
CS-141 Introduction to Programming
Creating a Simple Database

In this lab, you will implement a simple database, i.e. a program that consists of an organized collection
of data together with a user interface that enables one to read, write, and access the data in multiple
ways. One familiar example is The Internet Movie Database (IMDb). There are also many online music
databases.

The lab will be divided into several parts:

• Part 1: Pick a subject. Build a database with a simple class structure. Add a menu-style user
interface.

• Part 2: Add the ability to read and write the data from files.
• Part 3: Add the ability to store and search more complex data. You will need to add additional

classes, modify classes from part 1, and modify the file I/O from part 2 in order to read this more
complex data.

Part 2
File Input/Output

Goals: Practice reading and writing to ASCII text files.

Instructions:
1. Create an empty ASCII text file by going to the menu File->New File. Under Categories,

select Other, and under File Types, select Empty File. The select the Next button, and fill
in the File Name e.g. datafile.txt. Make sure you place the file in your project’s src folder.

2. For each item in your database (e.g. Movie), you need to consider what data needs to be provided
and how you want it listed in the file. You could place all the information for a given item on one
line separated by some delimiter (e.g. space, comma, or semi-colon) assuming there is a delimiter
which will never appear as part of the data. For example, movie names are often multiple words so
it would not be possible to use a space as the delimiter. However, a semi-color might work. For
example:

Movie name1; year1; director1
Movie name2; year2; director2
etc

If no good delimiter exists, then you could put each component on a separate line, e.g.
Movie name1
year1
director1
Movie name2
Year2

http://www.imdb.com/
http://en.wikipedia.org/wiki/List_of_online_music_databases
http://en.wikipedia.org/wiki/List_of_online_music_databases

Director2
Etc

Include enough data so that you can carefully test your program. Note, you can always add more
data later.

3. The data being read is to be stored in the ArrayList contained in your Database class. It therefore
makes sense to place the file IO code in this class. (Alternatively, you could create an entirely
separate FileIO class but that is probably not necessary unless you find your Database class is getting
really huge). Below is sample code for File IO. In lecture, we will go over how this code works and
how it will need to be modified for your data. We assume the name of the data file is stored in the
String member variable called inFileName. It is not a good idea to write the data out to the same
file, so we also have an outFileName stored as a member variable. You only need to write the file
out if you plan on allowing the user to add or remove items from the database (this is
recommended!).

4. Add the code below to your Database class and modify it for your specific subject and data.
5. Test your code thoroughly.

Sample Code for File Input/Output

/**
 * Read state & population data from a file. Note: Assumes the
 * delimiter is a ":"

 */
public void readArrayFile() {
try {

File infile = new File(inFileName);
Scanner in = new Scanner(infile);
while (in.hasNext()) {

String line = in.nextLine(); // Read a line in the file
String[] tokens = line.split(":"); // Split line using “:”

// Remove extra whitespace from name
String name = tokens[0].trim();

// Convert the year (stored as String) to an integer:
int population = Integer.parseInt(tokens[1].trim());

// Create a State object with data
State state = new State(name, population);
stateDataArray.add(state); // Add state to ArrayList

}
in.close();

} catch (FileNotFoundException e) {
System.out.println("Input File " + inFileName + " is not found. ");
System.exit(0);

}
 }

/** Write database out to File */
// This works because the database’s toString method prints the data as it
// appears in the data file. If this is not the case, you need to provide
// for formatting code.
public void writeArrayFile() {

try {
System.out.println("Saving modified data to " + outFileName);
PrintWriter out = new PrintWriter(outFileName);
out.print(this); // works because of how toString is written
out.close();

 } catch (FileNotFoundException e) {
System.out.println("Error writing to " + outFileName);
System.exit(0);

 }
}

