
Confessions Of A Used Programming Language Salesman

Getting The Masses Hooked On Haskell

Erik Meijer

Microsoft SQL Server

emeijer@microsoft.com

When considering the past or the future, dear apprentice,
be mindful of the present. If, while considering the past,
you become caught in the past, lost in the past, or
enslaved by the past, then you have forgotten yourself in
the present. If, while considering the future, you become
caught in the future, lost in the future, or enslaved
by the future, then you have forgotten yourself in the
present. Conversely, when considering the past, if you
do not become caught, lost, or enslaved by the past,
then you have remained mindful of the present. And if,
when considering the future, you do not become caught,
lost, or enslaved in the future, then you have remained
mindful of the present. [14]

Abstract

Programmers in the real world wrestle everyday to overcome
the impedance mismatch between relational data, objects, and
XML. We have been working on solving this problem for the
past ten years by applying principles from functional program-
ming, in particular monads and comprehensions. By viewing
data as monads and formulating queries as comprehensions,
it becomes possible to unify the three data models and their
corresponding programming languages instead of considering
each as a separate special case.

To actually bring this within the reach of mainstream pro-
grammers we have worked tirelessly on transferring functional
programming technology from pure Haskell, via Cω to the up-
coming versions of C] 3.0 and Visual Basic 9 and the LINQ
framework. Functional programming has finally reached the
masses, except that it is called Visual Basic instead of Lisp,
ML, or Haskell!

1. ROX: The Bermuda Triangle Of Computer
Science

Nearly all business applications simply boil down to transform-
ing data from one form to the other. For instance an order
processing system written in an object-oriented language that

[copyright notice will appear here]

creates XML billing statements from customer and orders in-
formation in a relational database. As a result programmers
constantly need to juggle with three very disparate data mod-
els: Relations in the data tier + Objects in the business tier +
and XML in the presentation tier = the infamous ROX triangle,
the Bermuda triangle of Computer Science where many brave
souls have disappeared without a trace.

Not only is each data model fundamentally different, but each
comes strongly coupled with its own programming language,
typically SQL for relational data, an imperative language such
as Java, C], or Visual Basic for objects, and XQuery or XSLT
for XML. The deep impedance mismatch between the three
inhabitants of the ROX triangle is the reason that many pro-
grammers in the real world are pulling their hair out on a daily
basis.

Fortunately in the first half of the previous century mathe-
maticians were working on esoteric theories such as Category
Theory and Lambda Calculus. These mathematical theories
provided deep insight in the algebraic nature of collections and
operations on collections. As a result, it is actually possible to
unify the three data models and their corresponding program-
ming languages instead of considering as three separate special
cases.

After a long journey through theoretical computer science,
database theory, functional programming, and scripting, ab-
stract concepts such a monoids, lambda-expression, and com-
prehensions have finally reached the day to day world of ordi-
nary programmers. The LINQ framework effectively introduces
monad comprehensions into the upcoming versions of C] 3.0
and Visual Basic 9.

This paper is a personal account my journey to democratize
the three tier distributed programming problem. It starts with
my attempt to use Haskell as the language to write three-tier
distributed data intensive applications, then continues with a
brief flirt with the Internet Scripting Language Mondrian, the
Cω language, the LINQ framework and C] 3.0 and Visual Basic
9, and ultimately comes to a happy end with my conversion to
a Visual Basic fan.

<warning>
The paper is still in a very much draft shape. Especially the
references need to be expanded (too many self references!).
I would welcome any pointers to related work and will gladly
include these in a future version of this paper.
</warning>

1 2006/4/7

2. The Great Internet Hype

In 1997 I was fortunate enough to spend a sabbatical at the
Oregon Graduate Institute together with Simon Peyton Jones.
This was the height of the Internet bubble and we got inspired
to apply Haskell, the world’s finest imperative language, to
solve the ROX problem. This ended my “bananas” [36] period
and I turned from a theorist into a practicioner.

Until that time, Haskell programs usually lived in a fairly closed
world (with notable exceptions such as [17]) so the first thing
we tackled was to make it dead simple to interface Haskell with
imperative code.

2.1 Interfacing Haskell to the outside world

One of the premises of Landin’s seminal “The Next 700 Pro-
gramming Languages” [25] is that most languages can be
considered as a collection of primitive building blocks plus glue
to combine smaller blocks into larger blocks.

Haskell’s lazy evaluation and monads make Haskell a very
powerful glue [23], but for a long time it was hard to access
externally implemented libraries in Haskell, so there was little
to glue together.

Interfacing Haskell (or any other language) to the outside world
requires at the lowest level just four basic building blocks; we
need to be able to wrap an external function pointer (either
statically or dynamically loaded) as a Haskell function, we need
to be able to put pointers to external data under control of the
Haskell garbage collector, we need to wrap a Haskell function
as an external function pointer, and lastly we need to be able
to pin Haskell values in memory such that they are not moved
around by the Haskell garbage collector. This basic function-
ality is available as the standard foreign function interface for
Haskell 98 [10].

2.1.1 GreenCard and HaskellDirect

The first attempt to making FFI easy to use was the Greencard
[45] preprocessor. Using Greencard programmers put special
directives in their code that are then used by the preprocessor
to generate the low-level primitives to do the dirty interfacing
and marshalling work. HaskellDirect [49, 50] was an attempt
to automatically generate FFI boilerplate code from a stand-
alone IDL description for either an external library or a Haskell
program.

IDL is a quite powerful, but rather messy, underspecified and
complex type-system. However, in the late nineties we all be-
lieved that software components were the silver bullet and so
it made sense to use a (more or less) language independent
external description for components. Unfortunately, soon after
we made our bet, binary component models like COM and
Corba fell out of fashion in favor of language specific, meta
data driven, models such as Java and .NET. As a result, the
investments in H/Direct never paid off.

2.1.2 COM

COM is a binary component standard that at its core shows
a minimalist design that evokes the same feelings as category
theory. The model just imposes a handful of “axioms” that
components and component consumers must observe.

Alas, the infrastructure around COM (such as the registry,
the ingenuous but complex OLE protocols, the ever changing
marketing names, ...) and the lack of a good programming
language (not C++!) that natively supported COM gave it
a bad reputation. Nevertheless, we still believe that COM is
a great component model. In fact, the XPCOM component
model that is the basis for many open source projects such as
Mozilla, is basically a copy of COM. Seen in that that light it
is surprising that nobody has ported either the Haskell [51] or
the SML COM infrastructure [47] to work with XPCOM.

