How to take best advantage of modern
Java features to structure a Lexer?

* Java 7: named capture groups for regexs Lexer

* Java 6: enumerations with properties

Token types:
enum or
sub-classes?

We want to be \ w 3
able to switch on Lit
token types so as to drive = EEE Results should
the parsing process. come as lterator
Normally, such switching is e ——
best done in OO langs via calls (has/next)
sub-classing. ()
Opr .
But won't this be awkward |:|:|:|
if expressed as an ——
“internal” behavior of a
Token class?
T ———————— Var
S —— S

/ elsewhere ... \

Stack-based Parser

i
RA

Regexes: named
capture groups?

|

I'd love to be able
to use named
capture groups as a
way to distinguish which
token type was
recognized by the regex
matcher ... but this
seems to be possible
only with a really ugly
“look for non-null result
with cascaded if-else”
style

e ———

Ideal solution:

* each separate Token subclass or enum
carries its own internal regex to match on
(perhaps as an enum property?);

* regex Matcher results yield non-if/
switch-based way to identify token type
matched for token creation;

* Parser can switch on token type (or
combination of token type and type of
Term from stack) to drive the parsing
process.

Problems:
* what if internal token regexs overlap?

* how to drive distinct constructor calls for
Token sub-classes from Match results?

* Enums sound great, but become a
redundant tagging structure if part of a
Token sub-class structured solution.

* on the other hand, aren’t enums the best
way to switch on different variations
“from the outside”, as we would wish to
do in the Parser?

