---------------------------------------- -- Generic Sorting in Haskell -- Fritz Ruehr, Willamette University, October 2001 -- For the 3rd Annual CCSC Northwest Conference ---------------------------------------- -------------------- -- Insertion and quick sorts in Haskell isort, qsort, qsort' :: Ord a => [a] -> [a] isort = foldr ins [] ins x [] = [x] ins x (y:ys) = if x<=y then x:(y:ys) else y : ins x ys qsort [] = [] qsort (x:xs) = qsort [ y | y<-xs, y<=x ] ++ x : qsort [ y | y<-xs, y> x ] -- a more concise quicksort qsort' [] = [] qsort' (x:xs) = rec (=x) where rec p = qsort' (filter p xs) -------------------- -- Abstracting the ordering relation type Reln a = a -> a -> Bool sort :: [a] -> Reln a -> [a] sort [] (<) = [] sort (x:xs) (<) = rec ( sort [2,7,9,4,3,8,5,1,4,6] (<) -- [1,2,3,4,4,5,6,7,8,9] -- > sort [2,7,9,4,3,8,5,1,4,6] (>) -- [9,8,7,6,5,4,4,3,2,1] -------------------- -- Sorting on extracted "fields" by p f x y = p (f x) (f y) incr, decr :: Ord a => Reln a incr = (<) decr = (>) offices = [("Fritz", 404), ("Jim", 403), ("Jenny", 405)] -- > sort offices (incr `by` fst) -- [("Fritz",404),("Jenny",405),("Jim",403)] -- > sort offices (decr `by` snd) -- [("Jenny",405),("Fritz",404),("Jim",403)] -------------------- -- Sorting by two simultaneous relations type Pair a = (a,a) pair f (x, y) = (f x, f y) psort :: [a] -> Pair (Reln a) -> Pair [a] psort = pair . sort pprint (a,b) = putStr (show a ++ '\n' : show b) -- > sort offices (incr `by` fst) -- [("Fritz",404),("Jenny",405),("Jim",403)] -- > pprint (psort offices (incr `by` fst, decr `by` snd)) -- [("Fritz",404),("Jenny",405),("Jim",403)] -- [("Jenny",405),("Fritz",404),("Jim",403)] -------------------- -- Courses database "schema" data Level = Service | Core | Mid | Upper | Seminar deriving (Eq,Ord,Show) data Course = Course { title:: String, number:: Int, instr:: String, level :: Level, cap:: Int } deriving Eq instance Show Course where show (Course t n i l c) = "CS " ++ show n ++ ": " ++ t ++ "\t" ++ i ++ "\t" ++ "(cap = " ++ show c ++ ")" report :: Show a => [a] -> IO() report = putStr . unlines . map show -------------------- -- The Courses database courses = [ Course "Concepts" 130 "Temp" Service 25, Course "Ray Tracing" 140 "Jenny" Core 20, Course "Intro Prog" 231 "Staff" Core 20, Course "Data Struc" 241 "Staff" Core 20, Course "Prog Lang" 348 "Fritz" Mid 20, Course "Algorithms" 443 "Jenny" Mid 20, Course "GUI / Sim" 444 "Jim" Upper 20, Course "Automata" 446 "Fritz" Mid 20, Course "Graphics" 445 "Jenny" Upper 20, Course "Mach Learn" 448 "Jim" Upper 20, Course "Func Prog" 454 "Fritz" Upper 10, Course "Senior Sem" 496 "Staff" Seminar 10 ] -------------------- -- Derived lexicographic orderings -- lexicographic sort (by two *sequential* relations) andthen p q a b = p a b || not (p b a) && q a b std = (incr `by` number) itn = (incr `by` instr) `andthen` (incr `by` number) -- > psort courses (std,itn) == -- (sort courses std, sort courses itn) -- True lexord :: [Reln a] -> Reln a lexord = foldr1 andthen -------------------- -- Example lexicographic sort -- > report (sort courses itn) -- CS 348: Prog Lang Fritz (cap = 20) -- CS 446: Automata Fritz (cap = 20) -- CS 454: Func Prog Fritz (cap = 10) -- CS 140: Ray Tracing Jenny (cap = 20) -- CS 443: Algorithms Jenny (cap = 20) -- CS 445: Graphics Jenny (cap = 20) -- CS 444: GUI / Sim Jim (cap = 20) -- CS 448: Mach Learn Jim (cap = 20) -- CS 231: Intro Prog Staff (cap = 20) -- CS 241: Data Struc Staff (cap = 20) -- CS 496: Senior Sem Staff (cap = 10) -------------------- -- End of file --------------------