One thing that did stick from this work is the notion of phan-
tom types. A phantom type is a parametrized type whole type
parameter is not used in its RHS. When we first discovered
this, many people would not believe that they were legal, now
it is the standard mechanism for advanced type hacking in
Haskell[9, 18, 21, 20].

We used phantom types in a variety of different ways. The
most direct is to represent typed pointers using the type syn-
onym Ptr a = Addr that just defines Ptr to be a synonym for
addresses; the type parameter allows us to distinguish between
a pointer to an integer Ptr Int and a pointer to a pointer to
an integer Ptr (Ptr Int). We also used phantom types to
model interface inheritance [26].

2.1.3 Automation

COM Automation is a reflexive layer build on top of COM that
makes it easy for dynamic and scripting languages to access
and create COM components. The Visual Basic family of lan-
guages forms a very successful sugar on top of Automation.
Because of the additional level of indirection introduced by
Automation, it becomes much easier for any language to use
and create Automation components. We just have to provide
a binding for the single COM interface IDispatch and from
there on we can access any Automation component. Similarly
we have to provide one generic factory method that wraps a
collection of Haskell functions into an IDispatch interface and
we can easily create new Automation components [28].

Many of Microsoft’s applications such as Word, Excel, Outlook,
Powerpoint, Visio, are all fully scriptable using Automation, so
we naturally assumed that if we would expose Automation
in Haskell, the world would instantly drop Visual Basic as a
hot potato and immediately switch to functional programming
instead. For some odd reason, this never happened.

2.2 Server-side scripting using Haskell

Now that it had become easy to call imperative code from
within Haskell on the one hand and expose Haskell functions
to imperative code on the other hand, we turned our attention
to the original goal of creating distributed three-tier applica-
tions and solving the ROX impedance mismatch. Since the
Internet bubble was still expanding, naturally the first problem
we tackled was writing dynamic HTML pages in Haskell.

Until then, most dynamic web pages were written in Perl using
thin wrappers on top of the CGI protocol. The reason that Perl
was, and still is, popular for this task is because one can use
regular expression to parse query strings into hashes of name-
value pairs that represent the data posted by the web page

2 2006/4/7

to the server, and use “here” documents as simple text-based
templates to generate dynamic HTML.

2.2.1 Perl For Swine

The Perl For Swine library [31] provides a very simple domain-
specific language of HTML generating combinators, and a
worker-wrapper style abstraction of the actual CGI protocol.
The user just writes a worker function of type Query -> IO HTML,
which then gets wrapped into an IO () action that parses the
query string of the incoming HHTP request into a list of name-
value pairs [(String, String)] and wraps the result using
the proper MIME type.

In addition to the basic library, we also integrated the Hugs
interpreter into the Apache web server. The mod_haskell sys-
tem eliminates the startup overhead for the Hugs interpreter
when serving up a page, and it gives access to full power of
the Apache web server.

For some reason, mod_haskell never even got close to the
astronomical popularity of mod_perl. The CGI library lives on
as the Network.CGI library.

2.2.2 Haskell Server Pages

While using combinators to generate HTML is very powerful
and concise, it is quite hard to generate beautiful HTML pages
in a completely programmatical way. Professional websites con-
sist of a combination of static content designed by professional
artists sprinkled with dynamically generated fragments.

Systems such as ASP and PHP facilitate this form of website
development via static HTML templates (designed by an artist)
with embedded holes for those parts of the page that need to
be generated dynamically (written by a programmer). The im-
plementation of ASP and PHP is just a simple preprocessor
that turns each line of HTML into a Response.Write state-
ment. As a result, it is not possible to arbitrary nest further
HTML inside code, and code inside that HTML, etc. which
completely breaks compositionality.

Haskell Server Pages [44] take the idea of HTML templates a
step further by allowing arbitrary nesting of concrete HTML
syntax and code by expanding HTML literals into calls to the
Pearl For Swine HTML generating combinators. In addition
HSP also introduced the notion of pattern matching against
HTML.

A HSP-derived pre-processor is available as part of the WASH
system [52], and as the MSc thesis of Niklas Broberg [16].

2.2.3 HaskellDB

HaskellDB [27] is a domain-specific library for programming
against relational data. Usually domain-specific languages are
implemented via shallow embedding into Haskell or any other
host language. That is, we define a set of base combinators
that embody the semantic algebra of the language you are em-
bedding, and glue these together into bigger denotations using
the host language’s abstraction mechanism.

For example, the parser monad Parse a provides primitive
operations such as char :: Char -> Parser Char and com-
binators such as many :: Parser a -> Parser [a] to build

composite parsers, which all denote interpreter functions of
type String -> [(a,String]).

The main innovation in HaskellDB is the idea of a domain-
specific embedded compiler, or deep embedding. In this case
we define a set of base combinators that embody the abstract
syntax tree of the embedded language and use the a host lan-
guage’s abstraction mechanism to build bigger abstract syntax
trees. Given such an AST, in a second step we evaluate these
trees, or compile them into a target language and execute that,
to obtain the value they denote.

For example, the Query a monad in HaskellDB is a state
monad where the state contains the expression tree that is con-
structed by the query. The runQuery :: Query a -> IO [a]
compiles the underlying expression to SQL, submits it to a back
end database, and returns a collection of rows as the result.

HaskellDB has lingered for a long time, but recently it has
been revisited and improved [2].

2.2.4 XMLambda

With HSP we already veered outside the boundaries of pure
embedded domain-specific languages by introducing new syn-
tax, and the HaskellDB experiment convinced me that while
the Haskell type-system is incredibly expressive, it might be
preferable to design a stand-alone DSL to filter, query, pattern
match, and transform XML documents. XMLambda [42] was
still born experiment to design such a language. It featured
a complicated DTD-based static type inference system that
supported polymorphism and higher-order functions.

Subsequent work on type-indexed rows [48] marked the high-
light of my typoholic years. And it slowly started to dawn on
me that you can overdo static typing. Unfortunately, there was
more damage on the road ahead.

2.3 Client-side scripting using Haskell

While things were quiet on the server front, dominated by
Apache and Perl, the browser war was in full swing resulting
in rapid and exciting innovations around DHTML and client-
side scripting. An interesting time to inject Haskell as new hot
client-side scripting language.

2.3.1 HaskellScript

Because Microsoft wanted to support both JavaScript as well
as VBScript in its Internet Explorer browser, it defined the
ActiveX Script Host interfaces that allowed any script engine
to be hosted in IE and other hosts such as the Windows shell
and the IIS web server. Netscape Navigator also supported a
plug-in model, but as far as we know, nobody has attempted
to write a Haskell plugin for that.

