Complexity Notation

O notation: We say that a function f(n) has a time complexity O(g(n)) if there exist constants c > 0 and n_0 such that

$$0 \le f(n) \le cg(n)$$
 for $n \ge n_0$

 Ω notation: We say that a function f(n) has a time complexity $\Omega(g(n))$ if there exist positive constants c and n_0 such that

$$0 \le cg(n) \le f(n)$$
 for $n \ge n_0$

 Θ notation: We say that a function f(n) has a time complexity $\Theta(g(n))$ if there exist positive constants c_1 , c_2 , and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for $n \ge n_0$

o notation: We say that a function f(n) has a time complexity o(g(n)) if for any positive constant c, there exists an $n_0 > 0$ such that

$$0 \le f(n) < cg(n)$$
 for $n \ge n_0$

 ω notation: We say that a function f(n) has a time complexity $\omega(g(n))$ if for any positive constant c, there exists an $n_0 > 0$ such that

$$0 \le cg(n) < f(n)$$
 for $n \ge n_0$

Limits

Assume that f(n) is asymptotically non-negative and g(n) is asymptotically positive.

- $\lim_{n\to\infty} f(n)/g(n) = d$ where $0 < d < \infty$ implies f(n) = O(g(n)), g(n) = O(f(n)), and $f = \Theta(g)$
- $\lim_{n\to\infty} f(n)/g(n) = \infty$ implies $g = O(f), f(n) \neq O(g(n)), f = \Omega(g), \text{ and } f \neq \Theta(g)$
- $\lim_{n\to\infty} f(n)/g(n) = 0$ implies $f(n) = O(g(n)), g(n) \neq O(f(n)), \text{ and } f \neq \Theta(g)$
- f = o(g(n)) if and only if $\lim_{n\to\infty} f(n)/g(n) = 0$
- $f = \omega(g(n))$ if and only if $\lim_{n \to \infty} f(n)/g(n) = \infty$
- Recall L'Hopital's Rule: $\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} f'(n)/g'(n)$
- Warning: Don't always assume the converse. For example, f(n) = O(g(n)) does not necessarily imply that $\lim_{n\to\infty} f(n)/g(n) = d$. Counterexample: let f(n) = n and $g(n) = n(1 + \sin n)$. In this case, the limit doesn't exist.