
CS 145 Images and Imagination, Fall 2010

Lab 6, Part 1: Practice Exercises

The goal of this part of the lab is to

a. Review functions.
b. Modularize code through the use of functions.
c. Introduce function parameters.
d. Introduce transformations: translate, rotate, and scale.

This part of the lab does not require you to turn anything in.

Section 1: Functions

1. Polygon Shapes: A polygon shape is defined by a sequence of connected points

where the last point is also connected to the first point. The connections between the
points are called edges.

a. In processing, you can create an arbitrary shape using beginShape and
endShape. Look these up in the reference so that you understand the syntax.
An example is shown below within the function makeSquareShape().

b. Create your own shape using beginShape and endShape. Vary the properties
as you did with the pre-defined shapes. Make sure that your shape:

i. Is small, e.g. fills a region of space no larger than,
say, 60,60.

ii. Have the shape be somewhat asymmetric so that if it
is rotated, it will look clearly different. See example
to the right.

iii. Is created near the origin and not, for example, in the
middle of the window.

2. Review of Functions
a. Functions allow you to modularize your code structure so that the code is

easier to read, modify and re-use. Place the shape you created above into a
function as shown below for makeSquareShape(). You may call your
function anything you like, however, it is good practice to give it a name that
reflects what it is drawing.

void setup() {
 size(100, 100);
 background(0,0,255);
 stroke(255,0,0);
 fill(150);
 makeSquareShape();
}

void makeSquareShape () {
 beginShape();

 vertex(20, 20);
 vertex(80, 20);
 vertex(80, 80);
 vertex(20, 80);
 endShape(CLOSE);
}

b. Parameters allow one to create variations of a shape using a single shape

function. For example, run the following code. When makeRectShape is
called with parameters (i,10), the value of i gets copied into the variable x and
the value 10 is copied into the variable y.

void setup() {
 size(100, 100);
 for (int i=10; i < 90; i=i+10) {
 makeRectShape(i, 10);
 }
}

void makeRectShape(int x, int y) {
 rect(x, y, 5,80);
}

Try varying the parameter values of makeRectShape to see how the image
changes. For example, what happens if you call makeRectShape(i,i)
instead of makeRectShape(i,10)?

Section 2: The Translate Transformation and the Matrix Stack

1. Create a simple Processing program as shown in part 2 (Review of Functions) above.

Use your own shape function. For the purpose of illustration, we will assume that
your shape function is called makeShape().

2. Look up the translate transformation in the Processing reference
3. Add a translate transformation command to your setup code from above. First, add

it before the call to makeShape (the dots indicate unspecified other lines of code)
void setup() {
 . . .
 translate(20,20);
 makeShape();
}

Run the code to see what happens. Move the translate code to after makeShape.
What happens? Next, try adding several translate commands before the call to
makeShape. How do the multiple translate commands compare to each individual
translate? Can you replace the two translate commands with one that does the same
thing?

4. Add a second call to makeShape in setup.
void setup() {
 . . .
 makeShape();
 . . .
 makeShape();
 . . .
}

If you add a translate command before the first call to makeShape and another right
before the second call to makeShape (see code snippet below), which translate(s)
affect the first shape and which affect the second shape? It might
help to change the stroke color so that you can tell the shapes apart.

 translate(20,20);
 makeShape();
 stroke(255,0,0);
 translate(20,20);
 makeShape();

What can you conclude about how the order of the transformations are applied and
accumulated in Processing? Test your conclusions by trying other combinations in
your code.

5. Loops and Translations:

a. Once you are clear on how combinations of translations behave, add a loop so
that you get a row of shapes as shown in the top part of the figure on the right.
(You may need to increase the window size.) Begin by
asking how many shapes would fit across your window.
For example, if the window is 400 pixels wide and your
shape is 50 pixels wide, how many shapes would fit
across the window? What if you also wanted to leave 10
pixels of blank space between the shapes as shown in the second row of the
image?

b. How do you make a grid of shapes using a nested loop?
For example, see image on right. This is difficult
because of the way Processing accumulates the
transformations. Understanding of the Matrix Stack (next
part) will make this easier.

6. The ModelView Matrix: Processing keeps track of all transformations that have
been encountered at each step in the code. When a shape is encountered in the code,

translate(10,20); // this is applied third
translate(0,20); // this is applied second
translate(20, 0); // this is applied to makeShape first
makeShape();
translate(20, 50); // this does not affect makeShape.

Note, in the above example, the order of the first three translations doesn’t really
matter because translations are commutative. However, the order becomes important
when we introduce the other transformations.

One can save the sequence of encountered transformations (referred to as the current
ModelView Matrix) using a function in Processing called pushMatrix. Later, one can
retrieve this saved sequence using popMatrix. PushMatrix can be called multiple
times to store the ModelView Matrix at various points in the code. Each time
pushMatrix is executed, the current ModelView Matrix is placed on a stack (what is
a stack?). When popMatrix is executed, it retrieves the ModelView Matrix that is
sitting on the top of the stack. See code comments below:

pushMatrix(); // save a copy of the ModelView Matrix which at

 // this point contains no transformations
translate(10,20); // add translation (T1) to the ModelView Matrix. Note,
 // the saved copy still contains no transformations
translate(4,5); // add translation (T2) to the ModelView Matrix so it now
 // contains T1 and T2
makeShape(); // draw shape, applying the current ModelView Matrix
 // containing translation T1 and T2
popMatrix(); // retrieve saved copy of the ModelView Matrix which
 // contains no transformations
translate(40,40); // add translation (T3) to the retrieved ModelView Matrix
makeShape(); // draw another shape, applying the current ModelView
 // Matrix containing only the translation T3

Experiment with pushMatrix and popMatrix in your code. For example, try running
the following code with and without the pushMatrix and popMatrix.