HaskellScript [37] is an implementation of the ActiveX Script
Engine interfaces on top of a COM interface IScript on top
of the Hugs Server.

In this way, it is possible to embed Hugs into any applica-
tion that wants to make itself scriptable, such as games, the
browser, the shell, etc. In our experience Haskell was an excel-
lent language for DHTML and shell scripting, but for unknown
reasons HaskellScript never came near the astronomical pop-

3 2006/4/7

ularity of scripting languages such as Python, Lua, and most
recently Ruby.

2.3.2 Lambada

Since we speculated that one of the reasons for the low adoption
rate of H/Direct and friends might be the fact the technology
was Windows-specific, we tried to sell Haskell as the ultimate
component glue language a second time by interfacing Haskell
to Java [35] via JNI [30]. Interestingly, Sheng Liang, one of the
designers of JNI, worked on monadic interpreters in a previous
life [29].

However, also the Haskell-Java binding failed to gain any trac-
tion within the Haskell community. By that time however,
the .NET framework had appeared on the scene, and with its
promise of a multi-language runtime, it seemed a good idea
to pick up the old idea [33] to create a radically simplified
functional scripting language from scratch.

2.4 Internet Scripting using Mondrian

Inspired by the conceptual minimalism of the “De Stijl” move-
ment, Mondrian [38, 24] was an experiment to reduce Haskell
to its bare essence: higher-order functions, lazy evaluation, and
monads and for the rest piggybacking as much as possible on
the underlying .NET framework. In many respects F] [3] is the
moral successor of Mondrian, except that it is uses the strict
and imperative functional language OCaml [1] as its basis.

I often joke that the world’s population of Haskell program-
mers fits is a 747, and when that crashed nobody will notice.
However, the world’s population of Mondrian programmers fits
in a Cessna and when that would crash nobody would really
notice.

Apparently, I lack the talents to entice the functional pro-
gramming community, so I decided to sell my soul to the most
popular programming paradigm, objects, and to the company
that has the biggest market share, Microsoft to save the com-
mon programmer.

3. The Dark XML Ages

While working in the CLR team on low-level features such as
relaxed delegates and lightweight code generation, XML kept
gaining momentum. The time was ripe to pitch the idea of
making XML a first-class citizen in C] to chairman Bill Gates
himself. With much encouragement from Don Box, Wolfram
Schulte and I submitted a Thinkweek paper [39] on this topic.
The language was originally called X], but company marketing
decreed that the # suffix was verboten so we changed it to Xen.
Later when we joined efforts with the Polyphonic C] group [11]
in Cambridge the name was changed to Cω.

3.1 Cω

The goal of Cω [41, 40, 12] was to enhance the CLR type-
system to encompass more of the XSD type-system so that we
could achieve a shallow embeddeding of as much of XML as
possible into C]. Hence in Cω there is no XML; instead XML
is just a serialization format for Cω objects.

To appreciate the difficulties of type-based embedding XML

we make a short excursion to the world of XML schema [8],
perhaps the best example of a south-pointing chariot in com-
puter science. XSD must be one of the most complex artifacts
invented by mankind, where a compass, DTDs, something
much simpler suffice.

3.1.1 The black hole of XSD

The main problem of XSD is not that it gratuitously uses
XML as its concrete syntax, but the fact that it is completely
overengineerd for the problem it attempts to solve. The most
confusing aspect of XSD is the notion of complexType (and
their interaction with substitution groups and complexType
derivation, which is outside the scope if this paper). The
example below defines the schema for XML elements of the
form <Point><x>4711</x><y>13</y></Point>:

<complexType name="PointType">
<sequence>

<element name="x" type="integer"/>
<element name="y" type="integer"/>

</sequence>
</complexType>

<element name="Point" type="PointType"/>

The idea of complexTypes is to describe the content of ele-
ments, supposedly to aid reuse. No programming language we
know of introduces this kind of additional layer of types to
describe the inner shape of its regular type. While there are no
values of type complexType, the fact that they are called type
however seduces many people to believe that in a shallow em-
bedding of XML into objects, complex types and not elements
should be mapped to classes.

Under that interpretation, the schema above would translate
to the following class

Class PointType
x As Integer
y As Integer

End Class

However, this begs the question what to do with the decla-
ration <element name="Point" type="PointType"/>? One
possibility is to map it to a wrapper class Point with an
implicit conversion to PointType. In any case there is a dis-
crepancy where some elements are mapped to types and some
are mapped to fields, which causes an incoherence with the
semantics of XPath where all path selections return collections
of elements.

We can go on for pages talking about the subtleties of map-
ping XSD to objects, but we cut it short by observing that
any attempt that does not uniformly map elements to types
is fundamentally flawed because XML values are node-labeled
trees while objects are edge-labeled graphs.

3.1.2 Type-system extensions

The solution to the XSD mapping problem we attempted in
Cω was to extend the CLR type-system with various structural
types such as disjoint union (|), a family of stream types (-
for exact types, ! for non-null types, i.e. streams with exactly
one element, ? for optional types, i.e. streams with either zero
or one element, + for non-empty streams, and * for possibly

4 2006/4/7

empty streams) and optionally labeled records struct { . . . ,
[T] m , . . . } to allow the specification of richer object models
than just classes with a collection of fields:

T ::= N | T[]

| T(. . . ,T, . . .)

| T|T | T&T

| T- | T! | T? | T+ | T*

| struct { . . . ,[T]m, . . . }

In addition, Cω added function types T(. . . ,T, . . .) (which
show up in LINQ as Func(Of ..., T, ..., S) and intersec-
tion types (&).

In Cω we can define a schema for email messages such as

msg = <Email>
<To>BillG</To>
<From>Erik</From>
<Body>

<P>Visual Basic is also my
favorite language</P>

</Body>
</Email>

using the following type declaration

class Email {
string To;
string From;
string? Subject;
struct{ string P; }* Body

}

Cω also has type inference for local variables, and the inferred
type for the msg variable is Email.

XML literals in Cω were just serialized objects, and the com-
piler translated such literals into constructor calls of the type
denoted by the literal. Just like HSP, Cω XML literals could
contain arbitrarily nested expression and statement holes.

3.1.3 Generalized Member Access

The slogan of Cω is “The Power Is In The Dot!” which refers
to the fact that in Cω we aggressively lift member access over
all structural types. For example given a collection buttons
of type Button*, we can write bs.BackColor to return the
individual colors of each button in the collection. The ex-
plicit notation for lifting uses an anonymous block expression
bs.{ return it.BackColor; }.

