
CS 275 Computer Science III Fall 1994Introduction to Computers and ComputingCSCI 101 Fall ‘96

PC 101 Machine Description

Architecture and storage formats

The PC 101 machine has 4 main registers, an accumulator, an instruction register, a program counter and 32 RAM
memory locations, numbered from 0 to 31 (for more detail and a graphic overview, see the PC 101 Machine
Architecture handout from lecture). Each of these various storage areas holds exactly 8 bits. Machine instructions
are structured as a 3 bit opcode plus up to 5 bits of operand specification (the standard format) or 4 bits of opcode
and up to 4 bits of operand specification (a “long opcode” used to accommodate a larger instruction set).

opcode

Standard
instruction:

Numeric
data:

Long
opcode:

sign magnitudeopcodeoperand operand

The operand portion may be 2 bits long (to specify one of the 4 registers) or 5 bits long (to specify a memory
location); the operand bits are always taken to be the right-most ones in the instruction. Unused bits (those which
are neither part of the opcode nor part of an operand specification) are ignored by the machine.

Numeric data values are represented as follows: the first bit represents the sign of the number, 0 for positive
numbers and 1 for negative numbers. The last 7 bits represent a magnitude as a binary number. Thus, for
example, 00000011 represents positive 3 whereas 10000101 represents negative 5.

Instruction set (bits marked with xxx are ignored by the machine)

Shorthand Opcode Format Explanation

PRINT 0000 0000xxxx Print (or display) the value in the accumulator
READ 0010 0010xxxx Read a value from the keyboard into the accumulator
ADD 010 010xxxRR Add the value in register RR to the accumulator
SUB 011 011xxxRR Subtract the value in register RR from the accumulator
LOAD 100 100nnnnn Load from RAM location nnnnn into the accumulator
STORE 101 101nnnnn Store from the accumulator into RAM location nnnnn

PJUMP 110 110nnnnn Jump to memory location nnnnn if the value in the
accumulator is positive (greater than 0)

STOP 111 111xxxxx Stop the computer
COPY 0001 0001xxRR Copy the value in register RR into the accumulator
MOVE 0011 0011xxRR Move a value from the accumulator into register RR

Basic operation

We will assume that the machine starts with a program (and any data values needed) loaded into RAM. All
unspecified values in the RAM will start out with contents 00000000 . All registers, the accumulator and the
program counter start out with contents 00000000 (in particular, the program counter will therefore refer to the
first instruction in memory). Once the machine is started up, it operates as follows: the contents of a memory
location are loaded into the instruction register (based on the address in the last 5 bits of the program counter); the
program counter is incremented by 1; the instruction is decoded and performed (NB: possibly changing the
program counter, in the case of a jump!); finally, this whole process is repeated until a STOP instruction is
executed.

Some sample programs

Read in a number; print out the value of the number multiplied by 5:

 Machine code Explanation

 00100000 Read the input number into the accumulator
 00110001 Move the input number from the accumulator into register 1
 01000001 Add register 1 to the accumulator (four times)
 01000001 Add register 1 to the accumulator (four times)
 01000001 Add register 1 to the accumulator (four times)
 01000001 Add register 1 to the accumulator (four times)
 00000000 Print the sum from the accumulator
 11100000 Stop machine

Read in two numbers and print out their sum:

 Machine code Explanation

 00100000 Read first number into the accumulator
 00110001 Move first number from the accumulator into register 1
 00100000 Read second number into the accumulator
 01000001 Add register 1 to the accumulator
 00000000 Print sum from the accumulator
 11100000 Stop machine

Read in two numbers and print out their product:

Our overall approach will be to repeatedly add the first number (the multiplicand) into a running sum, as
many times as indicated by the second number (the multiplier). We will decrease the multiplier by 1 each time
we add, and stop when it reaches 0. Since we have only a single accumulator in which to do the arithmetic,
and several values to store over time, we will need to use the registers as temporary storage. Our plan will be
to store the multiplicand in register 1 (R1), the multiplier in register 2 (R2) and the current sum (which will be
built up in the accumulator) in register 3 (R3). In each step of the problem, we will increase the current sum by
the multiplicand and decrease the multiplier by 1. This leads to the following solution sketch:

 read the multiplicand, R1, and the multiplier, R2
 test: if done, jump to the exit (we are done when the multiplier, R2, equals 0)
 decrease the multiplier by a constant value of 1 (R2=R2-1)
 increase the current sum by the multiplicand (R3=R3+R1)
 jump back to the test
 exit: print the current sum and stop

As we try to fill out this basic sketch, we will need to overcome several difficulties:

• how do we resolve the named “labels”, such as test and exit, that we use above as the targets of jumps?
 Solution: we need to number our instructions, and figure out the numeric address of each “label”, then

build that address into any corresponding jump instruction.

