
Topic
Code generation and “optimization”

(notes from lecture)
optimize mult: arg signs, arithmetricks, in-lined shifts & adds, shift and sub for runs of 1's
distributive rule and mult-elimination: not likely usable, but maybe in array indexing
also, note that ”responsible programmer wouldn't write a*b + a*c” also reflects back on our programming
aggressive optimization comes at a cost: compiler call flags a good idea
do one extreme example (63 * x^2 +7*(x=READ) + (y=12))

Context
we have seen how to construct a parse tree using a stack (or the more concise abstract syntax tree) and how we can
use this representation of program structure to implement its “meaning” as a computation
specifically, we have seen how we can interpret the tree dynamically (e.g., reading input interactively) to evaluate the
corresponding expression and static translation (or compilation) to generate code
in general, interpretation and code generation involve walking the tree in some pre-determined order (usually in order to
respect the meaning of the language) and generating a sequence of instructions (or several sequences, in the case of
prologue/main body/epilogue)

(in more realistic compilers a code graph is often used, in order to reflect more complex language features)
finally, we have seen how we might generate code for different machines, either directly for the “real” machine which is our
ultimate target or indirectly through an abstract machine such as the stack-environment machine used in class

Problems and strategies
we are now faced with some decisions about what techniques to use to implement various features of the source language on
the target machine (or some intermediate machine)
as discussed in lecture, we may choose simpler strategies (which generally have less coverage but are more efficient) or
more complex ones, or we may choose to vary our techniques on a case-by-case basis
in addition to general issues of "aggressiveness” (how much work to do to try and optimize), we must consider feature-
specific issues and interaction between features (e.g., competition for scarce resources such as registers)
optimizations (a misnomer: they might not actually be optimal) can either be done on the tree before we generate code,
during the generation process or on the resulting instruction sequence (perhaps even different modifications on different
stages of intermediate code)
in many cases a static analysis of the program (computing some kinds of measures, statistics or other data on the
source code itself) will be necessary or useful for determining what optimizations to try

Modifications to the tree
static evaluation: we can analyze the tree to find sub-trees which have no variable references or inputs and then replace
them with their actual values

(we must take care to ensure that our compile-time arithmetic accurately models the run-time environment/machine)
variable value propagation: we can extend the idea above to include the values of variables, as long as we are sensitive
to evaluation order and the changes in a variables value
sub-tree reordering: we have seen that a stack-based approach is biased in that right-leaning trees are preferred to left-
leaning ones; we may want to try and re-order the tree using, e.g., associativity and commutativity properties

(again, we must be careful about changing the order of evaluation of variables, inputs, etc.)
algebraic rewriting: in addition to the use of associativity and commutativity, we may want to use identity, zero and
distributivity laws in order to consolidate results or to (e.g.) reduce expensive operations like multiplication

Handling multiplication
generally speaking, we might either choose to write multiplications in-line or to call a sub-routine
we have code already to handle multiplcation (from lab), but note that, for example, handling negative numbers was
expensive (in run time, code size and register usage)

Topic
Code generation and “optimization”

(notes from lecture)
optimize mult: arg signs, arithmetricks, in-lined shifts & adds, shift and sub for runs of 1's
distributive rule and mult-elimination: not likely usable, but maybe in array indexing
also, note that ”responsible programmer wouldn't write a*b + a*c” also reflects back on our programming
aggressive optimization comes at a cost: compiler call flags a good idea
do one extreme example (63 * x^2 +7*(x=READ) + (y=12))

Context
we have seen how to construct a parse tree using a stack (or the more concise abstract syntax tree) and how we can
use this representation of program structure to implement its “meaning” as a computation
specifically, we have seen how we can interpret the tree dynamically (e.g., reading input interactively) to evaluate the
corresponding expression and static translation (or compilation) to generate code
in general, interpretation and code generation involve walking the tree in some pre-determined order (usually in order to
respect the meaning of the language) and generating a sequence of instructions (or several sequences, in the case of
prologue/main body/epilogue)

(in more realistic compilers a code graph is often used, in order to reflect more complex language features)
finally, we have seen how we might generate code for different machines, either directly for the “real” machine which is our
ultimate target or indirectly through an abstract machine such as the stack-environment machine used in class

Problems and strategies
we are now faced with some decisions about what techniques to use to implement various features of the source language on
the target machine (or some intermediate machine)
as discussed in lecture, we may choose simpler strategies (which generally have less coverage but are more efficient) or
more complex ones, or we may choose to vary our techniques on a case-by-case basis
in addition to general issues of "aggressiveness” (how much work to do to try and optimize), we must consider feature-
specific issues and interaction between features (e.g., competition for scarce resources such as registers)
optimizations (a misnomer: they might not actually be optimal) can either be done on the tree before we generate code,
during the generation process or on the resulting instruction sequence (perhaps even different modifications on different
stages of intermediate code)
in many cases a static analysis of the program (computing some kinds of measures, statistics or other data on the
source code itself) will be necessary or useful for determining what optimizations to try

Modifications to the tree
static evaluation: we can analyze the tree to find sub-trees which have no variable references or inputs and then replace
them with their actual values

(we must take care to ensure that our compile-time arithmetic accurately models the run-time environment/machine)
variable value propagation: we can extend the idea above to include the values of variables, as long as we are sensitive
to evaluation order and the changes in a variables value
sub-tree reordering: we have seen that a stack-based approach is biased in that right-leaning trees are preferred to left-
leaning ones; we may want to try and re-order the tree using, e.g., associativity and commutativity properties

(again, we must be careful about changing the order of evaluation of variables, inputs, etc.)
algebraic rewriting: in addition to the use of associativity and commutativity, we may want to use identity, zero and
distributivity laws in order to consolidate results or to (e.g.) reduce expensive operations like multiplication

Handling multiplication
generally speaking, we might either choose to write multiplications in-line or to call a sub-routine
we have code already to handle multiplcation (from lab), but note that, for example, handling negative numbers was
expensive (in run time, code size and register usage)

