
R E A D + x - - * 1 2 7

Tokenizer

6
"READ"

2
"+"

8
"x"

4
"--"

(
)
+, -
*
++, --
=
READ
WRITE
x, y, abc, foo, ...
1, 5, 17, 358, ...

example content

0
1
2
3
4
5
6
7
8
9

code

LPar
RPar
AddOp
MulOp
POp
Set
Read
Write
Var
Lit

token typeParser

Op
stack

Arg
stack

(switches on
 token code)

Tokens are just a container class holding
a code (int) and content (String).

Depending on which type of token we get, we either:
• create a leaf expression and push it on the arg stack;
• push an operator token on the op stack;
• reduce an op token and its (popped) sub-exprs
 into a larger expression and push it on the arg stack.

Depending on precedence, we may hold an op token
while we reduce some ops below it on the op stack.

(see on-line write-up for more details)

The tokenizer reads in characters, "chunks"
them and spits Tokens out the back end.

We group the tokens into “token types” depending on how they
will be handled: + and - have the same precedence, ++ and --
are handled in exactly the same way.

Different variables and literals are all treated the same as far
as parsing is concerned (but we keep their content for use later).

state: seeking
op or arg?

Hints on Tokenization and Parsing

