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We develop a generic iterative map model of coupled oscillators based on simple physical

processes common to many such systems. The model allows us to understand, from a unified

perspective, the range of different outcomes reported for experiments by Huygens and modern

realizations of his two coupled clocks.VC 2011 American Institute of Physics.
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In recent years, studies on complex systems have often
centered on emergent behavior: cooperative interactions
among the parts of the system lead to organized (and
sometimes unexpected) behavior of the whole. The phe-
nomenon of spontaneous mutual synchronization offers
perhaps the most primitive example of emergent behav-
ior. Synchronization is widespread in nature1 and is rele-
vant to many applications.2 Intense efforts have led to
substantial progress in understanding synchronization,3

though open problems remain. This is so even for the
simple case of two mechanical oscillators (e.g., pendulum
clocks), where studies on similar realizations have
reported qualitatively different outcomes. Our goal is to
understand the source of these different results from a
unified theoretical perspective.

I. INTRODUCTION

After his initial serendipitous discovery of antiphase syn-

chronization of two pendulum clocks in 1665, Huygens sys-

tematically studied the phenomenon by mounting the clocks

on a common supporting beam which itself was supported on

the backs of two chairs.4,5 Without exception, whenever the

clocks fell into a synchronized state, the pendulums swung in

antiphase. Huygens deduced that the key interaction was due

to small movements of the supporting beam.

In an effort to recreate Huygens’ system, Bennett et al.6

built an apparatus consisting of two clocks mounted on a

common rigid support, the support being constrained to

move in one dimension along an air track (see Fig. 1). Here,

too, the only synchronized state observed was the antiphase

state. These observations were in agreement with simulations

of the associated equations of motion.

Concurrently, Pantaleone carried out experiments on a

very similar system, with mechanical metronomes instead of

clocks; instead of an airtrack, the common supporting plat-

form rested on smooth cylinders to allow low-friction trans-

lation in one dimension.7 The metronomes almost always

synchronized in-phase, with antiphase motion observed

“only under special circumstances.” His theoretical analysis

agreed with the observations, as did subsequent simulations

reported by Ulrichs et al.8

In an effort to understand the physical mechanism

behind Huygens’ antiphase observations, Dilão considered a

model of two small-amplitude pendulums connected

(between their pivots) by a spring-and-dashpot element.9 He

found that the damping strength of the dashpot controlled the

asymptotic dynamics. For low values, both in-phase and

antiphase states were stable; for larger values, only the anti-

phase state was stable. The latter case is consistent with Pan-

taleone’s observations: one of the special circumstances

where his metronomes locked into the antiphase state was

when the cylinders rolled on a wet surface, which greatly

increased the damping strength.7

Other recent research has explored a broader range of

dynamical states for these (and closely related) systems. For

example, Czolczynski and co-workers10–12 ran simulations

of two identical coupled pendulums and reported coexisting

in-phase and antiphase attractors, but when the pendulums

had unequal masses, they also observed a new periodic state

in which the phase difference was itself periodic in time and

commensurate with the faster oscillation period. They also

reported chaotic states. In simulations of up to 30 oscilla-

tors, they described a variety of clustered states where sub-

sets of oscillators were mutually synchronized. Their

experiments using 11 metronomes showed synchronized,

non-synchronized, and clustered states. Pantaleone also

reported robust in-phase synchronization in experiments

using seven metronomes.7 Simulations by Ulrichs et al.8 on

up to 100 metronomes also show complicated (chaotic and

hyperchaotic) behavior.

In this paper, we are concerned with the simplest possi-

ble observations of in-phase and antiphase synchronization,

as typified by the experiments of Huygens, Bennett et al.,

and Pantaleone. It may be that the differences in observed

behavior are the result of differences in the detailed physics

(e.g., choice of escapement mechanism), but the view we

take here is that these systems are fundamentally the same,

involving a single set of basic physical processes. We seek

to understand the differing behaviors in terms of the relative

importance of these processes.

Our approach is to develop an iterative map that incor-

porates a few simple effects common to many coupled non-

linear oscillator systems. We postulate that these effects are
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the dominant ones needed to determine the dynamical selec-

tion of one or the other phase-locked state. The map is sim-

ple enough that we can derive explicit expressions for the

stability boundaries of the in-phase and antiphase states; it is

general enough to encompass systems other than the me-

chanical ones that originally motivated it.

Our findings provide a straightforward explanation for

the difference between the observations of Huygens (and

Bennett et al.) and Pantaleone: the difference in observed

behavior is attributable to differences in the relative impor-

tance of the main physical effects. The map also agrees well

with numerical simulations of the differential equations of

motion. In addition, we are led to a number of other predic-

tions that could be tested by future experiments.

