
A Blackjack Game Program

Introduction

New Java Skills: Implementing a Game Control Loop and gaining more practice with classes and
methods. Before you begin, be sure that you have mastered the practice problems (Basic Looping
and Nested Loop)

Assignment Goals: The goal of this assignment is to write a program which plays a simplified
version of Blackjack. Blackjack is a two player game between you and the dealer. The computer will
be the dealer. You will need to implement several types of loops:

1. A loop to test the correctness of your Card class.
2. A loop to control the user input (see problem 9 in the Basic Looping practice problems).
3. A Game Control Loop which controls the play of the game.

Game Rules (see http://www.pagat.com/banking/blackjack.html#objective)

 Goal: The aim of the game is to accumulate a higher point total than the dealer, but without
going over 21. You compute your score by adding the values of your individual cards.

 Card Values: Cards have suit (spades, hearts, diamonds, clubs) and rank (A, 2, 3, 4, 5, 6, 7,
8, 9, 10, J, Q, K). The cards 2 through 10 have a value equal to their rank. J, Q, and K each
have a value of 10 points, and the Ace has a value of either 1 or 11 points (player's choice).

 Play: At each round of the blackjack game, the players (you and the computer) receive two
cards each. The score is computed to determine who wins.

 Simplification: In this assignment we will
o not allow for additional cards to be dealt (hits). Do this for extra credit!
o not worry about dealing duplicate cards, i.e. in your game, it will be possible to draw two

aces of hearts. You can fix all of this later if you want, once we cover arrays.
o Assume Aces have a value of 11.

Software development is always done in stages. Thus, we will use the concept of stepwise
refinement to build our code up a bit at a time, testing carefully at each stage along the way.

Code Structure

We keep the class structure very simple. There will be 3 classes:

 Main.java: a class that contains the main method

 BlackJackGame: a class that contains the game code

 Card: a helper class that represents a single card

The benefit of object oriented programming is that you can break your program into small bite sized
pieces (i.e. classes) which are easy to code. These pieces can be independently coded and tested

before being incorporated into the larger program. In this lab, we begin by writing a class that
contains all of the functionality of a single card. Once the Card class is written and tested, we need no
longer need to think about how a Card is implemented, rather we just make use of the Card class in
the game code. This will greatly simplify the implementation of the game code.

Part 1: The Card Class

In this part of the lab you will write and test a Card class. It will give you practice writing classes and
using if-statements. You will also use a loop to test your code.

Begin by creating a Netbeans project (e.g. called BlackJackProject) containing a Main class. Add a
second class called Card. In the main method (in the Main class) you can test your Card class by
creating a card and calling the various methods in that class

Recall that a class is a set of data (fields) and actions (methods). Here, we need to store sufficient
data to completely identify the card. Since there are 52 possible cards, all we really need to store is
a single index (0 to 51) in order to know which card we have. Note, we assume a specific ordering of
the cards where cards are ordered by suit (spades, hearts, diamonds, clubs) and within suit, by rank
(A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K). With this assumed ordering, the Ace of Spades will have index
0, the 2 of Spades will have index 1, etc. Can you figure out the index of the Ace of hearts? King of
diamonds? Thus, we need one field (e.g. called index) of type int whose value will be anywhere
from 0 to 51.

Now, what do you want your class to be able do? This will determine the methods:

 Constructor: your constructor should randomly select and set your card’s index.
 Constructor: your constructor should allow the user to pass in (as a parameter) the index of

your card.
 getRank: a method that returns an integer (0 to 12) presenting the card’s rank
 getSuit: a method that returns an integer (0 to 3) presenting the card’s suit
 getSuitName: a methods that returns a string with name of the card’s suit
 getRankName: a method that returns a string with name of the card’s rank
 getPoints: a method that returns worth of the card in the game of BlackJack. For now, assume

Ace’s are always worth 11.
 toString: returns the full name of the card (e.g. 2 of Spades, or Ace of Hearts)

Note, if you want to print out the suit symbol rather than the name, you can use Unicode string
symbols for card suits, e.g. “\u2660" is Unicode for a spade.

That’s it! Once you implement the above, you can test your class by adding test code to the main
method and running your program.

Card myCard = new Card();
System.out.println(“The card you picked is “ + myCard);
System.out.println(“The card rank is “ + myCard.getRank());

Using a Loop to Test Your Code

To make sure that every card is correct, you need to create an object for every possible card. A loop
is the simplest way to do this. Add a loop to the main method which loops over the indices 0 to 51.
Inside the loop, create a card object with the current loop index, and print out the name of the card.
Since you are looping in the order of 0 to 51, the cards should be in the order of suits (spades, hearts,
diamonds, clubs) and within each suit, the order should be Ace, 2, 3, … King. If this is not what you
get, then you need to fix your code.

