
0 1 2 3 4 5 6 7 8 9

arr

int[] arr = new int[10] ;

1098

0 1 2 3 4 5 6 7 8 9

10988

0 1 2 3 4 5 6 7 8 9

arr[3] = arr[2];
arr[2] = arr[1];
arr[1] = arr[0];

➊➋➌

At	
 step	
 i,	
 we	
 shove	
 down	
 a	
 “sub-­‐array”	
 of	
 length	
 i	
 to	
 make	
 room	
 for	
 the	
 new	

value	
 at	
 position	
 0.	
 Start	
 shoving	
 from	
 the	
 right,	
 toward	
 the	
 left	
 (steps	
 1,2,3	
 below).

7arr[0] = 7;

Filling an array from the left: For the lab:

• write a StopWatch class to use for timing
 (methods: start, stop, read, clear?, …);

• write a “harness” main class (TimeTests)
 that compares several ways of filling
 arrays and array lists, with regard to timing;

• first: fill arrays and ArrayLists from the left,
 using add(0, _) for the ArrayLists and
 using “shoving” for the arrays.

• next: fill arrays and ArrayLists from the right,
 with add(_) for the ArrayLists and plain
 filling for the arrays (no shoving needed);

• all structures should be filled with 1–n,
 (verified at both ends), no matter the fill
 direction (note: not 0–(n-1), but 1–n);

• compute timings for size n among the whole
 powers of 10 between 3 and 6 (i.e., from one
 thousand to one million, inclusive);

• report the various timings in some nice,
 readable, columnar format (use printf):
 two structures, two directions, four sizes.

• Extra fun: append (join together) n
 copies of some string, using either the
 String class and +, or StringBuilder);
 compare timings for various (big) sizes n.

Note that we can distinguish:
• the end result of the filling (“up”, from low to hi, or “down”, from hi to low)
• the direction the loop indices [i] actually ran (again, up or down)
• the direction in which we filled (from left-to-right or right-to-left)

writing	
 down	
 these	

“concrete	
 steps”	
 can	
 help!

