Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I) | An introduction to Haskell through examples
we give the flavor of Haskell via examples in the Hugs interactive interpreter
(in the talk itself, we hope to run these examples "live") |
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I) | An introduction to Haskell through examples
|
| Simple arithmetic, large integers
simple calculation can be done at the interactive prompt
> 2 + 3 * 5
17
> 37^37
10555134955777783414078330085995832946127396083370199442517
|
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I)
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I)
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I)
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I) | An introduction to Haskell through examples
|
| Simple arithmetic, large integers
|
| Exact rational arithmetic
|
| Floating-point arithmetic
|
| Pairs and tuples
|
| Lists of numbers (ellipsis notation)
we can easily generate and manipulate lists of numbers
> [1..12]
[1,2,3,4,5,6,7,8,9,10,11,12]
> sum [1..10]
55
> product [1..10]
3628800
|
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I) | An introduction to Haskell through examples
|
| Simple arithmetic, large integers
|
| Exact rational arithmetic
|
| Floating-point arithmetic
|
| Pairs and tuples
|
| Lists of numbers (ellipsis notation)
|
| Z-F expressions
another notational convenience (due to David Turner) is list comprehension, which mimics notation from Zermelo-Fraenkel set theory
> [ a * b | a<-[1..3], b<-reverse [1..4] ]
[4,3,2,1,8,6,4,2,12,9,6,3]
> [ 2^i | i<-[1..20], odd i]
[2,8,32,128,512,2048,8192,32768,131072,524288]
|
Willamette Mathematics Colloquium Fall 2002 |
A Quick Taste of Haskell (I)