II. MAP DESCRIPTION

A. Single element

First, consider a single element. We have in mind an

impact-driven oscillator, such as a mechanical clock or met-

ronome, though we are not concerned with precisely captur-

ing the details of the escapement mechanism. In between

impulses, the oscillator evolves freely with frequency X.

This may be represented by a rotating complex phasor z:

z ! zeiXt:

This motion is typically damped, so we take X to be com-

plex. Since the oscillator is nonlinear, X typically depends

on the amplitude. Occasionally, the oscillator gets an impul-

sive kick, whose effect is described by the map

z ! czþ c
z

jzj ;

where 0< c� 1 and 0< c< 1. This generates a stable peri-

odic orbit. Our choice of impulse map assumes that the kick

affects the oscillator’s amplitude but not its phase. This

would be true, e.g., for a pendulum kicked at its lowest point.

The form of the impulse rule is motivated by the two-part

action of the escapement mechanism used in metronomes10

and pendulum clocks,6,13 which slow the oscillator upon

engagement and then provide a fixed impulse.

Concatenating these two maps yields the full return map

after a fixed time T (to be specified below):

z ! czþ c
z

jzj

� �

eiXT :

It will be convenient to express the frequency as the sum of

the low-amplitude (constant) “linear” frequency x and a

“correction” due to nonlinearity. Specifically, we write

XT ¼ xT þ f ðjzjÞ;

where f is the phase advance after a time T due to the

amplitude-dependent frequency shift. For example, a pendu-

lum’s frequency decreases with amplitude, so the function

f(jzj) is a negative, monotonically decreasing function. The

return map now reads

z ! czþ c
z

jzj

� �

eixTeif ðjzjÞ:

We choose T to be the oscillation period, whose value can be

determined by finding the fixed point(s) z0 of the map. In

particular, letting z0 ¼ q0e
ih0 and x¼ lþ i�, where q0, h0,

l, and � are real numbers, results in the following system of

coupled equations:

q0 ¼ cq0 þ cð Þeÿ�T

h0 ¼ h0 þ lT þ f ðq0Þ ÿ 2p:

These equations can then be solved to determine T and q0.

The phase h0 remains undetermined, as expected for the map

of an autonomous oscillator.

B. Coupled elements

For two or more coupled elements, we need to modify

the free propagation rule. We assume the amplitude-

dependent nonlinearity is weak enough that, to leading order,

the system has independent normal modes. Writing zj for the

phasor of the jth oscillator, we introduce the normal mode

coordinates {qj}:

qj ¼
X

k

Sjkzk;

so that during free propagation each mode advances with the

corresponding normal mode frequency xj:

qj ! qje
ixjT : (1)

Meanwhile, the impulse and nonlinear phase-shift rules

remain as before, so that

zj ! czj þ c
zj

jzjj

� �

eif ðjzjjÞ: (2)

The full map is the concatenation of Eqs. (1) and (2).

In practice, one starts with the phasors zj, transforms to

the qj, applies Eq. (1), transforms back to the zj, and finally

applies Eq. (2). Therefore, the free propagation can be con-

veniently written as a matrix product

~z ! Sÿ1DS~z

FIG. 1. Schematic of the system of coupled pendulums.
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where S transforms the phasors to normal mode coordinates,

D propagates the dynamics for a time T, and S21 transforms

back to the original coordinates.

The case of immediate interest involves two identical

oscillators. Their phasors can be written as

~z ¼ z1
z2

� �

;

which makes the relevant matrices

S ¼ 1
ffiffiffi

2
p 1 1

1 ÿ1

� �

¼ Sÿ1

and

D ¼ eixþT 0

0 eixÿT

� �

¼ a 0

0 b

� �

;

so that

z1
z2

� �

! 1

2

aþ b aÿ b

aÿ b aþ b

� �

z1
z2

� �

: (3)

Here, xþ and xÿ are the normal mode frequencies for the

in-phase and antiphase modes, respectively.

The full map is the concatenation of Eqs. (2) and (3).

For different choices of parameters, simulations of the map

show three prominent regimes: coexisting in-phase and anti-

phase (periodic) states, a globally attracting in-phase state,

or a globally attracting antiphase state. Figure 2 shows an

example of what one sees as the quantity f varies. (Recall

that f describes how the amplitude depends on frequency.)

Each point corresponds to a single run, with randomly cho-

sen initial phases, and an evolution time of 300 iterations.

The final state was counted as in-phase if the phasors had a

phase difference less than 0.001 over the last 100 iterations.

It was counted as antiphase if the phase difference remained

within 0.001 of p.

In order to sort out the conditions under which one or

another of these dynamical regimes is predicted, we next

perform a linear stability analysis of the iterative map.

