CS 343 Analysis of Algorithms, Spring 2008

Exercises: Recurrence Equations

- 1. Use telescoping to solve (assume T(1) = 1)
 - (a) T(n) = T(n/2) + 1. This is binary search.
 - (b) T(n) = T(n-1) + n.
- 2. Use the master equation to solve
 - (a) T(n) = 4T(n/2) + n.
 - (b) $T(n) = 4T(n/2) + n^2$.
 - (c) $T(n) = 4T(n/2) + n^3$
- 3. Give the asymptotic bounds for T(n) in each of the following recurrences. Assume T(n) is constant for $n \leq 2$. Make your bounds as tight as possible and justify your answers.
 - (a) T(n) = 3T(3n/2) + 1. This is stooge sort.
 - (b) T(n) = 2T(n/2) + n. This is merge sort.
 - (c) $T(n) = 2T(n/2) + n^3$.
 - (d) T(n) = T(9n/10) + n
 - (e) $T(n) = 16T(n/4) + n^2$
 - (f) $T(n) = 7T(n/3) + n^2$
 - (g) $T(n) = 7T(n/2) + n^2$
 - (h) $T(n) = 2T(n/4) + \sqrt{n}$
 - (i) $T(n) = T(\sqrt{n}) + 1$
 - (j) $T(n) = 3T(n/2) + n \lg n$