The Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonegative integers by the recurrence

$$T(n) = \begin{cases} c & \text{if } n < n_0 \\ aT(n/b) + f(n) & \text{if } n \ge n_0 \end{cases}$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log_2^{k+1} n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $af(n/b) \leq \delta f(n)$ for some $\delta < 1$ and $n \geq n_0$, then $T(n) = \Theta(f(n))$.