III. ANALYSIS OF THE MAP

A. In-phase and antiphase fixed points

The full map has fixed point solutions representing in-

phase and antiphase periodic solutions. The in-phase state is

found by setting z1¼ z2. Calling this common value z0, the

free running map (3) implies

z0 ! eixþTz0:

Composing this with Eq. (2) implies (for a fixed point)

z0 ¼ cz0 þ c
z0

jz0j

� �

eif ðjz0jÞeixþT (4)

so that

1 ¼ cþ c

jz0j

� �

eif ðjz0jÞeixþT ; (5)

which involves only the magnitude of z0. This complex equa-

tion determines the two real quantities jz0j and T; the phase

of z0 is left indeterminate.

To find the antiphase state(s), we set z1¼ÿz2. The free

running map (3) then implies

z0 ! eixÿTz0:

Using this and Eq. (2), we arrive at the fixed point condition

1 ¼ cþ c

jz0j

� �

eif ðjz0jÞeixÿT : (6)

Typically, the value of T is different for in-phase and

antiphase states.

B. Stability of the in-phase state

To determine the stability of the in-phase state, we set

z1 ¼ z0 þ g1 and z2 ¼ z0 þ g2

and analyze the evolution of the small perturbations g1 and

g2. As before, we propagate the full return map in two steps,

FIG. 2. Results of numerical simulations of the full map for different choices of f(jzj). For each choice of initial phases h1 and h2, the system evolves into the

in-phase state (circles) or the antiphase state (squares). Parameter values are xþ¼ 6.283, xÿ¼ 5.970, c¼ 0.073, c¼ 0.9 and (a) f(jzjj)¼ÿjzjj2/2, (b) f(jzjj)¼ 0,

and (c) f(jzjj)¼þjzjj2/2.

047515-3 Huygens (and others) revisited Chaos 21, 047515 (2011)

Downloaded 28 Sep 2012 to 130.207.140.200. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



first the impulsive kick (2), and then, the free evolution of

the normal modes (3). We will write this as

zj ¼ z0 þ gj ! ẑj ¼ ẑ0 þ ĝj ! z0j ¼ z00 þ g0j;

so that the initial perturbation is gj, after the first step it is ĝj,

and after one iteration of the full map it is g0j. Note that since
z0 corresponds to the fixed point of the full map, z00 ¼ z0, but

in general ẑ0 6¼ z0.

Evolution under Eq. (2) takes gj to ĝj (j¼ 1, 2):

z0 þ gj ! ẑ0 þ ĝj

¼ cz0 þ cgj þ c
z0 þ gj

jz0 þ gjj

 !

eif ðjz0þgjjÞ:

Expanding the various factors to first order in gj yields

ẑ0 þ ĝj ¼ cz0 þ c
z0

jz0j

� �

eif ðjz0jÞ

þ cgj þ
c

2jz0j
gj ÿ

z0

z?0
g?j

� �� �

eif ðjz0jÞ

þ cz0 þ
cz0

jz0j

� �

� ijz0j
2

gj

z0
þ
g?j

z?0

� �

f 0ðjz0jÞeif ðjz0jÞ:

We can simplify this somewhat using Eq. (4), which results in

ẑ0 þ ĝj ¼ aÿ1z0 þ aÿ1gj

ÿ c

2jz0j
gj þ

z0

z?0
g?j

� �

eif ðjz0jÞ

þ ijz0j
2a

gj þ
z0

z?0
g?j

� �

f 0ðjz0jÞ:

Since the stability properties are the same regardless of the

choice of phase of z0, without loss of generality we can choose

z0 to be real, i.e., z0¼q0. The last expression simplifies to

q̂0 þ ĝj ¼ aÿ1q0 þ aÿ1gj

ÿ c

2q0
eif ðq0Þ gj þ g?j

� �

þ iq0
2a

f 0ðq0Þ gj þ g?j

� �

:

Next, we apply the free evolution map (3). This part of

the map is linear, so we can consider its effect on the zeroth

and first order terms separately. The zeroth order part merely

recovers the fixed point, leaving the first order contribution:

z01
z02

� �

¼ 1

2

aþ b aÿ b

aÿ b aþ b

� �

ẑ1

ẑ2

� �

¼ 1

2

aþ b aÿ b

aÿ b aþ b

� �

ẑ0 þ ĝ1

ẑ0 þ ĝ2

� �

¼ 1

2

aþ b aÿ b

aÿ b aþ b

� �

ẑ0

ẑ0

� �

þ 1

2

aþ b aÿ b

aÿ b aþ b

� �

ĝ1

ĝ2

� �

;

so that

g01
g02

� �

¼ 1

2

aþ b aÿ b

aÿ b aþ b

� �

ĝ1
ĝ2

� �

(7)

with

ĝj ¼ aÿ1gj ÿ
c

2q0
eif ðq0Þ gj þ g?j

� �

þ iq0
2a

f 0ðq0Þ gj þ g?j

� �

:

