
A Blackjack Game Program: Part 2 Methods

Please refer to Part 1 for the rules of the game and sample output.

Code Skeleton

In this part of the lab, you will break the program into small, easy to implement parts.
Each part will be placed in a separate method which can be called as many times as you
wish.

Since this is the first time you will have seen a somewhat complex program, we will
provide a set of method stubs for you. A method stub is a method which has the correct
header and which will compile, but it doesn’t do anything. Stubs serve as placeholders;
they define the structure of the final program. Using stepwise refinement, you will
implement each stub, one at a time, thoroughly testing as you go.

On the class webpage for the lab, you should see links for a Netbeans project called
BlackJackGameStubs. Download it and unzip it (if you are unfamiliar with how to
unzip a file, please consult the instructor). Open up the project in Netbeans and rename
it so that the project name contains the word BlackJack concatenated with your name
(e.g. first initial and last name). You may leave the java file names unchanged. To
rename a project, right-click on the project name and select “rename”. Make sure that
you select the check-box that says “Also Rename Project Folder” – this is very important
to do!

If you look at the source code, you will see two classes: BlackJackGame.java and
GameMain.java. The latter just contains the main method. The game stubs are in
BlackJackGame.java. Comments are included describing what each method should
do. You should not have to make any changes to GameMain.java. The reason for
having two Java classes will be discussed in class. Note, this structure is a little different
than what your book does in Chapter 5.

Implementing the Methods

One of the methods you will see is called prompt(). This will be where the prompt loop
that you wrote in Part 1 will go. Copy your code into this method. The user’s answer
should be stored in the ans variable which is declared and returned in the method. Once
you have entered the code, test it by calling it from the play method. For example, in
play(), enter the code:

String playAgain = prompt();
System.out.println(“You answered “ + playAgain);

Run the code to see if it runs properly. Test it on all possible categories of inputs.

Continue to implement the remaining methods one at a time. Read the comments to
help you understand what each method does. It is suggested that you implement
them in the following order:

pickCard
getSuit
getFace
toStringSuit
toStringFace
toStringCard
cardValue
play

The order is chosen so that each method relies on the methods listed above it but not
the methods below it. Thoroughly test each method before moving on to the next
one. This way any errors you encounter must be due to the method you are
currently working on since the earlier methods you know to be working correctly.
You can test each method by writing temporary code in play which calls the method
and prints the result. This code can be removed after testing.

Submitting Your Code

Zip together your entire Netbeans project (ask if you aren’t sure how; the resulting
file should have a .zip extension.) and submit to WISE as a single zipped attachment.
Remember, it is important that your project name (though not necessarily the java
files) be named as described in the beginning of these instructions.

	Please refer to Part 1 for the rules of the game and sample output.
	Code Skeleton
	Implementing the Methods
	Submitting Your Code

