sinking
or floating, the stearic acid crystal particles stay suspended in the water. This
allows the system to sit for periods of time while maintaining its visual integrity.
If the particles were to sink or float, the mixture would need to be disturbed to
re-disperse the particles evenly in the water. The mixture of shaving cream and
water is shown in Figure 3.3, and it visualizes Taylor vortices that were created
in the Taylor-Couette system used in this experiment.

Figure 3.3: The Taylor-Couette system’s Taylor vortices are easily visible when
the rheoscopic shaving cream and water mixture is used to visualize the flows.
Just as other rheoscopic fluids have shown, this Taylor-Couette flow produces
bands in its lower Reynolds number and less spatiotemporally complex states.
This shows that the shaving cream and water mixture is a viable method for flow
visualization.

This mixture was made by adding the shaving cream to water in a near half
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and half volumetric ratio. After stirring vigorously, the mixture is left to sit at
which point a foam begins to form on the surface of the fluid beneath it. This
foam actually consists of stearic acid particles that were unable to mix into the
water. After letting the fluid sit for roughly an hour, the fluid below the foam
is siphoned into a separate container. This method of collecting the fluid was
chosen because siphoning the fluid did not disturb the foam on top and obtained
the fluid below that already had the maximum concentration of shaving cream
possible without it separating into foam. At this point, an equal volume of water
was poured onto the foam, and the entire process was repeated until the fluid no
longer formed a foam.

3.3 Experimental Methods

Manual adjustments to the perturbation and Taylor-Coutte systems allowed for
rudimentary data to be taken. Ideally, the experiment would have been fully
automated, but time constraints and limitations regarding Python’s ability to
process multiple functions at once did not allow for this. Furthermore, source
code for controlling the stepper motors was not conducive to editing for the needs
of this experiment.

3.3.1 Perturbation Reproducibility

Before beginning the experiment, the perturbation system needed to be refined so
that consistent perturbation strengths could be achieved. To assure that the per-
turbation amplitude was consistent between each perturbation, a pressure trans-
ducer was used to measure the pressure induced by each injection of fluid into the
Taylor-Couette system.
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Figure 3.4: In this graph, the pressure of four test perturbations against time is
illustrated. The pressure is shown in a dimensionless number that was output by
the Arduino connected to the pressure transducer. A clear saw tooth shape is
visible in each perturbation’s pressure, and each perturbation was measured at
the same flow rate.

In Figure 3.4, the shape of the function that describes the perturbation in-
creases sharply and then in a curve until reaching the maximum amplitude at
which point the pressure drops off suddenly. The drop in pressure is due to
the perturbation system’s valve being closed. Because the perturbation’s pressure
graph showed an increase that was neither linear nor offered a distinctly sustained
maximum amplitude prior to the valve being closed, the perturbation strength was
difficult to quantify. To further complicate measuring the perturbation amplitude
with pressure, when a perturbation was sustained, the amplitude fluctuated in
an oscillatory fashion. Ideally, the amplitude would rise sharply, remain flat, and
then fall quickly. Because of the ambiguities in the perturbations’ pressures, it
was decided to use the flow rate of the syringe pump (measured in milliliters per
minute) to quantify the perturbation amplitude.

Despite being difficult to measure accurately, it can be seen in Figure 3.4 that
the perturbations’ maximum amplitudes remained consistent for a given flow rate.
This was promising because it meant that the perturbations were still somewhat
replicable and that each fluid injection would be similar enough so as to produce
nearly identical perturbations. This replicability was necessary because perturba-
tions of differing amplitudes will induce turbulence differently.
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3.3.2 Setup of Taylor-Couette System

After it was confirmed that perturbations of reproducible amplitude could be pro-
duced, the Taylor-Couette system could be set up to be ready for perturbations.
This process included setting the boundary rings within the outer cylinder. This
was done before the system was fully assembled. The rings were attached to the
outer cylinder with set screws that pressed into the inside of the outer cylinder.

After the entire system was assembled, the gap between the cylinders was filled
with the shaving cream and water mixture by siphoning it through the valve on the
bottom of the system. By filling from the bottom up, fewer bubbles were created.
To further prevent bubbles, the inner cylinder was rotated at a low velocity to
disturb the fluid as it rose. Bubbles were not desired because they could induce
turbulence thus creating an environment in which it would be unclear whether
the perturbations were inducing turbulence.

The perturbation system also needed to be cleared of bubbles because bubbles
would alter the perturbation amplitude if in the tubing leading from the syringe
pump to the Taylor-Couette system. This was done by withdrawing fluid from
the gap between the cylinders into the two syringes. This sucked out any bubbles
that may have been in the line. After this, the valves to the syringes were closed,
and the air in the syringes was pushed out so that no bubbles could be injected
into the tubing.

3.3.3 Conducting the Experiment

Once the Taylor-Couette system and perturbation system were bled of all air
bubbles, the experiment was ready to be conducted. To conduct the experiment, I
first decided on an angular velocity for the outer cylinder. This was done through
the Phidgets stepper motor software. The angular velocity was set to 35,000
microsteps per second. This equates to 3.316 rotations per second. The inner
cylinder’s velocity was set to zero so that its stepper motor would be engaged in
place but motionless. This was done as a precautionary measure to prevent the
inner cylinder from rotating due to forces from the fluid’s movement as this could
create undesired flow types.

The outer cylinder’s velocity was increased incrementally so that the stepper
motor would have enough torque to drive the cylinder. After the outer cylinder
was up to speed, the flow rate of the syringe pump was set to 50 ml/min. At
this point, a digital metronome was employed at a ticking rate of 120 beats per
minute. The metronome was used to time the perturbations’ durations because
the automated relay to trigger the Python program that controlled the valve that
would induce a perturbation stopped functioning correctly.