Taking the modulus of Eq. (5), we have

1 ¼ cþ c

q0

� �

jaj

so that

ĝj ¼ aÿ1gj ÿ
1

2
jajÿ1 ÿ c
� �

gj þ g?j

� �

þ iq0
2a

f 0ðq0Þ gj þ g?j

� �

:

From Eq. (7), it follows that the symmetric and antisymmet-

ric linear combinations decouple:

g01 þ g02
g01 ÿ g02

� �

¼ a 0

0 b

� �

ĝ1 þ ĝ2
ĝ1 ÿ ĝ2

� �

so

g01 þ g02
ÿ �

¼ 1ÿ a

2
jajÿ1 ÿ c
� �

þ iq0
2

f 0ðq0Þ
� �

g1 þ g2ð Þ

þ ÿ a

2
jajÿ1 ÿ c
� �

þ iq0
2

f 0ðq0Þ
� �

g?1 þ g?2
ÿ �

and

g01 ÿ g02
ÿ �

¼ b

a
ÿ b

2
jajÿ1 ÿ c
� �

þ iq0b

2a
f 0ðq0Þ

� �

g1 ÿ g2ð Þ

þ ÿ b

2
jajÿ1 ÿ c
� �

þ iq0b

2a
f 0ðq0Þ

� �

g?1 ÿ g?2
ÿ �

:

Stability of the in-phase state is determined by the four

eigenvalues of the matrixM:

g01 þ g02

g?01 þ g?02

g01 ÿ g02

g?01 ÿ g?02

0

B

B

B

B

@

1

C

C

C

C

A

¼ M �
g1 þ g2
g?1 þ g?2
g1 ÿ g2
g?1 ÿ g?2

0

B

B

@

1

C

C

A

;

Two of the eigenvalues are

l1 ¼ 1 and l2 ¼ cjaj;
while the other two are roots of the quadratic

l2 ÿ cjaj þ 1ð Þ<enÿ q0 f
0ðq0Þ=mn½ �lþ cjajjnj2 ¼ 0; (8)

where n ¼ b=a ¼ <enþ i=mn. The in-phase state is stable

provided none of the four eigenvalues lie outside the

unit circle. Since physically realistic damping requires c< 1

and jaj � 1, the issue of stability rests with l3 and l4. The
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coefficients of the quadratic are real, so these eigenvalues are

either real or complex conjugates. The stability boundaries (in

parameter space) can be determined as follows:

1. Case I: complex conjugate eigenvalues

In this case, the stability boundary is given by

jl3j ¼ jl4j ¼ 1. From Eq. (8), it follows that the product

l3l4¼ cjaknj2, and so

jnj2 ¼ 1

cjaj :

If jaj is held constant, this corresponds to a circle centered at

the origin of the complex n plane with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1= cjajð Þ
p

.

The in-phase state is unstable outside of this boundary.

2. Case II: real eigenvalues, l> 0

We can find the stability boundary by setting l¼þ1 in

the quadratic. The stability boundary is given by

1ÿ cjaj þ 1ð Þ<enþ q0f
0ðq0Þ=mnþ cjajjnj2 ¼ 0:

This expression can be rearranged to get

<enÿ x0ð Þ2þ =mnÿ y0ð Þ2¼ r2

where

x0 ¼
cjaj þ 1

2cjaj ;

y0 ¼ ÿ q0f
0ðq0Þ

2cjaj ;

and r2 ¼ cjaj ÿ 1ð Þ2þq20f
0ðq0Þ2

4c2jaj2
:

(9)

If jaj is held constant, the stability boundary is a circle cen-

tered at (x0, y0) with radius r when viewed on the complex n

plane. The in-phase state is unstable inside this boundary.

3. Case III: real eigenvalues, l< 0

In this case, the stability boundary can be found by setting

l¼ÿ1 in Eq. (8). The stability boundary is then given by

1þ cjaj þ 1ð Þ<enÿ q0f
0ðq0Þ=mnþ cjajjnj2 ¼ 0;

which can be rearranged to get

<enÿ x0ð Þ2þ =mnÿ y0ð Þ2¼ r2

where

x0 ¼ ÿ cjaj þ 1

2cjaj ;

y0 ¼
q0f

0ðq0Þ
2cjaj ;

and r2 ¼ cjaj ÿ 1ð Þ2þq20f
0ðq0Þ2

4c2jaj2
:

(10)

This boundary is a reflection about the origin (of the complex

n plane) of the boundary derived for the l¼þ1 case. Inside

this boundary, the in-phase state is unstable and the system

is expected to undergo a period doubling bifurcation. How-

ever, this is unlikely in the case of the weakly coupled and

symmetrically coupled, identical oscillators that are of inter-

est in this paper. Under these conditions, the in-phase and

antiphase modes are expected to have similar (complex) fre-

quencies, so <en � þ1 and =mn will be small and the sys-

tem will operate far from this boundary.

