
CS 145 Images and Imagination, Spring 2014

Lab 3, Part 2: Symmetry: Frieze Patterns

Symmetry refers to the ways in which a pattern or image repeats itself. More precisely,
we say a design exhibits symmetry if it can be transformed (a combination of rotate,
translate, mirror) in a way such that the transformed image sits exactly on top of the
original image. For example, the following image does not change if you mirror it in
either the horizontal or vertical red lines.

Symmetric objects have an esthetic appeal and thus occur frequently in art and
architecture. However, nature also loves symmetry as can be seen in objects such as
flowers, starfish, and crystals, to name a few. The human body is symmetric about its
center, front vertical axis.

One of the simplest types of symmetric patterns to understand are frieze patterns which
are linear patterns often used as borders in paintings or architecture.

Figure 1 All Saints Chapel in St Louis Figure 2 From the Getty Villa in LA
 Cathedral Basilica

We can think of a frieze pattern as an infinitely long repeating pattern. Quite surprisingly,
it can be proven (we won’t prove it here) that there are only 7 types of frieze symmetries,
as shown in the Figure 3. That is, given a linear design that exhibits some type of
symmetry, there are only 7 potential ways of transforming it so that the design remains
unchanged!

The names, e.g. “hop”, were fancifully coined by mathematician John Conway based on
what a person would have to do to generate a symmetric foot print pattern. For example,
to generate the hop pattern, someone would stand on one foot starting at the left and hop
by some fixed amount to the right. Thus the hop pattern is generated by translations (by

some fixed amount) to the right of some base image (also called the lattice shape, motif,
or icon), in this case, a footprint. Thinking of it another way, if we translate the entire hop
frieze pattern to the right (or left) by the width of the lattice, the pattern will remain
unchanged.

Figure 3 The Seven Frieze Patterns

Figure 4 shows several examples of the “spinning hop” symmetry. While the lattice is
different in each case, the symmetry structure is the same, i.e. rotation by 180 degrees
about red dots (e.g. as seen on right image).

 Figure 4

We will use Processing, together with our understanding of transformations, to generate
each of the frieze symmetry patterns. To do this, we must identify the underlying
transformations associated with each symmetry pattern.

We begin with the simplest, the hop pattern, where the transformation is simply a
horizontal translation. We will go through the code in detail for several of the frieze
patterns. The assignment is to implement the remaining patterns based on the same
process.

The two most important programming rules to follow are

1. Use very simple test problems that are easy to check.
2. Break the problem into very small steps. Implement and thoroughly test each step

before continuing to the next step.

If you follow these rules, everything will end up being easy!

Creating the Lattice or Base Image

Before we begin, we need to create several lattice shape images. Here are
recommendations to follow in selecting a lattice image:

1. The image should be scaled so that it is small, e.g. 50-75 pixels on a side.
2. The image can be anything you want but you should always start with something

simple like the images used in the patterns Figure 5, a-d below. If you begin with
a complex pattern like e or f, it will be difficult to tell if you have generated the
correct transformation. Once you know your code works, you can run your code
with other lattices images. In fact, it can be fun and surprising to see the friezes
generated with a range of more complex lattice images.

Figure 5

3. Use an asymmetric shape, e.g. like the letter “P”. The letter “A” is not good
because it is symmetric about its center axis and so it will be difficult to see
certain symmetry patterns. Again, refer to in Figure 5a-d for examples.

4. There will be a folder placed on our shared drive containing lattice images you

can use. You can also use the small image of your character from lab 1, as long
as it isn’t symmetric or complicated (once you have your programs tested, you
can run it with your character image). You may also use Paint or Photoshop to
create an image.

5. Consider images with different dimensions, e.g. square (height=width) or
elongated (e.g. height = 2*width). Some symmetric patterns work best with
certain dimensions and some work well with any dimensions. You will discover
these characteristic as the assignment is completed.

The Hop Pattern

Here we discuss how to obtain a Hop in a methodical way so that it can easily be
extended later to obtain more complex symmetry patterns.

1. Begin a new Processing program and place your lattice image into its sketch
folder.

2. Copy the code below into the Processing code window (it may be easier to copy
the code from here) You will need to change the icon.jpg to the name of your
lattice image. This program generates a hop frieze pattern.

3. Comments on the code:
a. We have structured the code using functions. It is important to do this

because it keeps the code clean, simple and very readable. It also will
greatly simplify later work.

1 PImage icon; // storage for image
2 int w, h; // width and height of image
3 int reps = 10; // number of repetitions of
 // image across window

4 void setup() {
5 icon = loadImage("icon.jpg");
6 w = icon.width;
7 h = icon.height;
8 size(reps*w, h); // set window size
9 drawFrieze();
10 save("hopFrieze.gif");
 }

// Draw Hop frieze pattern
11 void drawFrieze() {
12 for (int i = 0; i < reps; i++) {
13 image(icon, 0, 0);
14 translate(w,0);
 }

http://www.willamette.edu/~gorr/classes/cs145/labs/lab3/hop.htm

b. It is good programming practice to anticipate code modifications and to
write the code so that any modifications will require changing as few lines
of code possible. For example:

i. Creating variables w and h (lines 2, 6, 7) was not necessary since
we could have just kept using icon.width and icon.height.
However, these two variables will be used a lot in later code. The
code is more readable and more easily modified if you use the
variables h and w.

ii. The window size is set in terms of w, h, and reps (line 8). This
way, if you replace the current lattice image with a new lattice
image of different size, then you only need to change the file name
since the window size will automatically adjust.

iii. By creating the variable called reps (i.e. short for repetitions), you
can easily increase the number of lattice images that are drawn.
Note that the variable reps, which is the number of lattice images
drawn, is used in lines 8 and 12. We could have just used the
number 10 directly, however, this would have made it more
difficult to change the repetitions to another value.

c. The hop frieze pattern is generated by a simple translation. Carefully
examine the loop in the function drawFrieze() to understand what it is
doing.

