
Var

Opr

Lit ⎫
⎪
⎬
⎪
⎭

Token types: 
enum or 

sub-classes?

Regexes: named 
capture groups?

We want to be 
able to switch on 
token types so as to drive 
the parsing process. 
Normally, such switching is 
best done in OO langs via 
sub-classing.

But won’t this be awkward 
if expressed as an 
“internal” behavior of a 
Token class?

Lexer

Stack-based Parser

elsewhere …

Results should 
come as Iterator 
calls (has/next)

I’d love to be able
to use named 
capture groups as a 
way to distinguish which 
token type was 
recognized by the regex 
matcher … but this 
seems to be possible 
only with a really ugly 
“look for non-null result 
with cascaded if-else” 
style

Ideal solution:
• each separate Token subclass or enum 

carries its own internal regex to match on 
(perhaps as an enum property?);

• regex Matcher results yield non-if/
switch-based way to identify token type 
matched for token creation;

• Parser can switch on token type (or 
combination of token type and type of 
Term from stack) to drive the parsing 
process.

Problems:
• what if internal token regexs overlap?
• how to drive distinct constructor calls for 

Token sub-classes from Match results?
• Enums sound great, but become a 

redundant tagging structure if part of a 
Token sub-class structured solution.

• on the other hand, aren’t enums the best 
way to switch on different variations 
“from the outside”, as we would wish to 
do in the Parser?

How to take best advantage of modern
Java features to structure a Lexer?
• Java 7: named capture groups for regexs
• Java 6: enumerations with properties