C. Stability of the antiphase state

To determine the stability of the antiphase state, we set

z1 ¼ z0 þ g1 and z2 ¼ ÿz0 þ g2

and proceed as before. The calculation is similar to the in-

phase case, and we omit it. It turns out that the first two

eigenvalues are simply those previously determined (for the

in-phase state) except for the exchange of a and b, i.e.,

l1 ¼ 1 and l2 ¼ cjbj

while l3 and l4 are the roots of

l2 ÿ cjbj þ 1ð Þ<enÿ1 ÿ q0f
0ðq0Þ=mnÿ1

� �

lþ cjbjjnjÿ2 ¼ 0

where n¼b/a. Since jbj< 1, stability hinges on whether l3
and l4 have modulus less than one. There are three cases:

1. Case I: complex conjugate eigenvalues

In this case, the stability boundary is given by jl3j
¼ jl4j ¼ 1, and from the quadratic we have l3l4¼ cjbknjÿ2,

so that

jnj2 ¼ cjbj:

If jbj is held fixed, this corresponds to a circle in the complex

n plane centered at the origin with radius
ffiffiffiffiffiffiffiffi

cjbj
p

. The anti-

phase state is unstable inside of this boundary.

2. Case II: real eigenvalues, l> 0

Setting l¼þ1 in the quadratic yields

1ÿ cjbj þ 1ð Þ<enÿ1 þ q0f
0ðq0Þ=mnÿ1 þ cjbjjnjÿ2 ¼ 0;

which can be rearranged to read

<enÿ x0ð Þ2þ =mnÿ y0ð Þ2¼ r2

where

x0 ¼
1

2
cjbj þ 1ð Þ;

y0 ¼
1

2
q0f

0ðq0Þ;

and r2 ¼ 1

4
cjbj ÿ 1ð Þ2þq20f

0ðq0Þ2
h i

:

(11)
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The antiphase state is unstable inside of this boundary. If jbj
is held fixed, the stability boundary is a circle in the complex

n plane, centered at (x0, y0) and with radius r.

3. Case III: real eigenvalues, l< 0

Setting l¼ÿ1 in Eq. (8), we get

1þ cjbj þ 1ð Þ<enÿ1 ÿ q0f
0ðq0Þ=mnÿ1 þ cjbjjnjÿ2 ¼ 0;

which can be rearranged to get

<enÿ x0ð Þ2þ =mnÿ y0ð Þ2¼ r2

where

x0 ¼ ÿ 1

2
cjbj þ 1ð Þ;

y0 ¼ ÿ 1

2
q0 f

0ðq0Þ;

and r2 ¼ 1

4
cjbj ÿ 1ð Þ2þq20 f

0ðq0Þ2
h i

:

(12)

As in the case of the stability boundary of the in-phase state

for l¼ÿ1, this result is just a reflection about the origin of

the stability boundary for antiphase state in the l¼þ1 case.

The antiphase state is unstable inside of this circle, but again

this regime of operation will be irrelevant for our discussion

of weakly coupled clock/metronome systems where the in-

phase and antiphase modes have similar frequencies.

As an illustration of these stability results, consider fix-

ing the parameters c, b, and q0—the single oscillator damp-

ing parameter, the antiphase normal mode damping factors,

and the steady state amplitude, respectively—and otherwise

allowing n ¼ b=a ¼ eiðxÿÿxþÞT to vary. We can plot the sta-

bility boundaries in the complex n plane. Suppose we take

c¼ b¼ 0.95 and q0¼ 1. In principle, we also need to specify

the amplitude-dependent frequency function f(q) and calcu-

late its derivative at the fixed point, but for now we just let

f0(q0) be a parameter which we will make progressively

more negative, corresponding to a pendulum-like slowing

with increasing amplitude. Figure 3 shows what happens to

the stability boundaries of the in-phase and antiphase states

as we vary f 0(q0).
The stability boundaries corresponding to the complex

conjugate eigenvalues for the in-phase and antiphase states

appear as roughly circular arcs of radii �1.05 and �0.95.

For f 0(q0)¼ 0, the stability boundaries corresponding to the

real eigenvalues appear as bumps on the larger arcs. One of

these boundaries is circular since jbj is held fixed. Figure 3

shows that there are regions of the complex n plane where

only the in-phase state is stable, regions where only the

antiphase state is stable, and regions where both attractors

are stable and initial conditions will determine the final

state of the system. For large values of f 0(q0), the bounda-

ries cross each other and a region where neither state is sta-

ble emerges.