The reason we introduced lifting over structural types is be-
cause this makes writing path expressions really convenient,
especially since nested streams were automatically flattened.

3.1.4 Nullable types

In the Whidbey version of .NET nullable types were introduced
in C] 2.0 using the same ? syntax as Cω. In C] 2.0, conversions
and binary operators over T are lifted, but normal member ac-
cess is not. The T? type constructor is constrained to take a
non-nullable value type T as its argument, hence nullable types
cannot be nested. Unlike Cω there is no implicit conversion
from T? to T*.

The biggest impact of Cω on the real world has been to ensure
the fact that nullable types in the CLR are coherent, that is
when a null value of type T? is boxed to object it is mapped
to the null pointer, and when a non-null value t of type T? is
boxed to object, the value is first unwrapped and then boxed,
i.e. the conversion sequence goes like (object)(T)t. Without
this, boxing null would not be null (object)null != null
and first upcasting to nullable and then boxing would not give
the same result as boxing, i.e. (object)(T?)t != (object)t.

3.1.5 Query Comprehensions

Besides generalized member access and explicit lifting, Cω also
supported filter expressions of the form

buttons[it.BackColor = Color.Red]

and SQL-style comprehensions. The compiler had built-in
knowledge about queries over streams (list comprehensions)
and of queries over remote databases (the query monad). It
was possible to add other overloads by writing compiler plug-
ins.

4. LINQ

When the Cω incubation was winding down, the C] team
started to spin up the design work for C] 3.0, and Matt Warren
and myself went over to C] to spread the intellectual DNA that
we amassed during the Cω work and before.

Concurrently I picked up my interest in scripting and dynamic
languages [34], triggered by the staggering complexity of the
Cω type-system. I became convinced that deep embedding is
the best way to deal with XML in a language, with an optional
and layered type-system on top. [15]. Early 2004, I realized
that Visual Basic was the ideal language for the road ahead.

It should be no surprise that the goal of LINQ is to unify
programming against relational data, objects and XML. In
LINQ we have managed to strike a nice balance libraries and
language extensions. Moreover, all of the language extensions
are valuable by themselves, so total is really more than just the
sum of the parts. Both Visual Basic and C] have parity with
respect to each of the LINQ supporting features.

4.1 Records

In queries we often want to project out certain members of a
certain value and combine them with the projected members
of another value. For instance given a customer C and its ad-
dress A we want to return the pair C.Name and A.City without
having to declare and introduce a new nominal type. This is ex-
actly the reason that functional languages and Cω have records.

In Visual Basic, we create a record with a Name and a City
member by writing

Dim Customer =
New { .Name = "Bill", .City = "Seattle" }

Since extensible records and record subtyping is still an open
research problem, and because the underlying CLR runtime
does not directly support structural types, there is no record
subtyping.

In C] records are expressible but not denotable, so they cannot

5 2006/4/7

appear as argument or result types of methods, or be used as
properties or fields; and type inference is absolutely necessary
for expressions that return records. Within a single method, all
structurally equivalent record types are mapped to the same
underlying nominal.

4.2 Object Initializers

Introducing query comprehensions in the language forces us
into a much more expression oriented style rather than the
usual imperative statement oriented style that people are used
to. To facilitate this, both C] and Visual Basic introduce the
notion of object initializers.

An object initializer such as (using C] syntax):

new Person { First = "Jacques",
Last = "Chirac" }

corresponds to the Cω block expression

new Person().{ it.First = "Jacques";
it.Last = "Chirac"; return it; }

that creates a new instance and then assign values to the fields
or properties of the just created instance.

Many types contain read-only members of mutable types, in
which case we just supply a list of values for each member
to initialize them. If we want to create a new instance for
an embedded member, we recursively use an object initializer
expression:

Dim Pair =
New Person {

Name = New Name { ... },
Address = { .City = "Seattle", ... }

}

4.3 Type Inference

In a purely nominal type-system such as pre-generics Java
or CLR, type-inference does not add much value. When the
only compound types are arrays, most expressions have simple
types, such as Hashtable, regardless of whether their “real”
type, such as HashTable(Of Integer, List(Of String))
is complex or not. However, with the advent of generics and
anonymous types, values can be typed much more precisely
making explicit typing much more painful.

Moreover, having expressible but non-denotable types make
type inference necessary since it is not even possible to
write down the type of certain expressions, for instance
{ X=4711, Y=13 }.

Traditionally languages with type inference look at all uses
of a variable when inferring its most general type, usually via
some form of unification or constraint solving procedure. While
this guarantees that inferred types are in some sense most pre-
cise, it also leads to hard to understand error messages as every
Haskell and SML user has experienced. The situation even gets
murkier due to (user-defined) implicit conversions, while the
presence of the uber type Object makes inferred types degen-
erate to Object pretty quickly where using a variable at two
disparate types is most probably an error.

Type inference in the presence of overloading and subtyping is
a hard problem, and has been a very active research area for a
many years [46]. Inferring types for function arguments is non-
obvious, for example, what would be the inferred type for the
argument X of the function Function(X) Return X.Foo()
when there are multiple types (classes or interfaces) in scope
that have a Foo method, each of which can be overloaded
on their argument type. Inferring result types for functions is
equally non-obvious in the presence of subtyping and overload-
ing.

The 80/20 solution is to infer types only from the initializer
expression of just local variable declarations. This is simple,
simple to implement, and is conceptually closest to explicitly
typed local declarations; the only difference is that the com-
piler will infer the type that the programmer would provide
otherwise.

4.4 Extension Methods

Unlike Java, but like C++, in both Visual Basic and C], meth-
ods are non-virtual by default. An instance method is really
nothing more than a static method with an implicit receiver
(called Me in Visual Basic, and this in C]). Calling an instance
method does not involve any dynamic dispatching and the call
is resolved completely statically.

Extension methods lift the restriction that instance methods
need to defined in the receiver’s class. In C] 3.0 and Visual
Basic 9, any static method can be marked as an extension
method, and hence be invoked using instance call syntax
e.f(...,a...) instead of using the normal static call syn-
tax that mentions the class C in which the method is defined
C.f(e,...,a,...). Both Visual Basic and Java (but not C])
allow class imports using which we can write a static method
call as f(e,...,a...) by omitting the class C.

