CS-141 Introduction to Programming
Creating a Simple Database

A database isa program that consists of an organized collection of datatogetherwithauserinterface thatenablesone
to read, write, and access the data in multiple ways. One familiarexampleis The Internet Movie Database (IMDb).

There are also many online musicdatabases.

This document provides suggestions forhow to go about writing a Java database program. The example, which will be
used forillustration purposes, isa Movie database.

Suggested steps for creating your program:

e Gettogetherwithyourpartnerand pick a subject. (E.g. movies)

e |dentifythe specificdatayouwantto store, i.e. what data you needto put inyour data file. (E.g. movie name,
year, director, genre, ...)

e Decide whatkinds of queries oractions youwantthe userto be able to do.

e Designthe look of the GUI interface based onyourqueriesandactions (see example below).

e Designthe UML Class Diagram which describes the program structure (thisisamust!). Your UML diagram
shouldinclude classes to store the data and methods to process yourdesired actions. Make sure the methods
are placedinthe appropriate classes.

e Decidethe bestorderof implementation of classes and features. Don’ttry do it all at once. Start with the small
classesfirst. Remembertoapply the process of Stepwise Refinement.

e Basedon the orderof implementation, dividethe implementation between you and your partner so that each of
you always have somethingtoworkon. Itis not okto say both of you will work on everything together; each
person should do part of the program on theirown.

e Createasingle Netbeans project which will represent the “most currentversion”. Each partnerwill wantto
work on a copy of this project (be careful to keep things consistent). Note, programmers generally use version
control software (e.g. git, RCS, etc) to manage things.

e Aseachpersonimplementsand teststheirclasses, the completed classes are added to the “most current
version”.

e Asclassesare addedtothe “mostcurrent version” of the project, the project should be runandtested as a
whole.

e Onceyou feel youhave acompleted the program, recruit afriend whois unfamiliar with the programto test it.
Fix parts that they find confusing or broken.

Belowisan elaboration of afew of the above items.

http://www.imdb.com/
http://en.wikipedia.org/wiki/List_of_online_music_databases

Sample Graphical User Interface for a Movie Database

Carefully think about the userinteface. Foramovie database, you might have something like whatis shown onthe
following page. Whenthe programis closed, an updated datafile should be written outand should reflectitems that
the userentered orremoved.

Movie Database Program

Movies for Director: J | walt Disney

Movies for Year: | | 1888

Movie Titles containing: J Tay

l
l
l
l

Remuaove: J [ZU,UUU Leagues Underthe'J

[List All Movies J [List All Directors J

enter title

enter year Save
Year:

Directar: enter directar

All Movies in Database:

20,000 Leagues Under the Sea, year: 1954, director. Walt Disney
2001 A Space Qdyssey, year: 1968, director: Stanley Kubrick
The Abyss, year: 1989, director: James Cameran

Argo, year. 2012, director. Ben Affleck

Life of Pi, year. 2012, director: Ang Lee

Lincoln, year: 2012, directar: Steven Spielberg

The Adventures of Tintin, year. 2011, director; Steven Spielberg
Al Arificial Intelligence, year: 2001, director: Steven Spielberg
Saving Private Ryan, year: 1998, director: Steven Spielberg
The King's Speech, year: 2010, director. Tom Hopper

Midnight in Paris, year: 2011, director: Woody Allen

Star Trek, year: 2009, director: J. J. Abrams

Up, year: 2008, director: Pete Docter

Monster's Inc, year: 2001, director: Pete Docter

The Dark Knight, year: 2008, director. Christopher Molan
Brave, year: 2012, director: Mark Andrews and Brenda Chapman
Toy Story, year: 19895, director. John Lasseter

Wall-E, year: 2008, director: Andrew Stanton

Ratatouille, year: 2007, director: Brad Bird

Cars, year: 2006, director: John Lasseter

The Incredibles, year: 2004, director: Brad Bird

Up, year. 2008, director: Pete Docter

Class Diagram and Data Structure

As a program becomes more complex, itis hard to keep track of how all the parts fittogether. Thus, itisreally
importantto draw a class diagram so that the high level structure can be clearly seen. Thisshould be done *before* you

begin coding.

