
CS 145 Images and Imagination, Spring 2010

Lab 4, Part 1: Creating Shapes

The goal of this assignment is to 1) review Processing drawing properties, 2) review
functions, 3) modularize code through the use of functions, and 4) introduce function
parameters.

1. Review: Pre-defined Shapes

a. It is assumed that you are familiar with the basic 2D primitive shapes (e.g.
rect, ellipse, triangle) and their properties such as

i. strokeWeight: the thickness of the line
ii. stroke: the color of the foreground

iii. fill: color of shape’s fill
iv. noFill: removes the fill, i.e. the shape is just an outline.
v. noStroke: removes the outline so that the shape is just the fill.

2. New: Polygon Shapes: A polygon shape is defined by a sequence of connected points

where the last point is also connected to the first point. The connections between the
points are called edges.

a. In processing, you can create an arbitrary shape using beginShape and
endShape. Look these up in the reference so that you understand the syntax.

b. Paste into your code the example that is provided in the reference and run the
program.

c. Create your own shape using beginShape and endShape. Vary the properties
as you did with the pre-defined shapes.

3. Review: Functions
a. Functions allow you to modularize your code structure so that the code is

easier to read, modify and re-use. Place your initialization code into the
setup() function and place your polygon shape code created above into a
function named whatever you like, e.g. called makeSquareShape(). For
example:

void setup() {
 size(100, 100);
 background(0,0,255);
 stroke(255,0,0);
 fill(150);
 makeSquareShape();
}

void makeSquareShape () {
 beginShape();
 vertex(20, 20);
 vertex(80, 20);
 vertex(80, 80);
 vertex(20, 80);
 endShape(CLOSE);
}

b. Parameters allow one to create variations of a shape using a single shape

function. For example, run the following code. Do you understand why it
generates the picture that it does?

void setup() {
 size(100, 100);
 for (int i=10; i < 90; i=i+10) {
 makeRectShape(i, 10);
 }
}

void makeRectShape(int x, int y) {
 rect(x, y, 5,80);
}

Try varying the parameter values of makeRectShape to see how the image
changes. (Note, the current values are (i,10)).

c. Modify your code from part a) to include a loop (or nested loop!). Be ready to
explain why/how the code is producing the resulting image.

d. Add several other functions that create shapes and call them from setup().

Lab 4, Part 2: The Translate Transformation and the Matrix Stack

The goal of this assignment is 1) to learn about the translation transformation, 2) to
continue to practice using loops, 3) to understand how transformations are applied using
the modelview matrix and the matrix stack.

1. Begin by creating a single asymmetric polygon shape that fits in
a small area, e.g. 50x50 pixels in the upper left corner. As in Part
1, place the code for the shape in a function (e.g. called
makeShape) and place all other code in the setup function. Call
makeShape from setup so that one shape object is drawn in the
window, e.g. see image on right. Keep your code clean and
simple.

2. The Translate Transformation: Look up the translate transformation in the
Processing reference.

a. Add a translate transformation command to your setup code. First, add
it before the call to makeShape (the dots indicate unspecified other lines
of code)

void setup() {
 . . .
 translate(20,20);
 makeShape();
}

Run the code to see what happens. Move the translate code to after
makeShape. What happens? Next, try adding several translate
commands before the call to makeShape. How do the multiple translate
commands compare to each individual translate? Can you replace the
two translate commands with one that does the same thing?

(Note, for animation, you can place the translate() and makeShape() in
the draw() function instead of the setup() function.)

b. Add a second call to makeShape in setup.
void setup() {
 . . .
 makeShape();
 . . .
 makeShape();
 . . .
}

If you add a translate command before the first call to makeShape and
another right before the second call to makeShape (see code snippet
below), which translate(s) affect the first shape and
which affect the second shape? It might help to change
the stroke color so that you can tell the shapes apart.

 translate(20,20);
 makeShape();
 stroke(255,0,0);
 translate(20,20);
 makeShape();

What can you conclude about how the order of the transformations are
applied and accumulated in Processing? Test your conclusions by trying
other combinations in your code.

3. Loops and Translations:
a. Once you are clear on how combinations of translations behave, add a

loop so that you get a row of shapes as shown in the top part of the figure
on the right. (You may need to increase the window

size.) Begin by asking how many shapes would fit across your window.
For example, if the window is 400 pixels wide and your shape is 50 pixels
wide, how many shapes would fit across the window? What if you also
wanted to leave 10 pixels of blank space between the shapes as shown in
the second row of the image?

b. How do you make a grid of shapes using a nested
loop? For example, see image on right. This is
difficult because of the way Processing accumulates
the transformations. Understanding of the Matrix
Stack (next part) will make this easier.

4. The ModelView Matrix: Processing keeps track of all transformations that have
been encountered at each step in the code. When a shape is encountered in the
code, all of the transformations that have been seen up to that point are applied to
transform the shape. This may seem odd, but the transformations are applied to
the shape in the reverse order in which they occur in the code. That is, the last
transformation as ordered in the code (before makeShape) is the first
transformation applied to the shape. For example:

translate(10,20); // this is applied third
translate(0,20); // this is applied second
translate(20, 0); // this is applied to makeShape first
makeShape();
translate(20, 50); // this does not affect makeShape.

Note, in the above example, the order of the first three translations doesn’t really
matter because translations are commutative. However, the order becomes
important when we introduce the other transformations.

One can save the sequence of encountered transformations (referred to as the
current ModelView Matrix) using a function in Processing called pushMatrix.
Later, one can retrieve this saved sequence using popMatrix. PushMatrix can be
called multiple times to store the ModelView Matrix at various points in the code.
Each time pushMatrix is executed, the current ModelView Matrix is placed on a
stack (what is a stack?). When popMatrix is executed, it retrieves the ModelView
Matrix that is sitting on the top of the stack. See code comments below:

pushMatrix(); // save a copy of the ModelView Matrix which at
 // this point contains no transformations
translate(10,20); // add translation (T1) to the ModelView Matrix. Note,
 // the saved copy still contains no transformations
translate(4,5); // add translation (T2) to the ModelView Matrix so it now
 // contains T1 and T2
makeShape(); // draw shape, applying the current ModelView Matrix
 // containing translation T1 and T2
popMatrix(); // retrieve saved copy of the ModelView Matrix which
 // contains no transformations
translate(40,40); // add translation (T3) to the retrieved ModelView Matrix
makeShape(); // draw another shape, applying the current ModelView
 // Matrix containing only the translation T3

Experiment with pushMatrix and popMatrix in your code. For example, try
running the following code with and without the pushMatrix and popMatrix.

Once you understand how the ModelView Matrix and the Matrix stack work,
rewrite your loop code to make use of the pushMatrix and popMatrix
commands.

5. Exercise: (To be turned in). A design principle is to include repetition and
rhythm in your picture. The repetition is most interesting when it is not exact, i.e.,
the repeated shape is different in shape, color, orientation. Use functions with
parameters, loops, and translates to create an image that has a repeating shape (or
shapes) with variation. That is, each time the shape is drawn, it should vary in
some way either in location, color, fill, line weight, etc. Next week we will see
how to easily change the size and orientation of the shape.

	Lab 4, Part 1: Creating Shapes
	Lab 4, Part 2: The Translate Transformation and the Matrix Stack