IV. PLATFORM-COUPLED CLOCKS AND
METRONOMES

We now present an extended example, intended to allow

us to revisit Huygens’ original observations, its recreation by

Bennett et al., and the experiments of Pantaleone. To draw a

quantitative connection between the map model and an

actual physical system requires extracting the parameters

xþ, xÿ, c, c, and the function f. The first two are the (com-

plex) normal mode frequencies, and as we will show below,

can be calculated in a straightforward way from the small os-

cillation limit. The other quantities are properties of a single

oscillator and are likely more easily determined from meas-

urements rather than calculating them from first principles.

In particular, combining measurements of the steady state

amplitude and the relaxation rate to the steady state allow

one to determine the pair c and c; meanwhile, measurements

of how the steady state frequency varies with amplitude

allows one to extract f, although for some cases (e.g., the

plane pendulum) this may be calculated analytically.

Figure 1 shows the relevant schematic. The equations of

motion are6

FIG. 3. Stability diagram plotted in the complex n plane for c¼b¼ 0.95 and q0¼ 1 (a) f0(q0)¼ 0, (b) f0(q0)¼ÿ0.08, and (c) f0(q0)¼ÿ0.25. Circles corre-

spond to values of n where only the in-phase state is stable. Squares correspond to values of n where only the antiphase state is stable. Triangles correspond to

values of n for which the coexistence of in-phase and antiphase attractors is predicted. The asterisks in (c) mark values of n for which neither synchronized

state is stable. The star marks a point where the in-phase and antiphase modes are equally damped but the frequency of the in-phase mode is higher.
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d2/j

dt2
þ b

d/j

dt
þ g

‘
sin/j ¼ ÿ 1

‘

d2X

dt2
cos/j þ Fj

ðM þ 2mÞ d
2X

dt2
þ B

dX

dt
¼ ÿm‘

d2

dt2
sin/1 þ sin/2ð Þ

where /j is the angular displacement of the jth pendulum, b

is the pivot damping coefficient, g is the acceleration due to

gravity, ‘ is the pendulum length, X is the linear displace-

ment of the platform, Fj is the impulsive drive, M is the plat-

form mass, m is the pendulum mass, and B is the platform

damping coefficient. These same equations can be used if the

pendulums are replaced by metronomes, as in the system

studied by Pantaleone.7 Introducing a scaled position Y¼X/‘
and time s ¼ t

ffiffiffiffiffiffiffi

g=‘
p

, the governing equations can be put into

non-dimensional form

d2/j

ds2
þ 2~c

d/j

ds
þ sin/j ¼ ÿ d2Y

ds2
cos/j þ ~Fj

d2Y

ds2
þ 2C

dY

ds
¼ ÿl

d2

ds2
sin/1 þ sin/2ð Þ

(13)

where

l ¼ m

M þ 2m
;

~c ¼ b
ffiffiffiffiffiffiffiffiffiffi

‘=4g
p ;

and C ¼ B
ffiffiffiffiffiffiffiffiffiffi

‘=4g
p

=ðM þ 2mÞ:

(14)

Instead of looking at the escapement mechanism in

detail (see, e.g., the paper by Lepschy et al.14), we use a

modified version of the kick rule used by Bennett et al.

When a pendulum is at the bottom of its swing, we apply a

kick that mimics the two-part action of the escapement by

first reducing the speed of the pendulum by factor c as the

escapement engages and then applying a fixed impulse c in

the direction of the motion, i.e.,

�

�

�

�

d/

ds

�

�

�

�

! c

�

�

�

�

d/

ds

�

�

�

�

þ c:

In particular, we have chosen to kick the pendulum at

the bottom of its swing to ease comparison with the results

from the map. The current formulation of the map assumes

that the kick changes the amplitude but not the phase of the

phasors, although it can be generalized for more complicated

kick rules.

The complex normal mode frequencies can be calcu-

lated by considering the small angle regime of the unforced

system and introducing sum and difference coordinates

r¼/1þ/2 and d¼/1ÿ/2, so that

d2d

ds2
þ 2~c

dd

ds
þ d ¼ 0

d2r

ds2
þ 2~c

dr

ds
þ r ¼ ÿ2

d2Y

ds2

d2Y

ds2
þ 2C

dY

ds
¼ ÿl

d2r

ds2
:

(15)

It follows at once from the top equation that the antiphase

normal mode has frequency

xÿ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ ~c2
p

þ i~c � 1þ i~c; (16)

where the last expression is valid for small pivot damping

~c � 1. The other normal mode frequencies are roots of

ð1ÿ 2lÞx3 ÿ 2ið~cþ CÞx2 ÿ ð1þ 4~cCÞxþ 2iC ¼ 0:

One can show that one root is imaginary. This non-

oscillatory mode corresponds to overdamped translational

motion of the platform. (In the limit C ! 0, it represents uni-

form translation of the system.) The other normal mode cor-

responds to the in-phase state. The general solution for xþ is

cumbersome, but for small coupling and pivot damping

ðl; ~c � 1Þ, we can expand the in-phase mode frequency to

first order, with result

xþ ¼ 1þ lþ i ~cþ 2lCþ 4~cC2
ÿ �

1þ 4C2
; (17)

The in-phase mode has larger (real) frequency than the anti-

phase mode, and larger damping.

