Implementing a Simple Ray Tracing

1. Inputs:

(a) Camera/Screen Information:

Py, = location of camera
VPN = normal to view plane
VUP = up direction
d distance of camera from view screen
H = height of screen
w

= width of screen

X,es = number of pixels per column
Y,.s = number of pixels per row
A
Screen
ﬁ.j):(0,0)at y ',' ixel at Y)=(a,
| g W) (i) pielat (xy)=a.b)
Pt (a,0,d) Ni— |
] 9999 9 9 9@
v ® 06 0 0 000 0 0 00
P n il'.........l'
o > —e > o 00000000 00 .
u\d/ H i sees il ensed X
® 06 06 0 000 0 0 00
® 060 0 000 0 0 0 0
000000 0 & \
(i)=0res-1,Yres-1) at
— W > (xy)=(Wi2H2)

(b) Scene Information
I, = (Lay, Loy, 1op) = RGB components of the intensity of ambient light
(constant throughout scene). Note that this is a property of the light and
not of the object.
(c) Objects
i. spheres : requires center, radius
ii. planes : requires normal and point on plane
iii. For each object, we need
e 0 <k, <1 = coefficient of ambient light
e RGB color = (¢, ¢y, ¢p) where 0 < ¢, < 255



2. Compute Screen/View unit vectors , 0, f:

If the screen coordinates of the 7, j*" pixel are expressed as

/W  W-i H H-j
(a’ﬁ>:<_2+Xres_17_2+y;’es_]->

then, the direction of the ray is (assuming a left handed coordinate system):
Pl—POZOéa‘f—ﬁf)‘i‘dTAL
3. Compute Pixel Color
Loop over column ¢ and row j (i.e. for each pixel (i,7) ):
(a) Compute Ray :

(ot + Bv + dn)
||(at + B0 + dn)||

ray= Py +1t dir= Py +1

(b) Loop over objects in world.
Compute the intersection of object with ray (i.e. the ¢ value). Keep track
of smallest ¢ value (this is closest object).

(c) For the closest object:
Determine the color that is assigned to the i,j-th pixel:

RGB pixel color = ky(Iy ¢, Lo gCqs LapCs)

where each component must be restricted to being between 0 and 255.



