Name: _____

Score:	1.	$(\max 10)$	5.	$(\max 12)$
	2.	$(\max 12)$	6.	$(\max 12)$
	3.	$(\max 12)$	7.	$(\max 12)$
	4.	$(\max 18)$	8.	$(\max 12)$
		Total:	$(\max 100)$	

CS443: Analysis of Algorithms Midterm, Sp 03

This exam is closed book. Calculators are not allowed.

1. (10 pts) State the definition of $f(n) = \Omega(g(n))$.

2. (12 pts) Use the definition you gave in the previous problem to prove or disprove the claim: $h_1(n) + h_2(n) = \Omega(max(h_1(n) + h_2(n)))$. Carefully explain all of your steps.

3. (12 pts) Order the following functions from smallest to largest based on their Big-Oh complexity. Be sure to identify which functions are the same (that is, which are Big-Theta of one another). Assume logs are base 2.

 $n \log(n)$ 100² n! n^3 2^{2^n} \sqrt{n} $2^{2\log(n)}$ $\log^2(n)$

4. (3 pts each, 18 pts total) Circle true or false:

(a) $f(n) = \Omega(f(n))$	true or false
(b) $f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n))$	true or false
(c) $f(n) = O(g(n)) \Rightarrow f(n) = o(g(n))$	true or false
(d) $f(n) = o(g(n)) \Rightarrow f(n) = O(g(n))$	true or false
(e) $f(n) = O(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$	true or false
(f) $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = \omega(g(n))$	true or false

5. (12 pts) Use induction to prove the following. Be sure to explain what you are doing in each step.

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$$

6. (12 pts) Suppose you are given an array containing *n* numbers. You call *build-heap* on it so that the result is a heap. The largest item will be in the array at index 0. Give *all* the possible places (i.e. array indices) where it would be possible to find the smallest item. Be specific and explain your answer. Show some examples in tree and/or array form to help explain your answer.

7. (12 pts) Describe at least two different collision detection methods for hash tables.

8. (12 pts) Develop an algorithm that computes the k^{th} largest element of a set of n distinct integers in $O(n + k \log n)$ time.

9. (0 pts) What would the answer to this question be if you didn't already know the answer?