CS 465: Language, Logic and Computation–Lambda Calculus Homework

Fritz Ruehr—Spring 2015

This homework is based on the material presented in lecture; you should refer to on-line hand-outs and your own lecture notes for definitions, etc. Please ask for help if you have any questions.

1. Syntactic abbreviations

Convert the following lambda terms into fully parenthesized form, with all multi-variable abstractions expanded. Let's agree that "fully parenthesized" will mean that all applications and abstractions should be parenthesized, except for the outermost term (i.e., at top level).

- λxyz. f x (f y y) (f z)
- $\lambda xy. f(\lambda x. x)(\lambda gf. gf x)$

Perform the "opposite operation" on the following terms; i.e., use standard conventions on parenthesization and multiple abstractions to write them in a *minimal* form.

- λa. (λb. (a ((b b) a))
- $(((\lambda p. (\lambda x. (p x)) (p a)) (\lambda q.q)) (\lambda y.b)) a$

2. Variables and binding

Convert the following terms so that no free or bound variables clash, i.e., so that all variables are distinct (respect the existing variable bindings: you may change the variables, but preserve the meaning).

- (λx. (λxy. x (y x)) y) (λy. (λy. y x) y x)
- b a $(\lambda ab. a (\lambda a. b) b)$ a $(\lambda b. b a)$

3. Substitution and reduction

Reduce the following lambda and combinator terms to normal form, using normal-order reduction, or argue that they have no normal form. Show intermediate β -reduction steps and, if necessary, variable renamings to avoid capture.

- (λfgx. f (g x)) (λy.y) (λfx. f (f x)) x
- (λfx. f (f x)) (λy. c (y y)) b
- SII(SII)