A regular expression or **RE** R (over some alphabet Σ) is one of:

- \varnothing (the *null* RE);
- ε (the *empty* RE);
- a (a *literal*, for any $a \in \Sigma$);
- $R_1 | R_2$ (the *union* of REs R_1 and R_2);
- $R_1 \cdot R_2$ (the *concatenation* of REs R_1 and R_2); or
- R_1^* (the *Kleene star* or *iteration* of RE R_1).

An **RE** R (over Σ) *matches* a string $w = x_1...x_n$ (where each $x_i \in \Sigma$) iff:

- $R \equiv \emptyset$ and ... well, uhh, then it just *doesn't* match, ever: oh well!
- $R \equiv \epsilon$ and n=0 (i.e., *w* is the empty string);
- $R \equiv a$ and n=1, with $x_1 \equiv a$;
- $R \equiv R_1 | R_2$ and either R_1 matches w or R_2 matches w;
- $R \equiv R_1 \cdot R_2$ and w can be split $w = w_1 w_2$ so that both R_1 matches w_1 and R_2 matches w_2 ; or
- $R \equiv R_1^*$ and either n=0 (i.e., *w* is the empty string) or

w can be split $w = w_1w_2$ so that both R_1 matches w_1 and R_1^* matches w_2 .

DFAs:

A *deterministic finite automaton* or **DFA** M = $\langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is a finite set of *states;*
- Σ is an *alphabet* (finite set of symbols);
- $\delta \in Q \times \Sigma \rightarrow Q$ is called the *transition function*;
- $q_0 \in Q$ is the *initial state;* and
- $F \subseteq Q$ is the set of *final states*.

A DFA M *accepts* a string $w = x_1...x_n$ (where each $x_i \in \Sigma$) iff there are states $q_1, ..., q_n \in Q$ such that:

- $q_{i+1} = \delta(q_i, x_{i+1})$ for every i, $0 \le i < n$; and
- $q_n \in F$.

The *language of a DFA* $L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}.$

NFAs:

A non-deterministic finite automaton or NFA N = $\langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is a finite set of *states;*
- Σ is an *alphabet* (finite set of symbols);
- $\delta \in Q \times \Sigma_{\varepsilon} \rightarrow \wp(Q)$ is a transition function (where $\Sigma_{\varepsilon} \triangleq \Sigma \cup \{\varepsilon\}$);
- $q_0 \in Q$ is the *initial state;* and
- $F \subseteq Q$ is the set of *final states*.

An NFA N *accepts* a string $w = x_1...x_n$ (where each $x_i \in \Sigma$) iff

w can be written as $w = y_1...y_m$ where each $y_i \in \Sigma_{\varepsilon}$ and there are states $q_1, ..., q_m \in Q$ such that:

- $q_{i+1} \in \delta(q_i, x_{i+1})$ for every i, $0 \le i < m$; and
- $q_{\rm m} \in F$.

The *language of an NFA* $L(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$

GNFAs:

A generalized non-deterministic finite automaton or **GNFA** N = $\langle Q, \Sigma, \delta, q_i, q_f \rangle$ where

- Q is a finite set of *states;*
- Σ is an *alphabet* (finite set of symbols);
- $\delta \in (Q q_i) \times (Q q_f) \rightarrow \mathbf{RE}$ is a transition function;
- $q_i \in Q$ is the *initial state;* and
- $q_f \in Q$ is the *final state*.

A GNFA N *accepts* a string $w = w_0...w_n$ (where each $w_i \in \Sigma^*$) iff there are states $q_0, ..., q_n \in Q$ such that:

- $q_0 = q_{i;}$
- $q_n = q_{f_i}$; and
- $w_i \in L(\delta(q_i, q_{i+1}))$ for every $i, 0 \le i < n$.

The *language of a GNFA* $L(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$