The Spinning Hop Pattern

The hop pattern is fairly simple to generate. To generate a more complex pattern requires
carefully analyzing and understanding the sequence of transformations needed to
generate the pattern. Consider the spinning hop pattern.

 Figure 6

One can rotate about either the red or green points. If we consider rotating the foot
image about one of the red points, we get the pair of feet as outlined by each of the blue
rectangles. We will call this the fundamental region. If we take this fundamental region
and translate it (just as in the hop pattern) then we get the spinning hop.

Thus we can generate the pattern by following the steps (these will be elaborated on
later!):

1. Generate a rotated foot:

2. Combine with the original foot to get the fundamental region:

3. Repeatedly translate, to get the frieze pattern:

Once the above steps are identified, the implementation should follow the process:

• Implement each of the above steps as separate functions. The function for step 2
will then call the function for step 1, and the function for step 3 will call step 2.

• A pushMatrix and popMatrix should always be the first and last line of each
function to insure that there are no unexpected side effects from calling the
function. That is, we want the matrix stack at the beginning of the function to be
the same as the matrix stack when the function ends.

• Stepwise Refinement: Implement the functions one at a time, starting with the
simpler ones (e.g. step 1). Thoroughly test each function to see that it works
before moving on to the next function.

Elaboration of Steps above:

Consider step 1: If we execute the line:
 image(icon, 0, 0);
we draw our image at the upper left corner of the window:

 Figure 7

Our first goal is to determine the transformations needed to get Figure 7 to Figure 8:

 Figure 8
To do this, we need to do a 180⁰ rotation about the center of the foot image. Recall from
part 1 that, to rotate about a pivot point, we 1) translate that point to the origin, rotate, and
translate back. These actions are implemented in the code in the reverse order.
Therefore, we have the following function
void rotateHalfTurn() {
 pushMatrix(); // Save the current Matrix Stack
 translate(w/2,h/2); // translate back
 rotate(radians(180)); // rotate by a half turn
 translate(-w/2,-h/2); // translate center to origin
 image(icon, 0, 0); // draw image
 popMatrix(); // Retrieve the saved Matrix Stack
}
Note, there are other ways of achieving the same result. However, the above process will
consistently work under many circumstances and so is useful to use and understand.

We can test this code by modifying our hop pattern code

You should test to see that your code is working before continuing!

The result should be what you see in Figure 8. Note, once we know that the above
function works, we no longer have to think about how to rotate the footprint; we just call
the function instead.

Consider Step 2: Now that step 1 is done, it is simple to do our next step which consists
of the rotated image placed to the right of the original image. The function for step 2
reduces to a simple translation:

void basePattern() {
 pushMatrix();
 image(icon, 0, 0); // draw upright foot
 translate(w,0); // translate rotated foot
 rotateHalfTurn(); // draw rotated foot
 popMatrix();
}

Test to see that your code is working before continuing!

The result should be our fundamental region (base pattern):

 Figure 9

Consider Step 3: We now just need to modify the drawFrieze function from our hop
pattern code. There are two changes. First, we need is to translate by twice the image
width since the width of step 2 is twice the width of the original image:

PImage icon; // storage for image
int w, h; // width and height of image
int reps = 10; // number of repetitions of
 // image across window

void setup() {
 icon = loadImage("icon.jpg");
 w = icon.width;
 h = icon.height;
 size(reps*w, h); // set window size
 rotateHalfTurn(); // test your function
 save("rotateHalfTurn.gif");
}

// insert function rotateHalfTurn here

void drawFrieze() {
 for (int i = 0; i < reps; i++) {
 basePattern ();
 translate(2*w,0);
 }
}

Second, we need to increase the window width by changing size(reps*w, h) to
size(2*reps*w, h) because each repetition is now twice the width of the original
image. The result is:

 Figure 10

Your Assignment

Implement at least 3 of the remaining 5 frieze patterns shown in Figure 3: (sidle, spinning
sidle, jump, step, spinning jump). Follow a process similar to what was done for the
spinning hop:

a. analyze the sequence of steps needed to generate the frieze
b. for each step, write a function that implements that step
c. test that your code works at each step before moving to the next step.

Once you have a sketch for each of the 3 frieze patterns, run each of the sketches with at
least 2 different lattice images (one simple asymmetric shape, and one of your choosing)
so that you have at least 2 different friezes for each sketch.

See the main Lab 3 instruction page for how to submit your work.

	Lab 3, Part 2: Symmetry: Frieze Patterns
	Creating the Lattice or Base Image