The major advantage of extension methods over regular in-
stance methods is that we can add extension methods to a
receiver type after the fact, and even more importantly you
can add new methods to any type, including interfaces such as
IEnumerable(Of T) and constructed types such as string[].

The latter ability is key to defining the standard query operators
over any type. For instance, using C] syntax, the definition of
the standard query operator selectMany on IEnumerable<T>
(the bind operator >>= of the list monad in Haskell) is defined
as follows:

public static class Sequence
{

static IEnumerable<S> selectMany<T,S>(
IEnumerable<T> src, Func<T, IEnumerable<S>> f)

{
foreach(var t in src)

foreach(var s in f(t))
yield return s;

}
}

It is important to note that extension methods are a pure
compile-time mechanism. The runtime type of the receiver is
not actually extended with additional methods. In particular
reflection does not know anything about extension methods
and hence late binding over extension methods is not possible.

6 2006/4/7

In many ways this makes extension methods similar to the
“method call” operator

receiver # method = method receiver

that we introduced in Haskell when we started using COM com-
ponents, and which has been rediscovered as the [> operator
in F] recently.

4.5 Expression trees

One of the biggest hassles of deep embedding is to create
representations of embedded programs that contain bound
variables. Because Haskell at that time lacked quoting or any
form of reifying its internal parse trees, HaskellDB required
subtle hacks to create expression tree combinators that forced
users to write predicates as X!name .==. constant("Joe").

In Lisp or Scheme we would of course use quote and quasi
quote to turn code into data and escape back to code. The
problem with explicit quoting in Lisp is really the same as the
HaskellDB mechanism; the API writer has to decide to use
data or code, and then the user has to decide to quote or not.

One of the most exciting features of both C] 3.0 and Visual
Basic 9 is the ability to create code as data by converting an
inline function or lambda expression based on the expected sta-
tic type of the context in which the lambda expression appears.

Assume we are given the inline function Function(X)X>42.
When the target type in which that inline function is used is an
ordinary delegate type, such as Func(Of Integer, Boolean),
the compiler generates IL for a normal delegate of the required
type. On the other hand when the target type is of the special
type Expression(Of Func(Of Integer, Boolean)) (or any
other nested delegate type), the compiler generates IL that
when executed will create an intentional representation of the
lambda expression that can be treated as an AST by the re-
ceiving API.

The major advantage of this style of type-directed quoting
via Expression(Of ...) is that it is now (nearly) transparent
to the consumer of an API whether to quote or not; the user
only has to remember to use lambda expressions c.q. inline
function declarations as opposed to ordinary delegate syntax.

Just like HaskellDB, the DLinq part of the LINQ framework
takes advantage of expression trees to an define an implemen-
tation of the standard query pattern that as its effect computes
a program that when executed computes a collection of results.

4.5.1 Standard Query Pattern

The higher-kinded shape of a generic type C<T> that supports
(a simplified version of) the standard query pattern contains the
well-know (monadic) operators filter, called Where, map, called
Select, and of course bind, which is called SelectMany:

Class C(Of T)
Function Where

(P As Func(Of T, Boolean)) As C(Of T)
Function Select(Of S)

(F as Func(Of T,S)) As C(Of S)
Function SelectMany(Of S)

(F As Func(Of T, C(Of S))) As C(Of S)
End Class

When Java and the CLR introduced generics they unfortu-
nately did not allow for parameterizing over type constructors
as opposed to abstracting over just types. The consequence
of this oversight is that is impossible to enforce the standard
query-operator pattern using the CLR or Java type-system.

Because of the purely syntactic way comprehensions are trans-
lated into the underlying sequence operators (as we will see in
the next section) it is also possible to implement the pattern
using non-generic types, for instance using a Where method of
the shape:

Function Where
(Src As Qs, Pred As Func(R, S)) As Ts

In this case the type dependency between the element type
of the source and the argument type of the predicate is lost,
which means we cannot define typing rules at the level of query
comprehensions themselves.

The upside of this flexibility is that we get more freedom
to implement the standard query pattern, For example, the
various methods could also be defined as extension methods
(which we rely on for the implementation of the pattern over
IEnumerable<T>) and most importantly, the methods can take
expressions trees instead of just delegates.

The generic delegate types Func(Of A, R) represents a func-
tion of type A -> R or R(A), but the methods in the patterns
could equally well use some other delegate type with the same
argument and result type.

4.5.2 Query Comprehensions

Just as in Haskell where list and monad comprehensions are
syntactic sugar for more complex expressions in terms of the
standard monad operators, both Visual Basic and C] define
special comprehension syntax that the compiler expands into
the standard query operators. The real main advantage of us-
ing comprehension syntax over the low-level operators is that
query comprehensions introduce a more convenient scope for
bound variables.

In Visual Basic, comprehensions are fully compositional, and
acts as a pipeline that transforms “collections” of tuples into
collections of tuples. The following query joins all books from
Amazon and Barnes and Noble by ISBN number and selects
the price at each store that the title of the book, and finally
filters out all books that are more expensive than a hundred
dollars (note the use of punting, where the compiler infers the
record labels from the expression, in the Select clause):

Dim BookCompare =
From A In Amazon, B In BarnesAndNoble
Where A.ISBN = B.ISBN
Select A.Title,

PriceA = A.Price,
BPrice = B.Price

Where Max(APrice, BPrice) < 100

In the desugared code that the compiler generates, the From
clause of the query constructs the Cartesian product of the two
source collections using a nested Select(Many), the subsequent
Where then lifts the iteration variables A and B over the compiler
generated argument _It_, the Select projects the pair of A
and B into a triple Titel, APrice, and BPrice, and finally the

7 2006/4/7

last Where again lifts these iteration variables over the compiler
generated argument _It_:

Dim BookCompare =
Amazon.SelectMany((A)

BarnesAndNoble.Select((B)
New{A,B})).

Where((_It_) _It_.A.ISBN = _It_.B.ISBN).
Select((_It_) New{ _It_.A.Title,

PriceA = _It_.A.Price,
BPrice = _It_.B.Price}).

Where((_It_)Max(_It_.APrice, _It_.BPrice) < 100)

The Visual Basic compiler contains a standard peephole op-
timizer that post processes the generated code to eliminate
unnecessary intermediate values.

4.6 XML integration

While ideally XML is just a serialization format that is hidden
from the programmer, it has now become so persuasive that in
those situations where we do need to deal with XML it should
be as convenient as possible.

For this reason, LINQ introduces a new XML API called XLINQ
[32] that replaces the standard DOM. On top of XLINQ, Visual
Basic 9 supports deep embedding of XML via XML literals that
allow cut and past of arbitrary XML fragments.

