
CS 443 Analysis of Algorithms, Spring 2003 1

Review for Final Exam

The exam will be closed notes, closed book, and no calculators. Exam may include
true/false, multiple choice, short answer, and short proofs. When doing proofs, you
must explain all of your steps.

Suggestion: carefully review all lab problems and class notes. Reread relevant
sections in text.

Topics before Midterm

1. Proof by induction - review homework problems.

2. Asymptotic Notation

• Experimental calculation of complexity. How do you measure the com-
plexity?

• Know the definitions of Ω, Θ, ω, O and o.

• Know how to use the definitions in a proof.

• Know how to use limits to determine complexity of a function.

• Know how basic functions such as f(n) = n, nk, en, lg n, n!, etc compare.
Be able to use L’Hopital’s Rule.

• Know how to do basic manipulation of exponentials and logs.

• Know how to sum arithmetic series and geometric series.

3. Recurrences

• Substitution method (guess and check with induction)

• Iteration method and telescoping.

4. Binary Trees

• What is a binary tree. How is it constructed. How do you implement the
basic operations using recursion? (getHeight, printSorted, insert, remove,
etc).

• What is an AVL tree? What are it’s properties?

• Why are AVL trees used?

5. Heapsort and Priority Queues

• What are the trade-offs of the various ways of implementing a priority
queue?

• What is a heap, how is it stored, what is its height?



CS 443 Analysis of Algorithms, Spring 2003 2

• What is the heap property?

• What do the methods heapify, build-heap, and heapsort do? What are
their complexity?

6. Hashing

• What is hashing?

• What are examples of hash functions?

• What is a collision detection strategy? What are some examples? (e.g.
chaining, linear probing, rehashing, open addressing, random hashing)

Topics after Midterm

1. Master Equations and Recurrences

• Know how to use the Master Equation to prove bounds on recurrences.

• Know when the Master Equation will not work.

2. Sorting in general

• Know the different sorting algorithms: mergesort, insertion sort, heapsort,
quicksort

• Know the different approaches such as divide and conquer, comparison
sorts, bucket sorts

• How do sorts behave on already sorted lists, reverse ordered lists, etc.

• What is the big-Oh bound for the different sorts.

3. Quicksort

• What is the algorithm. How does the partition method work.

• What is the worst case complexity? Average case?

• How can quicksort be improved, e.g. median of 3?

4. Comparison Sorts

• Understand the proof showing that all comparison sorts are at best O(n lg n)

5. Radix and Bucket Sort

• How does radix sort work?

• What is its complexity?

6. Dynamic Programming

• When is DP effective?



CS 443 Analysis of Algorithms, Spring 2003 3

• Defining the subproblem

• Determining the recursion

• memoization

• Applications: Matrix Chain, LCS, Cheapest path, 0-1 Knapsack, Pretty
Printing

7. Greedy Algorithms

• What is a greedy algorithm?

• Why use non-optimal greedy algorithms?

• What is the greedy choice property and how do you prove that a problem
satisfies it?

• What is the optimal substructure and how do you prove that a problem
satisfies it?

• Applications: cheapest path, activity selection, Huffman codes, fractional
knapsack problem

8. Graphs

• Definitions

• Breadth First Search Trees

• Depth First Search Trees

• Topological Sorting

• Articulation Points and Bi-connected Graphs

• Minimum Spanning Trees: Prim’s Algorithm, Kruskal’s Algorithm

• Single Source Shortest Path - Dijkstra’s Algorithm

• All Pairs Shortest Path - Floyd-Warshall Algorithm