• how do we subtract a constant value 1 from the multiplier?
Solution: we can use register 0 (R0) to store a constant value; we can load it in from RAM when the
program starts.

• how do we just jump, without checking any condition (as needed in the step just before the exit label)?
Solution: we can LOAD the constant 1 and use a PJUMP; since 1 is positive, it will always jump.

• how do we jump when R2 = 0 (at the “test” step) rather than jumping on a positive value (using PJUMP)?
Solution: We can use a two-step jump: first use PJUMP to jump on positive to the normal continuation of
the program, then jump from right after the first PJUMP to the program exit point

Read in two numbers and print out their product (the completed program):

 Step Machine code Explanation

0 10010100 load constant 1 from RAM
1 00110000 move constant 1 into R0
2 00100000 read multiplicand into the accumulator
3 00110001 move multiplicand into R1
4 00100000 read multiplier into the accumulator
5 00110010 move multiplier into R2
6 00010010 test: copy multiplier (R2) into the accumulator (redundant the 1st time around)
7 11001010 pjump to more
8 00010000 copy constant 1 (R0) into the accumulator (just for the jump)
9 11010001 pjump to exit

10 01100000 more: subtract constant 1 (R0) from the accumulator (currently holds multiplier)
11 00110010 move the accumulator to R2
12 00010011 copy current sum (R3) into the accumulator
13 01000001 add multiplicand (R1) to the accumulator
14 00110011 move the accumulator to current sum (R3)
15 00010000 copy constant 1 (R0) into the accumulator
16 11000110 pjump to test
17 00010011 exit: copy current sum (R3) into the accumulator
18 00000000 print the accumulator
19 11100000 stop
20 00000001 the constant 1

Some challenge problems

If you are interested in a challenge, try writing a program to solve one of the following problems using the PC 101
machine:

• read in two numbers and divide the first by the second; print out an integer dividend and an integer
remainder.

 Suggestions: your basic approach can be similar to the multiplication problem above, but you will need to
repeatedly subtract instead of repeatedly adding. Also, rather than holding a fixed multiplier, you will
repeatedly increase the dividend by 1. In many cases, you will pass 0 using this strategy, so you will need
to “back up” a step to determine the proper remainder.

• read in 10 numbers and then print them out in reverse order.

 Suggestions: your basic approach would be to store the numbers into RAM, one at a time into successive
storage locations, and then print them back out, loading them in one at a time in reverse order. Note that
you will need to keep track of your current position in the RAM and either increase or decrease it by 1,
depending on which direction you are going. In order to access RAM using this “number”, you will need
to keep the number in the operand specification part of a LOAD or STORE instruction; this in turn means
that you will need to perform arithmetic on the instruction itself in order to change the location it specifies.

Read in ten numbers and print them out in reverse order:

In this first attempt, we use two loops, one to read in the numbers and one to print them out … but the
overhead of loop maintainence and comparisons, etc., takes up too many instructions: we can’t even fit in the
program, much less the 10 RAM locations needed for values.

 Step Machine code Explanation

0 00000000 load constant 1 into the accumulator
1 00000000 move constant 1 into R0
2 00000000 load initial constant 10 into the accumulator
3 00000000 move initial constant 10 into counter (R1)
4 00000000 test 1: copy counter from R0 into the accumulator (redundant 1st time)
5 00000000 jump to step1 if accumulator is positive
6 00000000 set up for unconditional jump
7 00000000 jump to part 2
8 00000000 step 2: read number from input to the accumulator
9 00000000 store: store number from accumulator into RAM

10 00000000 load the store instruction into the accumulator
11 00000000 add 1 to the store instruction, increasing its address
12 00000000 store modified instruction into RAM
13 00000000 load counter (R1) into the accumulator
14 00000000 subtract constant 1 (R0) from the counter
15 00000000 move counter back to R1
16 00000000 set up for unconditional jump
17 00000000 jump to test 1
18 00000000 part 2: load initial constant 10 into the accumulator
19 00000000 move initial constant 10 into counter (R1)
20 00000000 test 2: copy counter from R0 into the accumulator (redundant 1st time)
21 00000000 jump to step2 if accumulator is positive
22 00000000 set up for unconditional jump
23 00000000 jump to exit
24 00000000 step 2: load number from RAM into the accumulator
25 00000000 print number from accumulator
26 00000000 load the load instruction into the accumulator
27 00000000 subtract 1 from the load instruction, decreasing its address
28 00000000 store modified instruction into RAM
29 00000000 load counter (R1) into the accumulator
30 00000000 subtract constant 1 (R0) from the counter
31 00000000 move counter back to R1
32 00000000 set up for unconditional jump
33 00000000 jump to test 2
34 00000000 exit: stop the machine

In this second attempt, we use two loops, as before, but now we don’t use a counter from 10; rather, we
directly compare the modified instruction value to see if it meets some completion condition. If we do the
comparisons right, we can avoid the two-step jumps used above.