We are now in a position to see what the iterative map

predicts for this system. Consider first the case of small am-

plitude oscillations and negligible platform damping C� 0.

Then, the in-phase and antiphase states are essentially

equally damped, but the in-phase state oscillates faster (i.e.,

its frequency has the larger real part). This means that in

Fig. 3, the parameter n lies on the unit circle and in the

fourth quadrant, as indicated by the six-pointed star. Both

in-phase and antiphase states are stable. Figure 2(b) shows

that, in this limit, the two attractors have nearly equal basin

sizes.

Now imagine increasing the size of the impulsive force,

so that the amplitude of the final states likewise increases.

The amplitude-dependent phase shift becomes increasingly

important (i.e., the map parameter f0 becomes increasingly

negative). The other map parameters are unchanged; in par-

ticular, n remains the same. As we see from Fig. 3, the anti-

phase stability boundary moves closer to the operating point

and eventually crosses it, rendering the antiphase state unsta-

ble and the in-phase states globally attracting.

This behavior is borne out by numerical simulations of

the ordinary differential equations (13). Figure 4 shows the

eventual fate of various initial conditions for three different

values of forcing strength (and all other system parameters

held fixed). In all cases, the platform was initially at rest and

the pendulums were started with equal energy but random

phases h1 and h2. To the extent possible, we chose parameter

values corresponding to the experiments reported in Ref. 6.

We integrated the equations for approximately 300 oscilla-

tions. The final state was counted as in-phase if j/1ÿ/2j
remained less than 0.01 radians over the last several periods.

Similarly, the final state was counted as antiphase if the

angular difference remained within 0.01 radians of p. Trajec-

tories that did not satisfy either condition within the allotted

integration time are represented by triangles.
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Figure 4 shows a clear progression. For weak driving,

and hence small amplitude, in-phase and antiphase attractors

coexist and their basins sizes are equal. As the driving

strength increases, the in-phase basin grows at the expense

of the antiphase basin. Eventually, the antiphase basin disap-

pears and the in-phase state is globally attracting. Physically,

one is seeing the effect of the amplitude-dependent oscilla-

tion frequency, a factor which becomes increasingly impor-

tant for the pendulum (i.e., the frequency shifts more

strongly the larger the amplitude).

Now, consider a second scenario. As before, begin in the

limit of low drive and zero platform damping, so the in-phase

and antiphase attractors coexist on a nearly equal footing. We

now increase C, keeping the drive strength c (and all other pa-

rameters) fixed. Because the drive remains small, the large-

amplitude phase shift parameter plays no role here. On the

other hand, while the antiphase normal mode frequency does

not change, the in-phase frequency does: from Eq. (17), the

imaginary part of xþ grows, corresponding to an increasingly

damped mode. This disfavors the in-phase state. In terms of

the map parameters, the modulus of n grows. As can be seen

from Fig. 5, the operating point moves closer to the stability

boundary of the in-phase state, and eventually crosses it,

beyond which point the antiphase state is the only attractor.

This is precisely what we see in simulations of the dif-

ferential equations (see Fig. 6). For small platform damping,

the in-phase and antiphase states have essentially equal sized

basins of attraction. When the platform damping parameter

is increased to a value C¼ 0.2, the in-phase state has lost ba-

sin size to the antiphase state. By the time C¼ 0.5, the in-

phase state has lost stability, and all initial conditions lead to

the antiphase final state.

V. DISCUSSION

Our model is a generic description incorporating a few

basic processes. First, at the single oscillator level, rule (2)

describes a limit cycle with amplitude and relaxation rate

determined by the parameters c and c, and an amplitude-

dependent frequency through the function f. The latter in

particular plays a crucial role in the behavior of the coupled

system. Meanwhile, coupling between the oscillators leads

to two important processes: the splitting of frequencies for

the collective modes, and damping of these modes. These

FIG. 4. Results of numerical simulations of Eqs. (13) for different levels of driving strength. For each initial condition, the system evolves into the in-phase

state (circles), the antiphase state (square), or fails to reach either as defined in the text (triangles). Parameter values are C ¼ 0, ~c ¼ 1:63� 10ÿ4,

l ¼ 7:5� 10ÿ3, c ¼ 0:97. (a) c¼ 0.0025, (b) c¼ 0.0065, and (c) c¼ 0.0085.

