Turing Machine Homework—Sample Answers

Here are some sample answers to the questions given as homework. Note that, since the
questions were fairly informal, open, and philosophical, these are not necessarily the only
“correct” answers—others could surely provide further insight—but these are what | had in mind
when crafting the questions.

1.

Like a DFA, a Turing Machine also reads its input; but unlike a DFA, it can move back
and forth across the input tape, modify its contents, react with further modifications, etc.
One of the whole points about a TM is that it can go for an unpredictably long time,
including possibly forever. So there is no running time estimate in terms of O-notation to
give, unless you want to allow something like “O(0)” as a way of saying: “Bigger than
any function of n”, for purposes of comparison with other algorithms’ running times.

One way to make these reduction situations easier to think about is in terms of a more
direct comparison between problems. It’s technically a bit inaccurate (or at least: ill-
defined), but we might say that when P reduces to Q, it means that P is easier than Q,
say “P = Q” in symbols (where we mean the “or equal” part, too). Recall that what it does
mean is that if we can solve Q, then we can solve P. And being able to solve a problem
means being able to compute an answer, given (a representation of) any problem
instance. So the idea is that solving Q somehow answers P as well, or leads in some
straightforward way to a solution for P. So P is easier, because solving Q always solves
P, too; whereas solving P might be great by itself, but it’s of no help in solving Q.

OK, back to your roommate and their claim: if they think they’ve discovered that their
graph problem reduces to the Halting Problem, well, that’s claiming that it is “easier

than” (in the sense above) an undecidable, or unsolvable problem. That seems like no big
news: it means that it is either solvable, even easily solvable, or it's possible “equally”
unsolvable ... but that isn’t narrowing anything down. Besides, “If you can solve the
unsolvable, then you can solve this problem” isn’t really making a big claim about how
easy or hard it is to solve “this problem”. On the other hand, if the Halting Problem is
reducible to the graph problem, it means that the graph problem must be unsolvable: after
all, solving it would allow you to solve the unsolvable, which is impossible. So, that (i.e.,
the second claim) is big news: it means that the interesting graph problem is actually not
solvable by computation, which might be news to those who are interested in it.

One simple thought experiment is this: could you write a compiler for your language in the
other language? Most sophisticated programmers would realize that this is true, as most
languages are ultimately implemented in assembly language, often via C, or something
similar. If so, then clearly the most sophisticated languages can be implemented in the
most sparse and simple ones (and obviously vice versa). And thus any language that
claims to be strictly more powerful is just wrong: we can always implement it in our
favorite language and then just use the implementation to compute what the original
language did. OK, now that James and Simone are duly silenced, return to studying!

Your classmate seems very confused: it sounds like they have a plan to look for while
loops in a Java program (which is easy enough), but then to “evaluate the condition” to
see if it'’s true. But you can’t just evaluate the condition once, in isolation: you have to
evaluate it every time, in what are presumably changing conditions (since most of us
want our while loops to stop). But then, even if you could tell that some particular program
did loop by this analysis, that wouldn’t mean that you could tell every program that looped:
what about recursive programs? Or any programs whose conditions actually change ... .



