
CS343

Kleinberg and Tardos, Chapter 2, problem 6: Find the number of additions exe-
cuted. Note, the summation below actually counts the number of terms added as
opposed to the number of additions, e.g. A1 + A2 has 2 terms but one addition.
However, the complexity will be the same and, besides, the exercise is more about
doing summations.
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After lots of simplification (just algebra!), we get
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Lots more simplification gives the final result ...
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To check the result, compare the value calculated directly from the summation with
the value calculated from the above equation to see if they match. For example, when
n = 3, we should get 7 (do you get this?)
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