FIG. 5. Map stability diagram plotted in the complex n plane for c¼ 0.98, f0(q0)¼ 0, 5, q0¼ 1. a and b were calculated using the frequencies determined using

Eqs. (17) and (16) for ~c ¼ 1:63� 10ÿ4, l¼ 7.5� 10ÿ3, and (a) C¼ 0, (b) C¼ 0.2, and (c) C¼ 0.5. The star shows the evolution of n as C is increased.
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effects are accounted for by the real and imaginary parts,

respectively, of the complex frequencies xþ and xÿ.
The map model certainly represents a simplified view of

any real system, and therein lies its utility. It provides a com-

mon perspective for comparing different problems. Admit-

tedly, the differences between the experiments of Huygens,

Bennett et al., and Pantaleone are rather mild; nevertheless,

the behavior of the latter is virtually the mirror image of the

others. Our map model provides a natural platform for direct

comparisons.

Simulations of the map show three prominent regimes:

coexisting in-phase and antiphase (periodic) states, globally

attracting in-phase state, and globally attracting antiphase

state. The coexistence regime is typical for relatively low-

amplitude, low-damping dynamics. Stability analysis confirms

two distinct effects leading to single-attractor dominance. The

first is rather obvious from a physical point of view: as the dif-

ferential damping between the modes increases, the less-

damped mode is favored. The second effect is not obvious:

the larger the oscillator amplitude, the more one mode is

favored over the other. Which is the favored mode? As seen

in Fig. 2, if, as in the case of a pendulum, the oscillator slows

with increasing amplitude, the higher-frequency mode is

favored at larger amplitudes.

These observations provide us with a natural explana-

tion of the various experiments. In Huygens’ system, the

supporting beam moved with difficulty, substantially damp-

ing the in-phase mode (but not the antiphase mode, see

Eq. (16)). At the same time, Huygens’ clocks employed a

cycloidal-shaped boundary specifically designed to eliminate

the usual amplitude-dependent frequency of a pendulum.13

The experiments of Bennett et al. had no such boundary, but

the actual pendulums’ amplitudes remained small (about 9�

as compared with Huygens’ 20�), so again the effect, which

could have stabilized the in-phase state, was absent.

The situation was reversed in Pantaleone’s experiments.

The platform damping was small (so neither mode was disad-

vantaged), but the amplitude-dependent frequency effect was

substantial (favoring in-phase over antiphase). Moreover, we

have an explanation for the “special conditions” under which

the metronome system did show stable antiphase behavior.

First, when the supporting cylinders were put on a wet sur-

face, this lead to increased platform damping, which pushed

the system into the Huygens regime.

Pantaleone also reported that his metronomes synchron-

ized to the antiphase state when they were operated at high

frequency by removing their adjustable pendulum bobs. One

can show that by removing the pendulum bobs, the effective

coupling constant and the effective platform damping are

increased; in the case of metronomes these are given by

expressions similar, but not identical to Eq. (15). These

changes increase the difference in xþ and xÿ. In the com-

plex n plane, this corresponds to increases in both the real

and imaginary parts of n, which moves the system away

from the region where the in-phase state is globally attracting

and into the region of coexistence.

There are additional predictions implied by the map

model. For example, if the coupling mechanism were changed

so that it coupled into the antiphase mode, any associated

damping would favor the in-phase state (the opposite of Huy-

gens’ case). Other predictions follow from a kind of

“reciprocity inherent in the model. The notion of “in-phase”

or “antiphase” doesn’t explicitly appear in the model. The

only property distinguishing the competing collective modes

is the frequency: our notation xþ/xÿ was suggestive of in-

phase/antiphase motion, but what actually matters is that xþ
has the larger real part. In particular, if the coupling mecha-

nism were altered so that the in-phase state had smaller real

part, the tendency at large amplitude would be reversed:

pendulum-type oscillators would favor antiphase motion at

higher amplitudes (the opposite of Pantaleone’s case). A final

prediction holds for non-pendulum oscillators whose fre-

quency increases with increasing amplitude, e.g., those with a

hard spring Duffing nonlinearity. The preference for in-phase

vs. antiphase is reversed: for platform coupled oscillators like

those described by Eq. (13), the in-phase state is destabilized

at higher amplitudes. This can be seen in Fig. 2(c), where the

oscillation frequency increases with amplitude.

Finally, although in this paper, we focused on mechani-

cal systems, our map model can be used to consider other

kinds of oscillator systems, for example electrical oscillators

or certain laser systems. The model also can be used to

FIG. 6. Results of numerical simulations of Eqs. (13) for different levels of platform damping. For each initial condition, the system evolves into the in-phase

state (circles), the antiphase state (squares), or fails to reach either within the allotted integration time (triangles). Parameter values are ~c ¼ 1:63� 10ÿ4,

l ¼ 7:5� 10ÿ3, c ¼ 0:97, c ¼ 0:0025, and (a) C¼ 0, (b) C¼ 0.2, (c) C¼ 0.5.
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describe larger arrays, and may serve as a useful tool for

studying such problems in a unified way.
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