
E

D C

B A

Traverse the tree from right-to-left and from
the bottom up, i.e., visit the right sub-tree first,
then the left, then the parent. (If there is only
one child or no children, either visit the child
first or just visit the node itself, respectively.)

As you visit each node, output a chunk of
code based on:
• a template for the kind of node it is;
• instantiated with parameters based on the
 content of the node itself.

For example, for a literal you might generate
a SET command, a DATA/COPY sequence or
a DATA/LOAD sequence, depending on the
actual numeric value involved. (Other node
types involve similar but often more complex
choices.)

A

B

C

(etc.)

root

In addition to you code sequence, you may
generate (and use) information about
variables & constants along the way: you
can store this information in a hash table.
(You also might not need the table at all,
depending on your storage strategies.)

➋

➌

The “chunks” of code which you generate
need to be held while you process them:
you might keep them in an array, but a list
or vector would be better. (A raw String is
also possible, but makes any later analysis
very difficult.)

prologue

A'

B'

C'

(etc.)

root'

epilogue

constants

variables

Some overall architectural choices you will need
to decide on include whether you will use an
intermediate language (e.g., stack machine
code) and your basic strategies for memory
storage (literals, variables and temporary results).

➊ ➍

"x"

"y"

"12"

R5

#VARY

...

➎ Whether or not you use a
special intermediate
language, you will probably
need to generate some special
“chunks” of PC-231 code at
the beginning and end of the
program to set up pointers,
write out the final result, etc.

➏

Intermediate code

Final PC-231 code

Hints on code generation

Expression tree