Part 2: The Game Algorithm

Now that you have the Card class written and tested, you are ready to move to the next step, namely
to implement the game. Before you begin coding, be sure to:

A. Understand what you are doing: Read the above rules. Get a deck of cards and play the
game with someone!

B. Think about Output: What do you want the output to look like? This will determine much of
the workings of the code. For example, see the sample output below (modify it if you want, but
it probably should have the same basic structure)

C. Pseudocode: Write the algorithm in pseudocode, i.e. the sequence of steps required to solve
the problem, taking into consideration the sample output. For example (you fill in what is
missing):

1. Print a welcome message to the game.
2. Prompt the user to find out if they want to play. Repeat if they enter an answer that is

not allowed.
3. If they want to quit, end the program.
4. If they want to play the game:

i. deal the cards for player1
ii. etc // you fill in the rest …

5. repeat starting at step 2.

Implementing the Loops

When you are ready to begin coding, add a third class to your Netbeans project (e.g. called
BlackJack) which will contain your game code (you now have 3 classes: Main, Card, BlackJack).
The loop that plays the game, can be in a method called play() in the BlackJack class. Thus, in the
main method (in the Main class) you can add code to test your program, e.g.

BlackJack blackjack = new BlackJack();
blackjack.play();

Remember, you never want to write the code all at once. Instead, identify small tasks that can be
independently implemented and thoroughly tested. Here, we will look at the tasks that require loops.

In the pseudocode, identify the input prompt loop and the game play loop.

A. Prompt() Method: Create a private method in your BlackJack class that prompts the user for

an answer (y/n) and returns the answer. (This method will be called from the public play
method). If the user doesn’t enter an answer that begins with an upper or lower case y or n,
then the user is repeatedly prompted until such an answer is given. The prompting should be
done with a loop (see problem 9 in the Basic Looping practice problems). A do-while loop is
probably the best type of loop to use (do you see why?).

The output should look something like the following

Do you want to play blackjack? (y/n) maybe
Please answer y or n.
Do you want to play blackjack? (y/n) y

																						(the	prompt	method	will	then	return	the	answer	y	to	where	the	method	was	called,	i.e.	in	play)	
Great, let’s play the game. // this	gets	printed	in	play

Or, alternatively, the output might look like
Do you want to play blackjack? (y/n) n

 (the	prompt	method	will	then	return	the	answer	n	to	where	the	method	was	called,	i.e.	in	play)
Game Over. Good bye. // this	gets	printed	in	play

Make sure this works before continuing. Test every possible sequence of things
that could happen.

B. Dealing and Printing a Card: This is easy since you already created a Card
class!

Card myCard = new Card(); // creates a random new card
System.out.println(“You have been dealt the card “ + myCard);

C. Game Loop: Here, we won’t implement the full game yet but rather we just want
to get the control loop working. Use a while-loop (do you see why?). The
program should take the answer from the prompt method that you wrote above
and, if the user says yes, deal a card and print the result. Note, the call to
prompt() must be inserted twice in your code - before you start the game loop
(initialization) and again at the end of the game loop (to see if the while loop
should be executed again).

The output should look something like:

WELCOME TO THE BLACKJACK GAME
Do you want to play blackjack? (y/n) maybe

Please answer y or n.
Do you want to play blackjack? (y/n) yes
Great, let’s play the game.
You have picked 8♥
Do you want to play blackjack? (y/n) y
Great, let’s play the game.
You have picked 5♠
Do you want to play blackjack? (y/n) n
Game over. Good-bye.

Make sure this works before continuing. Test every possible sequence of things
that could happen.

D. Finishing the Game: You are now ready to implement the full game. Look at the
sample output below and figure out how to extend your code so as to implement
the rest of the game.

E. Clean-up: Clean up your code so it is nicely formatted. Use blank lines to

separate sections of your code. As you might have noticed, the code is getting
rather long and unwieldy. It is generally a good idea to break your code into short
methods. However, you have enough to deal with in this lab so break things into
methods only if you want to.

Sample Output:

When you run your code, the output should look something like this:

WELCOME TO THE BLACKJACK GAME
Do you want to play blackjack? (y/n) maybe
Please answer y or n.
Do you want to play blackjack? (y/n) y
Great, let’s play the game.

Player: A♣ 8♠ Score is 19
Dealer: 8♠ 4♥ Score is 12

Congratulations! You win.

Do you want to play blackjack? (y/n) y
Great, let’s play the game.

Player: K♣ 2♦ Score is 12
Dealer: 6♦ A♦ Score is 17

Sorry. The dealer wins.

Do you want to play blackjack? (y/n) n

Game over. Good-bye.

