
CS-141 Introduction to Programming
Creating an Inheritance Hierarchy

Goals: Practice writing and using inheritance.

In this lab, you are given a Card class (not a playing card!) as a superclass. Based on this class, you will implement a
hierarchy of related classes for ID card, driver’s license and a calling card. You will then create a Billfold class in which to
hold your cards.

Instructions

Step 1: Create a new Netbeans project, e.g. called BillFoldProject. When you create the project, be sure to check the
“Create main class” box so that Netbeans creates a class containing the main method.

Step 2: Add a new class called Card and copy the code below into the class (or see link on assignment page).

public class Card {

 private String name;

 public Card() {
 name = "";
 }

 public Card(String n) {
 name = n;
 }

 public String getName() {
 return name;
 }

 public boolean isExpired() {
 return false;
 }

 public String toString() {
 return "name: " + name;
 }
}

Step 3: Test your code by creating a Card object in main() and calling the various methods.

Step 4: The class inheritance relationship is shown in the following picture:

where the unique feature for each card is listed in the following table.

Class Data
IDCard ID number (String)
CallingCard Card Number (String), PIN(int)
DriverLicense Expiration year (int)

Write class declarations for each of these subclasses. For each subclass, you will need to add protected (or private)
instance variables, a constructor, getters&setters, and toString() methods. The constructors and toString() methods will
build on the corresponding methods in the superclass by using the keyword super.

Step 5: Test each of your subclasses by creating objects of each type in main() and calling the various methods.
The toString methods in each subclass should be written by building on the toString method of the super class.
For example, for the following code in main():

IDCard card1 = new IDCard("Mary Kay", "1234567");
System.out.println(card1);
CallingCard card2 = new CallingCard("Omega Card", "301233985945", 1030);
System.out.println(card2);
DriverLicense card3 = new DriverLicense("John Doe", "08-097654", 2007);
System.out.println(card3);

Your output should look like:

ID[name: Mary Kay, id:1234567]
Calling Card[name: Omega Card, Card #:301233985945, pin: 1030]
Driver's License[ID[name: John Doe, id:08-097654], expYear: 2007]

Step 6: Suppose you have a billfold with 3 slots for cards. The slots may or may not be empty. Create a class, called
Billfold, to represent your billfold. In Billfold, the slots are represented by an instance member variable of type
Card array with size 3. Because the array can contain objects of type Card, you can store objects of type Card along
with objects which are subclasses of Card. This is the concept of polymorphism. You need to add your array to the
Billfold class as a member instance variable. If a slot is empty, it will be set to null. Initially, all the slots are
empty. Add the following methods:

• addCard(Card c) which finds the first empty slot, and places the card there. If there are no empty slots,
nothing happens.

• toString() which prints out all of the information about all of the cards in the Billfold, one card per line. If a
slot is empty, the word “empty” should be printed. See Step 7 for example.

Step 7: Delete the previous test code you had in main() and paste in the code below. (this is also available in a link
from the assignment page). If you have implemented the code correctly, the Actual output and Expected output
should be identical when you run the program:

public static void main(String[] args) {
 // Create an empty billfold
 Billfold b = new Billfold();
 System.out.println("**Actual: ");
 System.out.println(b);
 System.out.println("**Expected: ");
 System.out.println("Billfold:\nempty\nempty\nempty\n");

 // Create two Card objects and add them to the billfold
 IDCard card1 = new IDCard("Mary Kay", "1234567");
 CallingCard card2 = new CallingCard("Omega Card", "301233985945", 1030);
 b.addCard(card1);
 b.addCard(card2);
 System.out.println("**Actual: ");
 System.out.println(b);
 System.out.println("**Expected: ");
 System.out.println("Billfold:\nID[name: Mary Kay, id:1234567]\n"
 + "Calling Card[name: Omega Card, Card #:301233985945, pin: 1030]\n"
 + "empty\n");

 // create another card and add to the billfold
 DriverLicense card3 = new DriverLicense("John Doe", "08-097654", 2007);
 b.addCard(card3);
 System.out.println("**Actual: ");
 System.out.println(b);
 System.out.println("**Expected: ");
 System.out.println("Billfold:\n"
 + "ID[name: Mary Kay, id:1234567]\n"
 + "Calling Card[name: Omega Card, Card #:301233985945, pin: 1030]\n"
 + "Driver's License[ID[name: John Doe, id:08-097654], expYear: 2007]\n");
 }

Step 8: Demo your code using the above main() and submit via WISE following the directions given there. Note, you
will need to zip together the entire Netbeans project and add it as an attachment. If you don’t know how to do this,
please ask the lab assistant or instructor.