4.6.1 XLinq API

The standard W3C DOM1 API is document-centric which
means that elements and attributes exist in the context of
a specific document, hence elements and attributes are not
first-class values. Due to this document centricity, construc-
tion of nodes becomes extremely imperative. You first create a
node using a factory method on the target document and then
explicitly add it as a child of another existing node. The DOM
model is inside-out; objects can be created independently, free
of the context of their container. This forces non-modularity
and non-re-usability. Imperative construction does not fit very
well in the expression-oriented style required by LINQ in general
and query comprehensions in particular.

Accessing nodes using the DOM is extremely inconsistent,
with many special cases. The methods GetAttribute or
GetAttributeNode access a particular child attribute, but the
Item default property (indexer) accesses child elements. The
special FirstChild and LastChild methods exist for elements
but not for attributes.

The XLinq API is an alternative for the DOM where elements
and attributes are first-class values and are constructed via nor-
mal constructor calls (functional construction), independent of
any particular document context. When an already parented
node is added to a child of a new parent, that node is automat-
ically cloned. All XPath axes, such as Parent, Descendants,
Elements, Attributes, etc., are available as (extension) meth-
ods on nodes and collections of nodes. The latter of, course
closely reflects member lifting of Cω.

1 DOM means brain dead in Dutch.

4.6.2 XML Literals

While the XLinq API is already a major improvement over the
DOM, it is not yet simple enough. On top of XLinq’s functional
construction, Visual Basic allows XML literals, (fragments of)
XML documents that the compiler translates into XLinq con-
structor calls. For instance, the declaration below

Dim CD = <CD Genre="rock">
<Title>Stop</Title>
<Artist>Sam Brown</Artist>
<Year>1988</Year>

</CD>

is compiled into the following XLinq calls:

Dim CD = New XElement("CD",
New XAttribute("Genre","rock"),
New XElement("Title", "Stop"),
New XElement("Artist", "Sam Brown"),
New XElement("Year", 1988))

XML literals can contain expression holes at any position where
the underlying API allows an argument of a type compatible
with the expression plugged into the hole. For example, we can
create an XML document with all rock CDs from the FreeDB
database using the following simple query:

Dim Rock =
<?xml version="1.0" ?>
<CDs><%=

From FreeDB
Where CD.@Genre = "rock"
Select <CD>

<Title><%= CD.Title %></Title>
<Artist><% CD.Artist %></Artist>
<Year><%= CD.Year %></Year>

</CD>
%></CDs>

Note that we are relying on the fact that expression holes
are compositional, by constructing an outer document (the
<? xml version="1.0" ?> causes the inferred type of the
variable Rock to be XDocument) whose children are computed
by a query comprehension construct the child CD element from
the selected row.

4.6.3 Namespaces

Whereas we gladly got rid of XSD schemas in Visual Basic
9, there is no way around XML namespaces. As James Clark
remarks[7] namespaces are one of the most confusing aspects
of XML. Perhaps one of the main benefits of XML literals is the
fact that users can copy and paste XML including namespaces
into a Visual Basic program and start modifying it from there,
just how many of us deal with make files and the like.

There are two ways to declare a namespace prefix, by using
a global Imports prefix = URI declaration, and by a nor-
mal xmlns:prefix=URI declaration inside an element. Global
Imports namespace declarations scope over the whole pro-
gram, while normal xmlns namespace declarations scope over
their embedded elements and attributes, but not inside expres-
sion holes.

Imports X = "http://www.freedb.org"

8 2006/4/7

Dim CD = <Y:CD xmlns:Y="http://www.freedb.org"
Genre="rock">
<Y:Title>Live!</Y:Title>
<X:Artist>Anouk</X:Artist>
<Y:Year>1997</Y:Year>

</Y:CD>

As we will see next, global prefix declarations are useful for axis
member selection.

4.6.4 Axis Members

In Visual Basic we have introduced special syntax for the three
most common axis Children, Descendants, and Attributes.
The child axis cd.Children("Title") is written using syn-
tax that resembles an element cd.<Title>, the descen-
dant axis CDs.Descendants("Artist") is similar, but uses
three dots CDs...<Artist>, and lastly the attribute axis
cs.Attributes("Genre") is abbreviated as cd.@Year.

We use a global prefix to access elements and attributes with
qualified names. For example, given the second CD example, we
must write CD.<X:Year> to access the <Y:Year> child since
Y was declared via the local namespace declaration xmlns:Y =
"http://www.freedb.org" and hence the fully qualified name
of the element is {http://www.freedb.org} Year.

Unlike Cω we do not assume any schema information. Instead
we will optionally layer [15] XSD information on top of the CLR
type-system to guide Intellisense in the IDE for XML literal con-
struction and axis members. However, this type information has
no impact on the runtime behaviour of the program.

4.7 DLinq

Besides languages extensions, standard query operators, and
XLinq, the fourth pillar of the LINQ framework is DLinq;
a domain-specific library for accessing relational data. The
implementation of the standard query operators for DLinq
mirrors the Query monad of HaskellDB and uses expression
trees Expression(Of Func(Of ...)) instead of delegates
Func(Of ...). The DLinq infrastructure then compiles these
expression trees into SQL and creates objects from the result
of running the query on a remote database.

DLinq also provides the usual object-relational mapping in-
frastructure such as a context that tracks object identity of
rehydrated rows, and tracks changes to the object graph to
submit changes back to the underlying database.

5. The Great Internet 2.0 Hype

After a five year hibernation, people have rediscovered DHTML
and client-side scripting in combination with web services under
the monikers Web 2.0 and AJAX. It is my current belief
that Visual Basic is the ultimate language to democratize
programming against the Cloud, and hence to bring my quest
to a happy end.

5.1 Visual Basic

People often snort at Visual Basic, either because they still have
an outdated idea of “Basic” in mind, or because they think that
Visual Basic .NET is just C] with slightly more verbose syntax.
Nothing is further from the truth.

5.2 Static Typing where possible, dynamic typing where
needed

As we argued elsewhere [34], the artificial separation between
the supporters of dynamically and statically typed languages is
rather unfortunate.

Dynamically typed languages let a great chance slip to leverage
a lot of static information about programs that the compiler
can infer. Not writing types does not imply no static types
[6, 1]. On the other hand, the runtime correctness of programs
as implied by most contemporary static type-systems is rather
weak. Moreover, even statically typed languages need a few
drops of dynamism (downcasts, reflection, array bounds check-
ing, ...) to make things run smoothly.

