
CS 145 Images and Imagination, Spring 2010

Lab 5, Part 1: The Scale and Rotate Transformations

1. Create a new Processing sketch and paste in the following:

int angle = 0;

void setup() {
 size(400,400);
 background(0,0,255);
}

void draw() {
 background(0,0,255);

 rotate(radians(angle));
 myShape();

 angle = (angle + 5) % 360; // update angle
 delay(20); // this slows down the animation
}

void myShape() {
 beginShape();
 vertex(0, 0);
 vertex(20, 0);
 vertex(20, 20);
 vertex(60, 20);
 vertex(60, 40);
 vertex(0, 40);
 endShape(CLOSE);
}

Run the code to see what it does. Look up the rotate transformation in the
Processing reference. The placement of the rotate command is very important. Try
reversing the order of the rotate and myShape to see what happens. Do you
understand why the behavior changes?

Notes:

a. Processing requires the angle be in radians and not degrees, however, one can
convert using Processing’s radians function as shown above.

b. A positive angle corresponds to clockwise rotation in Processing.
c. The draw function always clears the matrix stack when the function is called.

2. Rotations always rotate about a specific point called the pivot. The pivot is also
called a fixed point because the pivot point does not move (i.e. it is fixed) when the
rotation is applied. In Processing, the default pivot point for rotations is always at the
origin (top left corner). In the above example, you should see the object rotate about
the origin.

Given the code

translate(width/2,height/2); // move pivot to window center
rotate(angle); // rotate the shape
translate(-x,-y) ; // move the pivot point at (x,y)
 // to the origin
myShape(); // draw the shape

The translate immediately before myShape changes the pivot relative to the shape.
The translate before the rotate changes the location of the pivot in the window.

3. Replace myShape() with a shape placed near the origin which you have created. The

shape should not be large so that you can more easily see
what is happening with the rotation.

4. Add a translate transformation to the line right before the
rotate. What happens?
Add a translate transformation to the line right before the
rotate. What happens?

Experiment by changing the pivot and location of the pivot
in the window. If someone gives you a pivot point and
window location, you should know exactly what translations are needed to draw an
image with this pivot and location.

5. It is important that you can explain the above behavior in terms of the matrix stack.
Use pencil and paper to work through what the matrix stack looks like at each step in
the code. Specifically what does the stack look like at the point when myShape is
executed?

6. As you can see above, rotation and translation are not commutative with each other,
that is, the order in which they appear in the code matters!

However, in Lab 4, we saw that two translations, which are adjacent in the code, are
commutative (if you reverse their order, nothing changes). Are two adjacent rotations
commutative with each other? Try it out to find out. Why or why not?

7. Transformations are also useful in programs which are not
animations (i.e. the ones that do not contain a draw function).
Here, loops and rotations can be used to generate circular or spiral
shapes. For example:

void setup() {
 size(200,200);
 translate(width/2,height/2); // translate image to center
 makeCircle();
}

void makeCircle() {
 for (int i = 0; i < 18; i++) {
 pushMatrix(); // save current matrix stack
 rotate(radians(20*i)); // rotate ellipse
 translate(30,0); // move pivot point
 ellipse(0,0,50,10); // draw ellipse
 popMatrix(); // retrieve saved matrix stack
 }
}
Try running the above code. Do you see why you need the push/popMatrix? Try
removing them to see what happens. Try adding additional circles at different radii
composed of different shapes.

8. Exercise 1: Circles and spiral shapes are useful from a design perspective because
they can focus where the viewer looks. Create a new Processing program. Use loops,
rotation and translation transformations to obtain 1) a spiral shape, 2) a sequence of
circles of increasing radii, 3) random circles as shown below. Save several examples
to image files.

Lab 5, Part 2: The Scale Transformation

1. Copy and paste the following code into a new Processing

sketch, replacing myShape with your own shape. Run the
program.

void setup() {
 size(400,400);
}

float scaleVal = 1.0;

void draw() {
 background(100);
 scale(scaleVal); // scale uniformly by amount scaleVal
 myShape(); // draw the shape

 if (scaleVal >= 3) scaleVal = .2; // reset when gets to 3
 scaleVal += .1; // update scaleVal
 delay(50); // slow animation
}

void myShape() {
 // add your own code here
}

2. The Scale Transformation: Look up the scale transformation in the Processing

reference. In the above code, the scale(scaleVal) scales the object uniformly in all
directions by an amount scaleVal relative to the origin:

When you scale a shape, observe how the position of the
scaled shape changes relative to the original. Specifically,
note how the shape moves away from the origin as it grows
larger and it moves towards the origin as the shape grows
smaller. The only point that does not move is the origin. We
call the origin the fixed point, which is similar to what we
saw with rotations. In Processing, the default fixed point for
scaling is always at the origin.

3. Non-uniform scale: One can also scale shapes non-
uniformly, i.e. the amount of the scaling is different along one
axis than the other. For example, we can scale our house by
scaleVal along the x-axis and 2*scaleVal along the y-axis:
 scale(scaleVal, 2*scaleVal);
Try various non-uniform scales with your shape.

A little later we will see how to stretch a shape along an arbitrary axis.

4. Changing the fixed point: Just as in the case of rotations, we

use translations to set the fixed point as well as the location of
the shape in the window.

For example, suppose our house is sitting as shown in the image
to the right and suppose that we want to scale the house about
the red dot (this is the pivot) located at position (90, 110).

Then the code would be
 translate(90,110); // translate back
 scale(2); // scale
 translate(-90,-110); // translate fixed
 // point to the origin
 house();

Why is this useful?: If the house is positioned on “the ground” and the fixed point is
anywhere along the base of the house (as in the above example) then the base will
stay fixed to the ground no matter how we scale. This is desirable because we may
want the house to stay level on the ground even if the house is resized. In the image
below, each house was obtained by scaling non-uniformly and translating
horizontally, however, no vertical adjustment was needed. This would not have been
the case if the fixed point had not been at the base of the house. In general, it is
important to think about where you want your fixed point to be because a good choice
can greatly simplify drawing images.

5. Exercise 2: For the shape you have created, pick a fixed point at the base and create a

row of shapes randomly sized but which are level horizontally as the houses are
above. Save a copy of the image.

6. Remember: Write clean and easy to manage code:
a. Identify the different “layers” or elements in your image.
b. Separate each layer into a separate function. Make sure that each function has

as few side-effects as possible.
c. To draw the multiple layers, you will call the functions separately. You may

need to reset or push/pop the matrix stack to insure that each layer behaves
independently.

d. Place closing brackets on a line by themselves.
e. Use the auto format to insure proper indentation.
f. Add comments if it isn’t obvious what the code does.
g. Use variable names that identify what the variable represents.

Lab 5, Part 3: Hierarchical Structures

Exercise 3: In class, we looked at hierarchical structures (e.g. solar system and robot
arm). Pick a simple hierarchical system (e.g. a car with wheels where the wheels turn as
the car moves across the screen). Draw a graph of the structure with paper and pencil to
identify what transformations are needed. For example:

Once you have done this, build the structure in your code using functions for each part
and push/popMatrix to maintain the proper transformation structure. Generate a single
image snapshot (using save()) and also generate an applet.

A single snapshot

The car at a sequence of times moving right. Note, the rotating tires.

	Lab 5, Part 1: The Scale and Rotate Transformations
	Lab 5, Part 2: The Scale Transformation
	Lab 5, Part 3: Hierarchical Structures

