Makeup Quiz—30 Nov 2009
CS 353 — Architecture and Compilers—Fritz Ruehr

Name:

1. Say that a certain computer has a word size of 18 bits, and that there are 32 operations
encoded uniformly using the first several bits of an instruction word. This machine has a
PUT instruction that allows the programmer to write an immediately specified data value
into a given address of RAM, as follows:

PUT data, address

If there are 512 different RAM locations addressable by this instruction, how many bits will
be left to specify the data to be stored?

2. Assume that the regular expressions R and S represent sets of strings with 3 and 5
members, respectively. Put a lower bound (how few are possible?) and an upper bound (how
many) on the number of strings in each of the following regular expressions:

lower bound upper bound
e RIS
e R-(alb)
e R*

3. Say that we have a code template representing some mathematical operation of interest,
perhaps multiplication of the values held in two registers. The idea is that when we plug in
this code, we specify a couple of registers like this:

; R7 and R4 have some values here
MULT R7, R4 ; expands into code to multiply R7 by R4
.. ; product in R4, everything else unaffected

and the code will be inserted so that the values that were in R7 and R4 from the previous
line get multiplied together, with the result left in R4, say. Of course, some other registers
would get used by the code to do this, say R8, R9, J0 and the data register, DR, to be
specific. In order to make sure that the MULT code works, it will begin by saving the values
from a number of registers into RAM, and end by restoring those values back from RAM.

Circle the registers that should be explicitly saved and restored by the MULT code:
RO R1 R2Z R3 R4 R5 R6 R7 R8 R9 J0O J1 J2 J3 DR PC

4. Could the following sequences of bytes represent a valid UTF-8 encoding of Unicode data?
For each “NO” answer, circle the first offending byte.

e 01110110 10101110 01101111 11010111 10110000

e 01100011 11010011 11001101 10111010 01111011
e 11011111 10000001 01100101 01111101 01010101