Visual Basic is unique in that it allows static typing where
possible and dynamic typing where necessary. When the re-
ceiver of a member-access expression has static type Object,
name resolution is phase shifted to runtime since at that point
the dynamic type of the receiver has become its static type.

The rule for the static case is defined as usual. The term
R • m(S) As T ; M encodes the member lookup and overload
resolution for method M that finds the code M to call when the
receiver has static type R and the argument has static type S.

Γ ` e As R ; E, Γ ` a As S ; A, R • m(S) As T ; M

Γ ` e.m(a) As T ; M(E,A)

In the late-bound case, when the receiver has type Object and
the previous rule does not apply, we cannot do the member
lookup and overload resolution at compile-time, so instead we
defer this to the LateCall function, passing it the name of the
method, the receiver, and the actual argument.

Γ ` e As R ; Object, Γ ` a As Object ; A

Γ ` e.m(a) As Object ; LateCall("m",E,A)

At runtime, when executing the LateCall, we lookup the
dynamic types of the receiver and the argument and do the
member lookup at runtime to find the code M that actually
needs to be called:

r.GetType() → R, a.GetType() → S, R • m(S) As T ; M

LateCall("m", r, a) → M(r,a)

In some sense, late bindinging in Visual Basic gives you a form
of multi-methods since late calls are resolved based on the
dynamic type of all their arguments.

5.3 More Dynamism

Looking at the type rule for late binding, it is clear that there
is no reason that for late-bound calls, the method name needs
to be statically determined. Visual Basic 9 therefore allows
late-bound identifiers of the form e.(m)(a) where m is any
expression whose type is convertible to string. Note that dy-
namic identifiers make it quite easy to define a meta-circular
interpreter for Visual Basic since [|e.m(a)|] = [|e|].("m")([|e|]).
this kind of interpretation is very useful for data-driven test
harnesses [43].

Besides dynamic identifiers in calls, in a future version of Visual
Basic, we hope to allow the replacing of constants by variables
in any place where the runtime infrastructure allows us to com-
pute these at runtime, making Visual Basic as dynamic as it
possibly can given the limitations of the CLR.

9 2006/4/7

Another aspect in which Visual Basic differs from statically
typed languages such as C] and Java, is that the Visual Ba-
sic compiler inserts downcasts automatically, and not just
upcasts. We are using this ability to relax the creation of
delegates in such a way that you can create a delegate
of type Func(Of A,R) from any function f that can be
called with an actual argument of type A and assigned to
a variable of type R; we simply do this by creating a stub
Function(X As A)CType(f(X), R) of the exact type required
by the delegate.

Just like we extended late-binding over normal object to XML
via axis members, we are also planning to provide a similar
mechanism for late-binding over deeply embedded relational
data (that is ADO.Net DataSets). This form of late-binding
is extremely useful to support developers of generic reporting,
viewing, analysis, intelligence, visualization, and data-mining
tools.

5.4 Type-System Extensions

One of the nice things of the relational model is the fact that
relationships are external. That is, children point to the parents
(foreign key → primary key relationship) as opposed to from
the parent to the child. As a result, it becomes possible to
create explicit relationships [13] between types after the fact,
without modifying the participating types. This is important
when we want to relate data from different sources, descrip-
tions of CDs from a web-services, my personal CD collection
in ITunes. By adding support for explicit relationships in the
language we can navigate such realtionship via the familiar .-
notation instead of having to perform complicated joins using
middle tables.

Another proposed extension that aids dynamism are dynamic
interfaces that make it possible to implement an interface on
an existing type, much like in Haskell we can create an instance
of a given type for a type class independent of the definition
of that type.

5.5 Contracts

Current static type systems as found in contemporary object
oriented languages are not expressive enough. They only allow
you to specify the most superficial aspects of the contract
between the caller and the callee. From a program specification
point of view, our programs are extremely dynamically typed!
What we really need is a dial that we can turn from no static
typing on the one extreme, to traditional static typing, to full
contracts and invariants [5, 4] on the other extreme.

5.6 Concurrency and Transactions

One aspect of distributed data intensive applications that we
have not yet mentioned is the distrubuted part. We do not
only need to address concurrency for that reasone, but also be-
cause the advent of multi-core processors will put highly parallel
machines on the desktops of normal people. We believe that
transactions [22] are the only way normal people can deal with
concurrency, and hence we are very interested in investigating
language support for transactions and transactional memory.

For more advanced scenarios that require complex synchro-
nization patterns, we believe that Cω style join patterns [11]
remain very attractive.

It is also interesting to see a resurging interest in morphisms
and program transformations in the context of massively par-
allel computing [19].

In any case, bringing concurrency to the masses is one of
the topics that is high on our agenda for future work.

6. Conclusion

Transferring technology from research to the mainstream re-
quires that all research problems have been solved, and that
the implementation is just a matter of engineering. While the
goal of research is to push he envelope as hard as possible, the
role of productization is to pick and choose from that envelope
and simplify the contributions as much as possible, but not
more.

It necessarily takes a long time for research ideas to surface in
the real world. The reason is simply because it takes time for
the really goad ideas to float up and mature and for the bad
ideas to sink down and whither away.

There is one aspect of the impedance mismatch between re-
search and practice that I did not know how to solve and that
is the fact that in practice most effort goes into the “noise”
that researchers abstract away from in order to drill down to
the core of the problem.

Even though closures, meta programming, monads, and com-
prehensions have been around for many decades, it is rather
remarkable that they show up in mainstream languages such
as C] 3.0 and Visual Basic 9 and the LINQ framework. It
is especially remarkable since, in the functional programming
community, monads are not yet mainstream and by many con-
sidered to cause brain damage.

Functional programming has finally reached the masses, except
that it is called Visual Basic instead of Lisp, ML, or Haskell.

Acknowledgments

The list of people to thank would be extremely long, and even
then I would run the risk of forgetting someone. Instead of
inadvertently stepping on someone’s toes, let me instead say
that the only reason a dwarf like me can get this far is because
I have been standing on the shoulders of giants.

All things are subject to change, and nothing can last
forever. Look at your hand, young one, and ask yourself,
“Whose hand is this?” Can your hand correctly be called
“yours”? Or is it the hand of your mother, the hand of
your father. Reflect on the impermanent nature of your
hand, the hand that you once sucked in your mother’s
womb. [14]

10 2006/4/7

References

[1] http://caml.inria.fr/

[2] http://haskelldb.sourceforge.net/

[3] http://research.microsoft.com/fsharp/about.aspx

[4] http://research.microsoft.com/specsharp/

[5] http://www.eiffel.com/

[6] http://www.haskell.org

[7] http://www.jclark.com/xml/xmlns.htm

[8] http://www.w3.org/xml/schema

[9] The Fun of Programming. Cornerstones in Computing.
Palgrave, 2003.

