CS-141 Introduction to Programming

Writing a Simple Database

In this lab you will implement a simple database, i.e. a program that consists of an organized collection of data together with a user interface that enables one to read, write, and access the data in multiple ways. One familiar example is The Internet Movie Database (IMDb). There are also many online music databases.
You will use most of what you have learned throughout this course. You will begin by picking the type of content you wish to contain in your database (e.g. music, books, movies, etc). You will then design a class structure that is appropriate for this content. Once your design is complete, you will implement the classes in Java and create the associated list of objects by reading the information for each object from a file. (The user can also enter information through the GUI, which then must be saved back to the data file.) Then your program will manipulate those objects in response to user inputs from a GUI you have built.
This program will be large enough that you may become very confused if you do not design your program well, or if you attempt to implement too much at once. Therefore, start small, and practice stepwise implementation; this requires discipline on your part, there is a great temptation to jump right in before thinking a problem through.
There are two intermediary deliverables before the final program is due:

· Wednesday, Nov 23: You are to turn in

a. The choice of content for your database.

b. The design of the class structure (see below)
c. The proposed format for the data files.

d. To do in class but not to turn in: A preliminary program that consists of the
i. Class definitions for your data implemented in Java.
ii. Testing: code, e.g. in main, to create several objects and test that the methods in your classes work.

· Friday, Dec 2:
a. You should turn in a program that contains:
i. The class files created in the first deliverable.

ii. A FileIO class that reads in the data files into the appropriate objects.

iii. A Database class that contains lists (arrays or ArrayLists) of all of the data that is read.

iv. Testing: code, e.g. in main, to create a Database object and to test that the methods in it work.

· Friday, Dec 9: Final Project is due. LATE PROGRAMS WILL BE PENALIZED BY 50%. No assignments will be accepted after the final exam.
a. In the completed program, you should have a DBApplication class that contains

1. A Database object.

2. A call to FileIO to read the data.

3. A functioning user interface which prints and responds to a menu of the possible queries.

b. You must demo your project to your instructor (see your instructor for when to do this).
c. You must turn in turn in the following both as a hard copy and electronically (e.g. via WISE)
i. The code with Javadoc comments.
ii. The generated Javadoc API

iii. The design (updated, if necessary, from the Nov 23 version)
iv. Sample output.

v. Sample data files that can be read/written by the program.

The Design

The purpose of the design is to simplify coding and debugging of the program by creating a coherent plan. This design should fit on one side of one piece of paper and should include the following parts:

A. The main classes you will use in your program and what they will do.

B. Important methods and variables in those classes.

C. The relationship between those classes.

Pictures of the class structure (UML or cloud diagrams) are encouraged (see picture below). If it is hand drawn, it must be done very neatly and clearly. Also include the list of menu choices for your database.
[image: image1.png]DataBaseApp TheDataBase
dbTheDatabase | 3| animalsArayListeAnimal
scannerScanner filename:string

frame: DBFrame
choicesitringll

quen)
getChoice(int
printAnimals()
addAnimal)

2

addAnimal(string) boolean
removeAnimal(String} boolean
removeAnimaliint:boolean

D8Frame

Flelo)

Animal

printin(String)
clear)

print(String)

namesstring

readFile(string)ArayList<Animal>

The Class Diagram for the Animal Database.
Minimal Requirements

Whichever type of database you make, the following are required.

1. Store your database in memory in either an array or ArrayList. Do not read or write data to the disk except as detailed below.

2. Organize your program so that the Application file contains only user interface code. That is, put all of the database handling code in the proper classes.

3. GUI & File I/O

a. Present an easy to use, easy to understand user interface.

b. When the program starts, read the contents of the database from a file into memory.

c. (optional) When the program quits, write the contents of the database from memory to that file.

4. Database manipulation - Allow the user to:

a. Display the current database.

b. Add or delete a record

c. View and change individual records.
d. Sort the database, either alphabetically or otherwise.

A Simple Example: The Animal Database

To get you started, we provide you with the code for a very simple database program called the Animal Database. (click here for code). The UML diagram for this program was given above in the The Design section. Your program should be more complex.
The animals.txt data file contains the names:

cat

dog

mouse

elephant

snake

If you run this program, the output will look like:

Welcome to the Animal Database

This is the Animal Database.

Below are the possible actions.

 0: Print all animals.

 1: Add an animal.

 2: Refresh screen.

 3: quit

Please enter your choice:

0
You entered: Print all animals.

The animals are: [cat, dog, mouse, elephant, snake]

This is the Animal Database.

Below are the possible actions.

 0: Print all animals.

 1: Add an animal.

 2: Refresh screen.

 3: quit

Please enter your choice:

1
You entered: Add an animal.

Please enter the animal name you wish to add:

Adding tarantula

This is the Animal Database.

Below are the possible actions.

 0: Print all animals.

 1: Add an animal.

 2: Refresh screen.

 3: quit

Please enter your choice:

0
You entered: Print all animals.

The animals are: [cat, dog, mouse, elephant, snake, tarantula]

This is the Animal Database.

Below are the possible actions.

 0: Print all animals.

 1: Add an animal.

 2: Refresh screen.

 3: quit

Please enter your choice:

3
You entered: quit
Good-bye

A More Complex Example – A Bank Simulation

Here we describe a more complex database which is more along the lines of what is expected in this assignment (code is not provided). Every major bank supports ATM machines. These are basically small database clients equipped with a card reader, money dispenser, deposit slot, keyboard and screen. In this example, we will simulate a bank which can be accessed through such an ATM.

A bank has a number of customers. Each customer may have a checking account, or a savings account, or both. There are two types of accounts, checking and saving. Each account has a name, a personal identification number (PIN), an account number, and a balance. Both may be accessed from ATM machines.

1. Each ATM must support the following functions:

a. Login -- type a name (to simulate the card reader), then a PIN. If they correctly login, then they can use the other features.

b. Withdraw -- any amount less than the current balance.

c. Deposit -- any amount.

d. Transfer funds between checking and saving accounts.

e. Display balance.

f. Quit.

2. Additionally, you may wish to add some or all of the following functions:

a. Eat their card if they try unsuccessfully to login too many times.

b. Pay them interest every day at the end of the day; perhaps 4% on savings and 2% on checking.

c. Make the PIN invisible when they type it.

Design your own!

Design a database program for some area that interests you. For instance, if you are interested in molecular biology, you could build a catalog of human (or drosophila) genes and their interactions. Or perhaps you’d like to build a computer dating service. Or maybe you’d like to build an order taking and inventory system for an e-business. The possibilities are many.