For a database, itis recommended that you use an ArrayList data structure to store the data. However, beware of the
problem of duplication. Each movie mustreferenceaDirectorobject. But, each director could reference multiple
movies. Ideally, one wants to store a single director object and have each movie, with that director, reference that single
directorobject. We get a picture something like the following forthe (partial) class and object diagrams:

Movie Class

Class Diagram

Director Class

String mName
Director director
etc

String dName

etc

ArrayList<Movie> directorMovies

MovielList Class

DirectorList Class

ArrayList<Movie> allMovies

ArrayList<Director> allDirectors

allMovies

allDirectors

Object Diagram
T2 N
| +’ ﬁ Each movie references a director
Mowie Mawe e Maue and each director references
. . list of movies,
“a
Ty

W . A
WY o I
Y VA A Y
\Dir:itnr Digektdr._ Diregtor
> 'z 21 .

Notice thatthe objects are never duplicated but each object may have multiple references pointing toiit.

File Input/Output

Instructions:

1.

For eachiteminyour database (e.g. Movie), you need to consider what data needsto be provided and how you
wantit listedinthe asci data file. You could place all the information foragivenitemonone line separated by some
delimiter(e.g. space, comma, or semi-colon), assuming there is adelimiter which will never appear as part of the
data. For example, movie names are often multiple words soit would not be possibleto use a space as the
delimiter. However, asemi-color might work. Forexample:

Movie namel; yearl; directorl

Movie name2; year2; director2

etc
If no good delimiter exists, then you could put each componentona separate line, e.g.

Movie namel

yearl

directorl

Movie name?2

Year2

Director2

Etc
Include enough dataso that you can carefully testyour program. Note, you can always add more data later.

To read inthe data from your data file, create a FilelO class (recall example code fromclass, listed on lectures page).
Below is an example of how to handle reading/writing files which have multiple items on aline separated by a
delimiter (in this case “:”) using the split() method inthe String class. As already mentioned, be careful notto store
duplicates. Each time a movie with a given directorisread, youneedtocheckto see if that directoralready exists. If
not, create a new Directorobject and add it to the list of all directors and also to the movie’s director. If yes, retrieve

the existing Director object from the allDirectors list and also add the movie to the director’s list of movies.

Below is code for reading and writing data for a State Database Program.

Sample Code for File Input/Output for a State Database Application

/**
* Read state & population data from a file. Note: Assumes the
* delimiter is a ":" The data file would look something like:
* Oregon : 3970239
* California : 38802500
* etc
*/
public void readArrayFile(String inFileName, ArrayList<State> stateDataArray) {
try |
File infile = new File(inFileName) ;
Scanner in = new Scanner (infile);
while (in.hasNext ()) {
String line = in.nextLine(); // Read a line in the file
String[] tokens = line.split(":"); // Split line using “:”

// Remove extra whitespace from name
String name = tokens[0].trim();

// Convert the year (stored as String) to an integer:
int population = Integer.parselnt (tokens([l].trim());

// Create a State object with data

State state = new State(name, population);

stateDataArray.add(state); // add to ArrayList
}

in.close () ;

} catch (FileNotFoundException e) {
System.out.println("Input File " + inFileName + " is not found. ");
System.exit (0) ;

/** Write database out to File */
// This works because the database’s toString method prints the data as it

// appears in the data file. If this is not the case, you need to provide
// formatting code.

public void writeArrayFile (String outFileName, StateDataBase stateDataArray) {

try {
System.out.println("Saving modified data to " + outFileName) ;
PrintWriter out = new PrintWriter (outFileName) ;
out.print (stateDataArray); // works because of how toString is written
out.close () ;

} catch (FileNotFoundException e) {
System.out.println ("Error writing to " + outFileName);
System.exit (0) ;