 Step Machine code Explanation

0 00000000 load constant 1 into the accumulator
1 00000000 move constant 1 into R1
2 00000000 load constant FINAL-STORE into the accumulator
3 00000000 move constant FINAL-STORE into R0
4 00000000 test 1: read number from input to the accumulator
5 00000000 store: store number from accumulator into RAM
6 00000000 load current store instruction into the accumulator
7 00000000 add 1 to the store instruction, increasing its address
8 00000000 store modified instruction into RAM
9 00000000 subtract constant FINAL-STORE from store instruction

10 00000000 jump back to test 1 if accumulator is positive
11 00000000 part 2: load constant FINAL-LOAD into the accumulator
12 00000000 move constant FINAL-LOAD into R0
13 00000000 load: load number from RAM to the accumulator
14 00000000 print number from the accumulator
15 00000000 load current load instruction into the accumulator
16 00000000 subtract 1 from the load instruction, decreasing its address
17 00000000 store modified instruction into RAM
18 00000000 subtract constant FINAL-LOAD from store instruction
19 00000000 jump back to test 2 if accumulator is positive
20 00000000 exit: stop the machine
21 00000000 F-S: the constant FINAL-STORE
22 00000000 F-L: the constant FINAL-LOAD
23 00000000 one: the constant 1

In this next attempt, we use two loops and compare modified instruction values, as before, but now we keep
temporary copies of the instructions in registers to make it easier to get at them.

 Step Machine code Explanation

0 00000000 load constant 1 into the accumulator
1 00000000 move constant 1 into R1
2 00000000 load constant FINAL-STORE into the accumulator
3 00000000 move constant FINAL-STORE into R0
2 00000000 load store1 instruction into the accumulator
3 00000000 move store1 instruction into R2
4 00000000 test 1: load current store instruction into the accumulator
5 00000000 add 1 to the store instruction, increasing its address
6 00000000 move modified instruction into R2
7 00000000 subtract constant FINAL-STORE from store instruction
8 00000000 jump to part 2 if accumulator is positive
9 00000000 read number from input to the accumulator

10 00000000 store: store number from accumulator into RAM
11 00000000 jump to test 1 (unconditional, assumes only positive inputs)
12 00000000 part 2: load constant FINAL-LOAD into the accumulator
13 00000000 move constant FINAL-LOAD into R0
14 00000000 test 2: load current load instruction into the accumulator
15 00000000 subtract 1 from the load instruction, decreasing its address
16 00000000 store modified instruction into RAM
17 00000000 subtract constant FINAL-LOAD from store instruction
18 00000000 jump to exit if accumulator is positive
19 00000000 load: load number from RAM to the accumulator
20 00000000 print number from the accumulator
21 00000000 jump to test 2 (unconditional, assumes only positive inputs)

22 00000000 exit: stop the machine
23 00000000 F-S: the constant FINAL-STORE
24 00000000 F-L: the constant FINAL-LOAD
25 00000000 one: the constant 1

In this fourth and final attempt, we use a single loop to serve for both storage and loading: in between the
loops, we modify the store instruction to become a load and modify the incrementation constant from 1 to -1.

 Step Machine code Explanation

0 00000000 load constant CHECK1 into the accumulator
1 00000000 move constant CHECK1 into R1
2 00000000 load initial increment constant (1) into the accumulator
3 00000000 move increment constant into R0
4 00000000 test 1: load funny instruction into the accumulator
5 00000000 add increment constant to the funny instruction
6 00000000 store modified instruction into RAM
7 00000000 subtract check constant from funny instruction
8 00000000 jump to part 2 if accumulator is positive
9 00000000 read number from input to the accumulator

10 00000000 funny: store number from accumulator into RAM
11 00000000 set up for unconditional jump
12 00000000 jump to test 1
13 00000000 part 2: load constant CHECK2 into the accumulator
14 00000000 move constant CHECK2 into R1
15 00000000 load decrement constant (-1) into the accumulator
16 00000000 move decrement constant into R0
17 00000000 [swap instructions??]
18 00000000 [fix target of jump??]
19 00000000 set up for unconditional jump
20 00000000 jump to test 2
21 00000000 exit: stop the machine
22 00000000 [VAR]: various constants

 Assuming RAM loaded with zeros after program, is there a better choice for opcode 00000000
 than PRINT?

 What happens if we change the third instruction of sample program 2 to ... (ignore xx bits)

 Write a program to read in a number, add 5 to it, print it out again (5 in binary is 101).

 Binary Explanation
 ------ -----------
 Load constant 5 from RAM into the accumulator
 00110001 Move constant 5 into register 1
 00100000 Read first number into the accumulator
 01000001 Add register 1 to the accumulator
 00000000 Print sum from the accumulator
 11100000 Stop machine
 00000101 The constant 5