[10] The Haskell 98 Foreign Function Interface 1.0, 2003.

[11] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern
Concurrency Abstractions for C]. ACM Trans. Program. Lang.
Syst., 26(5):769–804, 2004.

[12] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence
of Data Access in Cω. In ECOOP, volume 3586 of LNCS.
Springer-Verlag, 2005.

[13] Gavin Bierman and Alisdair Wren. First-Class Relationships
in an Object-Oriented Language. In ECOOP, volume 3586 of
LNCS. Springer-Verlag, 2005.

[14] Matthew Bortolin. The Dharma of Star Wars. Wisdom
Publishers Inc., Boston, 2005.

[15] Gilad Bracha. Pluggable Type Systems. In OOPSLA Workshop
On The Revival Of Dynamic Languages, 2004.

[16] Niklas Broberg. Haskell Server pages Through Dynamic
Loading. In Haskell Workshop, 2005.

[17] Magnus Carlsson and Thomas Hallgren. FUDGETS - A
Graphical User interface in a Lazy Functional Language. In
FPCS, 1993.

[18] James Cheney and Ralf Hinze. First-Class Phantom Types.
Computer and Information Science Technical Report TR2003-
1901, Cornell University, 2003.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, 2004.

[20] Matthew Fluet and Riccardo Pucella. Phantom Types and
Subtyping, 2004.

[21] Matthew Fluet and Riccardo Pucella. Practical Datatype
Specializations with Phantom Types and Recursion Schemes,
2005.

[22] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1992.

[23] J. Hughes. Why Functional Programming Matters. Computer
Journal, 32(2):98–107, 1989.

[24] Nigel Perry Jason Smith and Erik Meijer. Mondrian for .NET.
DDJ, 2002.

[25] Peter J. Landin. The next 700 programming languages.
Communications of the ACM, 9(3):157–166, March 1966.

[26] Daan Leijen. Functional Components: COM Components in
Haskell. Master’s thesis, Department of Computer Science,
University of Amsterdam, september 1998.

[27] Daan Leijen and Erik Meijer. Domain specific embedded
compilers. In 2nd USENIX Conference on Domain Specific
Languages (DSL’99), pages 109–122, Austin, Texas, 1999.
Also appeared in ACM SIGPLAN Notices 35, 1, (Jan. 2000).

[28] Daan Leijen, Erik Meijer, and James Hook. Haskell as an
Automation Controller. In The 3rd International Summerschool
on Advanced Functional Programming, volume 1608 of LNCS.

Springer-Verlag, 1999.

[29] Sheng Liang. Modular Monadic Semantics and Compilation.
1997.

[30] Sheng Liang. Java Native Interface: Programmer’s Guide and
Reference. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[31] Erik Meijer. Server-Side Web Scripting in Haskell. Journal of
Functional Programming, 10(1):1–18, january 2000.

[32] Erik Meijer and Brian Beckman. XLINQ: XML Programming
Refactored (The Return Of The Monoids). In XML, 2005.

[33] Erik Meijer and Koen Claessen. The Design and Implementation
of Mondrian. In Haskell Workshop, 1997.

[34] Erik Meijer and Peter Drayton. Static Typing Where Possible,
Dynamic Typing When Needed: The End of the Cold War
Between Programming Languages. In OOPSLA Workshop On
The Revival Of Dynamic Languages, 2004.

[35] Erik Meijer and Sigbjorn Finne. Lambada, Haskell as a Better
Java. In Haskell Workshop, 2000.

[36] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional
Programming with Bananas, Lenses, Envelopes, and Barbed
Wire. In FPCA, volume 523 of LNCS. Springer-Verlag, 1991.

[37] Erik Meijer, Daan Leijen, and James Hook. Client-side Web
Scripting with HaskellScript. In PADL, volume 1551 of LNCS,
pages 196–210. Springer-Verlag, 1998.

[38] Erik Meijer, Nigel Perry, and Arjan van Yzendoorn. Scripting
.NET Using Mondrian. In ECOOP, volume 2072 of LNCS.
Springer-Verlag, 2001.

[39] Erik Meijer and Wolfram Schulte. XML Types for C]. BillG
ThinkWeek Submission Winter 2001.

[40] Erik Meijer, Wolfram Schulte, and Gavin Bierman. Program-
ming with Circles, Triangles and Rectangles. In XML, 2003.

[41] Erik Meijer, Wolfram Schulte, and Gavin Bierman. Unifying
Tables, Objects and Documents. In DP-COOL, volume 27 of
John von Neumann Institute of Computing, 2005.

[42] Erik Meijer and Mark Shields. XMLambda: A Functional
Programming Language for Constructing and Manipulating
XML Documents. Unpublished draft.

[43] Erik Meijer, Amanda Silver, and Paul Vick. Overview Of Visual
Basic 9.0. In XML, 2005.

[44] Erik Meijer and Danny van Velzen. Haskell Server Pages:
Functional Programming and the Battle for the Middle Tier.
In Haskell Workshop, 2000.

[45] Thomas Nordin and Simon Peyton Jones. Green Card: a
Foreign-language Interface for Haskell. In Proceedings of the
Haskell Workshop, 1997.

[46] Benjamin C. Pierce. Types and Programming Languages. The
MIT Press, Cambridge, Massachusetts, 2002.

[47] Riccardo Pucella, Erik Meijer, and Dino Oliva. Aspects de
la Programmation d’Applications Win32 avec un Langage
Fonctionnel, 2004.

[48] Mark Shields and Erik Meijer. Type-Indexed Rows. In POPL,
2001.

[49] Erik Meijer Sigbjorn Finne, Daan Leijen and Simon Peyton
Jones. H/Direct: A Binary Foreign Language Interface for
Haskell. In ICFP, 1998.

[50] Erik Meijer Sigbjorn Finne, Daan Leijen and Simon Peyton
Jones. Calling Hell from Heaven and Heaven from Hell. In
ICFP, 1999.

[51] Erik Meijer Simon Peyton Jones and Daan Leijen. Scripting
COM Components in Haskell. In Software Reuse, 1998.

[52] Peter Thiemann. WASH Server Pages. In FLOPS, 2006.

11 2006/4/7

