
How to check and assemble opcode arguments?
Representation: string (e.g., hex string) or number?

Error-checking and warnings:

How to store information about number and size (and other restrictions?) on arguments?

Personally, I like to use numbers to represent the individual opcode and argument values;
this way they can be easily masked and then combined using bit-shifts and additions.
When you’re all done with them (i.e., they are all assembled), you can just use "toHexString"
to print them out.

If you use strings to represent your assembled values, there are awkward points where arguments
don't happen to be 4 bits wide, such as the arguments to DATA, JPIF, INC, SHIFT and CONST.
When you use numbers, you can assemble by shifting the pieces according to an accumulated sum
of the widths of the arguments to the right:

J2GZR3JPIF

2 24

8 2 04

Argument sizes:

(Left) shift amounts:

Command layout:

14 (E) 1 23Equivalent values:

Command value: (14<<8) + (3<<4) + (1<<2) + 2

You may or may not want to check and issue warnings for certain kinds of instruction syntax.
For example, should the following be allowed? This has an effect on the way you think about
how many arguments an opcode takes, as well as the form they take.

COPY xF3 ; same as COPY PC,R3 ??
SHIFT 3,xF ; same as SHIFT R3,-8 ??
CONST xE3A ; same as JPIF R3,GZ,J2 ??

Given that you want to use the above technique to calculate instruction values from argument
values and shift amounts, how will you store this information? A (small) array of ints? Perhaps you
could squeeze it into an int! (Think about how you would implement an assembler in PC-231 code!)

Integer.toHexString(above) = "E3A"

Note that you might also want to use the argument size information to compute a mask for the
arguments value. Also, if the masked value is not equal to the original, you could warn that the
value had to be trimmed to fit the argument “slot”.