Once you understand how the ModelView Matrix and the Matrix stack work, rewrite
your nested loop code to make use of the pushMatrix and popMatrix commands.

Section 3: The Rotate Transformation

1. Create a new Processing sketch and paste in the following. You may replace
myShape with the shape function you created above.

int angle = 0;

void setup() {
 size(400,400);
 background(0,0,255);
}

void draw() {
 background(0,0,255);

 rotate(radians(angle));
 myShape();

 angle = (angle + 5) % 360; // update angle
 delay(20); // this slows down the animation
}

void myShape() {
 beginShape();
 vertex(0, 0);
 vertex(20, 0);
 vertex(20, 20);
 vertex(60, 20);
 vertex(60, 40);
 vertex(0, 40);
 endShape(CLOSE);
}

Run the code to see what it does. Look up the rotate transformation in the
Processing reference. The placement of the rotate command is very important. Try
reversing the order of the rotate and myShape to see what happens. Do you
understand why the behavior changes?

Notes:

a. Processing requires the angle be in radians and not degrees, however, one can
convert using Processing’s radians function as shown above.

b. A positive angle corresponds to clockwise rotation in Processing.
c. The draw function always clears the matrix stack when the function is called.

2. Rotations always rotate about a specific point called the pivot. The pivot is also

called a fixed point because the pivot point does not move (i.e. it is fixed) when the
rotation is applied. In Processing, the default pivot point for rotations is always at the
origin (top left corner). In the above example, you should see the object rotate about
the origin.

Given the code

translate(width/2,height/2); // move pivot to window center
rotate(angle); // rotate the shape
translate(-x,-y) ; // move the pivot point at (x,y)
 // to the origin
myShape(); // draw the shape

The translate immediately before myShape changes the pivot relative to the shape.
The translate before the rotate changes the location of the pivot in the window.

3. Transformations are also useful in programs which are not

animations (i.e. the ones that do not contain a draw function).
Here, loops and rotations can be used to generate circular or spiral
shapes. For example:

void setup() {
 size(200,200);
 translate(width/2,height/2); // translate image to center
 makeCircle();
}

void makeCircle() {
 for (int i = 0; i < 18; i++) {
 pushMatrix(); // save current matrix stack
 rotate(radians(20*i)); // rotate ellipse
 translate(30,0); // move pivot point
 ellipse(0,0,50,10); // draw ellipse
 popMatrix(); // retrieve saved matrix stack
 }
}
Try running the above code. Do you see why you need the push/popMatrix? Try
removing them to see what happens. Try adding additional circles at different radii
composed of different shapes.

Experiment to see if you can create spirals and circles such as shown below:

Section 4: The Scale Transformation

1. Copy and paste the following code into a new Processing

sketch, replacing myShape with your own shape. Run the
program.

void setup() {
 size(400,400);
}

float scaleVal = 1.0;

void draw() {
 background(100);
 scale(scaleVal); // scale uniformly by amount scaleVal
 myShape(); // draw the shape

 if (scaleVal >= 3) scaleVal = .2; // reset when gets to 3
 scaleVal += .1; // update scaleVal
 delay(50); // slow animation
}

void myShape() {
 // add your own code here
}

2. The Scale Transformation: Look up the scale transformation in the Processing
reference. In the above code, the scale(scaleVal) scales the object uniformly in all
directions by an amount scaleVal relative to the origin:

When you scale a shape, observe how the position of the
scaled shape changes relative to the original. Specifically,
note how the shape moves away from the origin as it grows
larger and it moves towards the origin as the shape grows
smaller. The only point that does not move is the origin. We
call the origin the fixed point, which is similar to what we
saw with rotations. In Processing, the default fixed point for
scaling is always at the origin.

3. Non-uniform scale: One can also scale shapes non-

uniformly, i.e. the amount of the scaling is different along one
axis than the other. For example, we can scale our house by
scaleVal along the x-axis and 2*scaleVal along the y-axis:
 scale(scaleVal, 2*scaleVal);
Try various non-uniform scales with your shape.

A little later we will see how to stretch a shape along an
arbitrary axis.

4. Changing the fixed point: Just as in the case of rotations, we

use translations to set the fixed point as well as the location of
the shape in the window.

For example, suppose our house is sitting as shown in the image
to the right and suppose that we want to scale the house about
the red dot (this is the pivot) located at position (90, 110).

Then the code would be
 translate(90,110); // translate back
 scale(2); // scale
 translate(-90,-110); // translate fixed
 // point to the origin
 house();

Why is this useful?: If the house is positioned on “the ground”
and the fixed point is anywhere along the base of the house (as
in the above example) then the base will stay fixed to the ground no matter how we
scale. This is desirable because we may want the house to stay level on the ground
even if the house is resized. In the image below, each house was obtained by scaling
non-uniformly and translating horizontally, however, no vertical adjustment was
needed. This would not have been the case if the fixed point had not been at the base
of the house. In general, it is important to think about where you want your fixed
point to be because a good choice can greatly simplify drawing images.

5. Remember: Write clean and easy to manage code:

a. Identify the different elements in your image. For example, you might have a
house, the ground, and the sky as shown above.

b. Separate each element into a separate function. Make sure that each function
has as few side-effects as possible. For example, if you change the fill color in
your function, make sure at the end of the function you change it back to what
it was originally.

c. To draw the multiple elements, you can call the functions separately. You
may need to reset or push/pop the matrix stack to insure that each layer
behaves independently.

d. Use variable names that identify what the variable represents.

	Lab 6, Part 1: Practice Exercises
	Section 1: Functions
	Section 2: The Translate Transformation and the Matrix Stack
	Section 3: The Rotate Transformation
	Section 4: The Scale Transformation

