How to take best advantage of modern
Java features to structure a Lexer?

* Java 7: named capture groups for regexs Lexer

* Java 6: enumerations with properties

Token types:
enum or
sub-classes?
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Stack-based Parser
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Regexes: named
capture groups?
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I'd love to be able
to use named
capture groups as a
way to distinguish which
token type was
recognized by the regex
matcher ... but this
seems to be possible
only with a really ugly
“look for non-null result
with cascaded if-else”
style
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Ideal solution:

* each separate Token subclass or enum
carries its own internal regex to match on
(perhaps as an enum property?);

* regex Matcher results yield non-if/
switch-based way to identify token type
matched for token creation;

* Parser can switch on token type (or
combination of token type and type of
Term from stack) to drive the parsing
process.

Problems:
* what if internal token regexs overlap?

* how to drive distinct constructor calls for
Token sub-classes from Match results?

* Enums sound great, but become a
redundant tagging structure if part of a
Token sub-class structured solution.

* on the other hand, aren’t enums the best
way to switch on different variations
“from the outside”, as we would wish to
do in the Parser?