20

Once the outer cylinder was rotating and the metronome was keeping time,
the syringe pump was initiated. The fluid was pumped into the reservoir until
the relay was triggered by inserting a wire into an Arduino board which supplied
the relay with 5 V. The triggering of the relay opened the valve and produced a
perturbation in the Taylor-Couette flow. The wire was inserted into the Arduino
board for three beats of the metronome which translates to perturbations with
a 1.5 second duration. This duration was chosen because it was long enough
to produce the full perturbation amplitude while not sustaining that amplitude
for very long. Essentially, it was the minimum duration to achieve the maximum
amplitude for a given perturbation because as seen in Figure 3.4, the perturbation
pressure increases on a curved function. If the perturbation’s duration was too
long, turbulence became more likely.

Upon opening the valve and introducing the perturbation to the Taylor-Couette
flow, the flow was observed for the presence of turbulence. With a flow rate of 50
ml/min, turbulence occurred for every trial, so the perturbation amplitude was
reduced. Figure 3.5 illustrates the difference between the laminar Taylor-Couette
flow and turbulence induced by a perturbation. The rheoscopic fluid created by
the shaving cream in the water provided visualizations that were undeniably tur-
bulent regions in the Taylor-Couette flow.



21

Figure 3.5: The subcritical transition to turbulence is achieved via a perturbation.
On the left side of this figure is the laminar Taylor-Couette flow and on the
right is turbulence that was caused by a perturbation. This turbulence lasted for
roughly fifteen seconds. It is observable that the right image has more complex
spatiotemporal dynamics because of the uneven shading. Note: the large white
block near the top of the image is a reflection and does not describe any of the
dynamics of the flow.

In increments of 2.5 ml/min, the perturbation amplitude was tested and then
reduced until the perturbation no longer produced turbulence in the Taylor-
Couette flow. At the point at which the perturbation amplitude did not produce
turbulence, the next highest amplitude was taken as the minimum perturbation
amplitude to induce turbulence in Taylor-Couette flows. Ideally, this process
would have been completed for many different angular velocities, and therefore
different Reynolds numbers, as this would have provided more data to draw con-
clusions from. From this trial, it was found that the minimum perturbation am-
plitude required to induce turbulence at Re0 = 15091.0842 was 37.5 ml/min. This
Reynolds number comes from the radius of the outer cylinder being 59.4 mm, the
gap width d being 12.2 mm, and the rotational velocity being 3.316 rotations per
second.
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4 Results and Discussion

This chapter will discuss the results of conducting this experiment and where
future researchers may want to focus their efforts to achieve more conclusive data.

4.1 Results

Though conducting this experiment did not provide data that could be used to
analyze the effects of perturbation amplitude on the subcritical transition to tur-
bulence in Taylor-Couette flows, it is still worth discussing what amalgamated
through conducting this research and what the data that may be collected in the
future will mean.

The one point of data that was collected shows that at a Reynolds number of
Re0 = 15091.0842, the minimum perturbation amplitude necessary for a subcrit-
ical transition to take place is 37.5 ml/min. 37.5 ml/min is essentially a dribble
of fluid from the syringes, so this perturbation amplitude was quite small. Be-
cause the Reynolds number was so high, however, this is all it took to induce a
subcritical transition to turbulence. It can be speculated that for larger Reynolds
numbers, it will take smaller perturbation amplitudes to induce turbulence and
for small Reynolds numbers, larger perturbation amplitudes will be required to
induce turbulence. This is because as the Reynolds number increases, the environ-
ment becomes more conducive to the evolution of turbulence despite an otherwise
laminar flow.

Another result of this experiment was uncovering issues with the perturbation
system. Illustrated in Figure 3.4, the function by which the perturbation am-
plitude rises is not measurable by means of a single quantity. Rather, it would
require defining a function which is not a viable or convenient means of measuring
the perturbation amplitude. Refining the perturbation system is a project that
future researchers will need to continue work on if they wish to collect data in
enough quality and quantity to draw meaningful conclusions regarding the sub-
critical transition to turbulence via perturbations.
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The largest piece of future work that is necessary for the continuation of this
experiment is automation. Automation was unable to be achieved as the experi-
ment is still in a somewhat embryonic stage. By automating the stepper motors
and perturbation system, perturbations can be introduced to a Taylor-Couette
flow repeatedly without the need for a human triggering them. This will allow
for much greater quantities of data to be collected and therefore allow better
conclusions to be drawn from said data.

An automated flow visualization system will need to be implemented. This
will likely involve a webcam that will use a Python program to distinguish turbu-
lence from laminar flows and will further streamline data collection. This system
also helps in the removal of requiring a human for qualitative analysis of the
experiment.

Lastly, the axial aspect ratio could be further researched by moving the bound-
ary rings in the gap between the cylinders. This will provide further insight into
how laminar flows react to perturbations under varying system sizes.
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5 Conclusion

This experiment set out to find a relation between the minimum perturbation
amplitude required to induce turbulence in Taylor-Couette flows and the Reynolds
number of said flows. The singular point of data found that with a Reynolds
number of Re0 = 15091.0842, a perturbation amplitude 37.5 ml/min was the
minimum amplitude required to induce a subcritical transition to turbulence.
This leads to a path of continuation of this experiment.

The experimental apparatus and software for this experiment were unfortu-
nately not set up enough to collect enough data to produce meaningful results.
By constructing the Taylor-Couette system and coding programs that will be able
to be utilized by future researchers, this project has created a good basis for fu-
ture work. By continuing this study, the relation of perturbation amplitude to
Reynolds number may be found, and this will further fluid dynamics research and
potentially have vast industrial applications.
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